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Abstract
The reversed aging intensity function is defined as the ratio of the instantaneous
reversed hazard rate to the baseline value of the reversed hazard rate. It analyzes
the aging property quantitatively, the higher the reversed aging intensity, the weaker
the tendency of aging. In this paper, a family of generalized reversed aging intensity
functions is introduced and studied. Those functions depend on a real parameter. If the
parameter is positive they characterize uniquely the distribution functions of univariate
positive absolutely continuous random variables, in the opposite case they characterize
families of distributions. Furthermore, the generalized reversed aging intensity orders
are defined and studied. Finally, several numerical examples are given.

Keywords Generalized reversed aging intensity · Reversed hazard rate · Generalized
Pareto distribution · Generalized reversed aging intensity order

Mathematics Subject Classification 60E15 · 62N05

1 Introduction

Let X be a non-negative and absolutely continuous random variable with cumulative
distribution function (cdf) F , probability density function (pdf) f and survival function
(sf) F . In reliability theory F is also known as unreliability function whereas F as
reliability function. In this context a great importance has the hazard rate function r
of X , also known as the force of mortality or the failure rate, where X is the survival
model of a life or a system being studied. This definition will cover discrete survival
models as well as mixed survival models. In the same way we define the reversed
hazard rate r̆ of X , that has attracted the attention of researchers. In a certain sense it
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is the dual function of the hazard rate and it bears some interesting features useful in
reliability analysis (see also Block and Savits [6]; Finkelstein [8]).

Let X be a randomvariablewith sf F and cdf F .Wedefine, for x such that F(x) > 0,
the hazard rate function of X at x , r(x), in the following way:

r(x) = lim
�x→0+

P(x < X ≤ x + �x |X > x)

�x

= 1

F(x)
lim

�x→0+
P(x < X ≤ x + �x)

�x
.

Moreover we define, for x such that F(x) > 0, the reversed hazard rate function of X
at x , r̆(x) (see Bartoszewicz [4] for the notation), in the following way:

r̆(x) = lim
�x→0+

P(x − �x < X ≤ x |X ≤ x)

�x

= 1

F(x)
lim

�x→0+
P(x − �x < X ≤ x)

�x
.

The reversed hazard rate r̆(x) can be treated as the instantaneous failure rate occurring
immediately before the time point x (the failure occurs just before the time point x ,
given that the unit has not survived longer than time x).

So, if X is an absolutely continuous random variable with density f , for x such
that F(x) > 0, the hazard rate function is

r(x) = 1

F(x)
lim

�x→0+
P(x < X ≤ x + �x)

�x
= f (x)

F(x)
, (1)

while, for x such that F(x) > 0, the reversed hazard rate function is

r̆(x) = 1

F(x)
lim

�x→0+
P(x − �x < X ≤ x)

�x
= f (x)

F(x)
. (2)

By the hazard rate function we introduce the aging intensity function L that is
defined for x > 0 as

L(x) = −x f (x)

F(x) log F(x)
= −xr(x)

log F(x)
, (3)

where log denotes the natural logarithm. It can be showed that the survival function of
an absolutely continuous randomvariable and its aging intensity function are related by
a relationship and that under some conditions a function determines a family of survival
functions and it is their aging intensity function, formore details see Szymkowiak [16].

The reversed aging intensity function L̆(x) is defined, for x > 0, as follows (see
also Rezaei and Khalef [14])

L̆(x) = −x f (x)

F(x) log F(x)
= −xr̆(x)

log F(x)
. (4)
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The reversed aging intensity function can be expressed also in a different way by
observing that the cumulative reversed hazard rate function defined as

R̆(x) =
∫ +∞

x
r̆(t) dt = log F(t)

∣∣t→+∞
t=x = − log F(x),

can be treated as the total amount of failures accumulated after the time point x . So
H̆(x) = 1

x R̆(x), being the proportion between the total amount of failures accumulated
after the timepoint x and the time x forwhich theunit is still survived, canbe considered
as the baseline value of the reversed hazard rate. Then, (4) can be written as

L̆(x) = xr̆(x)

R̆(x)
= r̆(x)

H̆(x)
,

and so the reversed aging intensity function, defined as the ratio of the instantaneous
reversed hazard rate r̆ to the baseline value of the reversed hazard rate H̆ , expresses
the units average aging behavior: the higher the reversed aging intensity (it means
the higher the instantaneous reversed hazard rate, and the smaller the total amount of
failures accumulated after the time point x , and the higher the the time x for which
the unit is still survived), the weaker the tendency of aging.

It is the analogous for the future of the aging intensity function, introduced and
studied by Bhattacharjee et al. [5], Jiang et al. [10], Nanda et al. [12] and Szymkowiak
[16]. The concept of aging intensity function was generalized by Szymkowiak [17].
In Sect. 2, we define the generalized reversed aging intensity functions and in the
particular case in which the random variable has a generalized Pareto distribution
function we generalize our results and study monotonicity properties. In Sect. 3, we
give some characterizations with the use of our new aging intensities. Some examples
of characterization are given in Sect. 4. In Sect. 5, we study the family of new stochastic
orders calledα-generalized reversed aging intensity orders. Then, in Sect. 6 we present
examples of analysis of α-generalized reversed aging intensity through generated and
real data.

2 Generalized reversed aging intensity functions

Let, for x > 0, W0(x) = 1 − exp(−x), i.e., W0 is the distribution function of an
exponential variable with parameter 1, so R̆(x) = W−1

0 (1−F(x)). In fact,W−1
0 (x) =

− log(1 − x) and so

W−1
0 (1 − F(x)) = − log F(x) = R̆(x).

ReplacingW0 by a strictly increasing distribution function G with density g, it is pos-
sible to generalize the concepts of reversed hazard rate function, cumulative reversed
hazard rate function and reversed aging intensity function. The generalization of the
hazard rate function was introduced by Barlow and Zwet [2,3].
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Definition 1 Let X be a non-negative and absolutely continuous random variable with
cdf F . Let G be a strictly increasing distribution function with density g. We define
the G-generalized cumulative reversed hazard rate function, R̆G , the G-generalized
reversed hazard rate function, r̆G , theG- generalized reversed aging intensity function,
L̆G , of X as

R̆G(x) = G−1(1 − F(x)), (5)

r̆G(x) = −d R̆G(x)

dx
= f (x)

g(G−1(1 − F(x)))
, (6)

L̆G(x) = xr̆G(x)

R̆G(x)
= x f (x)

g(G−1(1 − F(x)))G−1(1 − F(x))
. (7)

A very interesting case, because it provides intuitive results, is the one in which the
distribution functionG is the distribution function of a generalized Pareto distribution.

Definition 2 A random variable Xα follows a generalized Pareto distribution with
parameter α ∈ R if the distribution function Wα is expressed as (see Pickands [13]):

Wα(x) =

⎧⎪⎨
⎪⎩
1 − (1 − αx)

1
α , for

{
x > 0, if α < 0

0 < x < 1
α
, if α > 0

1 − exp(−x), for x > 0 if α = 0

Remark 1 For α = 0 we have the distribution function of an exponential variable with
parameter 1.

From the distribution function it is possible to obtain the quantile and the density
function. In particular we have

W−1
α (x) =

{
1
α
[1 − (1 − x)α], for 0 < x < 1, if α �= 0

− log(1 − x), for 0 < x < 1, if α = 0

wα(x) =

⎧⎪⎨
⎪⎩

(1 − αx)
1−α
α , for

{
x > 0, if α < 0

0 < x < 1
α
, if α > 0

exp(−x), for x > 0, if α = 0

Let X be a non-negative and absolutely continuous random variable with cdf F and
pdf f . Then it is possible to determine theWα- generalized cumulative reversed hazard
rate function and the Wα- generalized reversed hazard rate function in the following
way:

R̆Wα (x) = W−1
α (1 − F(x)) =

{
1
α
[1 − Fα(x)], for x > 0, if α �= 0

− log F(x), for x > 0, if α = 0

r̆Wα (x) = −d R̆α(x)

dx
= Fα−1(x) f (x), for x > 0.
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For the sake of simplicity, those functions can be, respectively, indicated by R̆α , r̆α and
we can refer to them as the α-generalized cumulative reversed hazard rate function
and the α-generalized reversed hazard rate function.

Remark 2 The 1-generalized reversed hazard rate function is equal to the density func-
tion. In fact the density function gives a first rough illustration of the aging tendency
of the random variable by its monotonicity. The 0-generalized reversed hazard rate
function is equal to the usual reversed hazard rate function.

From these functions, it is possible to introduce the α-generalized reversed aging
intensity function

L̆α(x) = r̆α(x)
1
x R̆α(x)

=
{

αx Fα−1(x) f (x)
1−Fα(x) , for x > 0, if α �= 0
−x f (x)

F(x) log F(x) , for x > 0, if α = 0
(8)

Theα-generalized reversed aging intensity function describes the relationship between
the instantaneous value of the α-generalized reversed hazard rate function r̆α(x) and
the baseline value of the α-generalized reversed hazard rate function 1

x R̆α(x). The
higher the α-generalized reversed aging intensity function (it means the higher the
actual value of the α-generalized reversed hazard rate function respect to its baseline
value), the weaker the tendency of aging. Moreover, the α-generalized reversed aging
intensity function can be treated as the elasticity (see Sydsaeter and Hammond [15]),
except for the sign, of the α-generalized cumulative reversed hazard rate function, i.e.,
it indicates how much the function R̆α changes if x changes by a small amount.

We recall the definition of α-generalized aging intensity functions, Lα . These func-
tions are defined by Szymkowiak [17] in the following way

Lα(x) =
{

αx(1−F(x))α−1 f (x)
1−(1−F(x))α , for x > 0, if α �= 0

−x f (x)
(1−F(x)) log(1−F(x)) , for x > 0, if α = 0

(9)

Remark 3 The 0-generalized reversed aging intensity function is equal to the usual
reversed aging intensity function. If α = 1 we have

L̆1(x) = x f (x)

F(x)
,

i.e., it is the negative of the elasticity of the survival function F , they are equal in
modulus.

If α = n ∈ N we have

L̆n(x) = nxFn−1(x) f (x)

1 − Fn(x)
,

where the denominator is the survival function of the largest order statistic for a sample
of n i.i.d. variables, while the numerator is composed by x multiplied for the density
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of this order statistic. So L̆n can be considered as the negative of the elasticity for the
survival function of the largest order statistic.

If α = −1 we have

L̆−1(x) = −x(F(x))−2 f (x)

1 − (F(x))−1 = −x f (x)

F2(x) F(x)−1
F(x)

= x f (x)

F(x)(1 − F(x))
,

and so

L̆−1(x) = xLORX (x) = L−1(x),

where LORX is the log-odds rate of X (see Zimmer, Wang and Pathak [18]).

The next proposition analyzes the monotonicity of α-generalized reversed aging
intensity functions respect to the parameter α. This result could be important if we
introduce stochastic orders based on α-generalized reversed aging intensity functions,
i.e., αRAI orders, and compare these orders as α varies (see Sect. 5).

Proposition 2.1 Let X be a non-negative and absolutely continuous random variable
with cdf F and pdf f . Then the α-generalized reversed aging intensity function is
decreasing respect to α ∈ R, ∀x ∈ (0,+∞).

Proof For some c ∈ (0, 1) we consider the function hc(α) = αcα

1−cα , for α �= 0. Then

dhc(α)

dα
= cα(1 − cα + log cα)

(1 − cα)2
.

That derivative is negative because cα ∈ (0,+∞) and the function k(t) = 1− t+ log t
is negative for t > 0 and different from 1. In fact, k(1) = 0 and 1 is maximum point
for this function. So hc is decreasing in (−∞, 0) ∪ (0,+∞). Defining the extension
for continuity in 0 of hc,

hc(0) = lim
α→0

hc(α) = lim
α→0

αcα

1 − cα
= lim

α→0

cα + αcα log c

−cα log c
= − 1

log c
,

it is possible to say that hc is decreasing in R.
Fixing c = F(x), with x > 0, and multiplying hF(x)(α) for the positive factor

x f (x)
F(x) we get that the following function

x f (x)

F(x)
hF(x)(α) =

{
αx Fα−1(x) f (x)

1−Fα(x) , if α �= 0
−x f (x)

F(x) log F(x) , if α = 0
= L̆α(x)

is decreasing in α as x is fixed. 	
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3 Characterizations via˛-generalized reversed aging intensity

In reliability theory some functions characterize the associated distribution function.
For example it was showed in Barlow and Proschan [1] that the hazard rate of an
absolutely continuous random variable uniquely determines its distribution function.

In the following theoremwe show that, forα < 0, the distribution function of a non-
negative and absolutely continuous random variable is defined by the α-generalized
reversed aging intensity function and that, under some conditions, a function can be
considerated as the α-generalized reversed aging intensity function for a family of
random variables.

Theorem 3.1 Let X be a non-negative and absolutely continuous random variable
with cdf F and let L̆α be its α-generalized reversed aging intensity function with
α < 0. Then F and L̆α are related, for all a ∈ (0,+∞), by the relationship

F(x) =
[
1 − (1 − Fα(a)) exp

(
−
∫ x

a

L̆α(t)

t
dt

)] 1
α

, x ∈ (0,+∞). (10)

Moreover, a function L̆ defined on (0,+∞) and satisfying, for a ∈ (0,+∞), the
following conditions:

(1) 0 ≤ L̆(x) < +∞, for all x ∈ (0,+∞);

(2) limx→0+
∫ a
x

L̆(t)
t dt = +∞;

(3) limx→+∞
∫ x
a

L̆(t)
t dt = +∞;

determines, forα < 0 and k ∈ (0,+∞), a family of absolutely continuous distribution
functions Fk by the relationship

Fk(x) = 1 − Wα

(
k exp

(
−
∫ x

a

L̆(t)

t
dt

))

=
[
1 − kα exp

(
−
∫ x

a

L̆(t)

t
dt

)] 1
α

, x ∈ (0,+∞), (11)

and it is the α-generalized reversed aging intensity function for those distribution
functions.

Proof Fix the distribution function F with respective density function f , and put
α < 0. From the definition of L̆α it is possible to obtain

L̆α(t)

t
= αFα−1(t) f (t)

1 − Fα(t)
, t ∈ (0,+∞).

By integrating both members between a and x , for an arbitrary a ∈ (0,+∞), we get

∫ x

a

L̆α(t)

t
dt =

∫ x

a

αFα−1(t) f (t)

1 − Fα(t)
dt
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= − log
1 − Fα(x)

1 − Fα(a)
,

therefore

1 − Fα(x) = (1 − Fα(a)) exp

(
−
∫ x

a

L̆α(t)

t
dt

)
,

and so we get (10).
Let L̆ be a function defined on (0,+∞) and satisfying, for a ∈ (0,+∞), the

conditions (1), (2), (3). We show that 1−Wα

(
k exp

(
− ∫ x

a
L̆(t)
t dt

))
= Fk(x) defines

a distribution function of a non-negative and absolutely continuous random variable,
with k ∈ (0,+∞).

In fact, from (2) it follows that limx→0+
∫ x
a

L̆(t)
t dt = −∞ and so we conclude that

limx→0+ Fk(x) = 0, while from (3) we have limx→+∞ Fk(x) = 1.
SinceWα is increasing, k > 0 and the exponential function is increasing, in order to

show that it is an increasing function we have to prove that− ∫ x
a

L̆(t)
t dt is a decreasing

function in x i.e.,
∫ x
a

L̆(t)
t dt is increasing in x . From (1) and from the assumptions

about the interval inwhichwe have a and x it follows that the integrand is non negative.
Let x1, x2 be such that 0 < x1 < x2 < +∞. If x1 ≥ a then we have two non negative

quantities and
∫ x1
a

L̆(t)
t dt ≤ ∫ x2

a
L̆(t)
t dt because (a, x1) ⊂ (a, x2). If x1 ≤ a < x2,

then
∫ x1
a

L̆(t)
t dt ≤ 0 ≤ ∫ x2

a
L̆(t)
t dt . If, finally, x1 < x2 ≤ a, we have two non positive

quantities and, for a reasoning similar to the first case,
∫ a
x1

L̆(t)
t dt ≥ ∫ a

x2
L̆(t)
t dt and

so
∫ x1
a

L̆(t)
t dt ≤ ∫ x2

a
L̆(t)
t dt .

Since Wα , the exponential function, the multiplication for a scalar and the indef-

inite integral x 
→ ∫ x
a

L̆(t)
t dt with respect to the Lebesgue measure are continuous

functions, we have a continuous function. In order to obtain the absolute continuity of
Fk , it suffices to observe that the derivative

F ′
k(x) =

[
1 − kα exp

(
−
∫ x

a

L̆(t)

t
dt

)] 1
α
−1

(−k) exp

(
−
∫ x

a

L̆(t)

t
dt

)(
− L̆(x)

x

)

is non-negative in x > 0.
To show that L̆ is α-generalized reversed aging intensity function related to those

distribution functions we have to observe that Fk(a) = [1 − kα] 1
α , and so kα =

1 − Fα
k (a) i.e., Fk and L̆ are related by the relationship expressed in the first part of

the theorem. 	


Remark 4 The expression Wα

(
k exp

(
− ∫ x

a
L̆(t)
t dt

))
depends only on the parameter

k ∈ (0,+∞) because the dependence on a ∈ (0,+∞) is fictitious. In fact, replacing
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a by b ∈ (0,+∞) we get

Wα

(
k exp

(
−
∫ x

b

L̆(t)

t
dt

))

= Wα

(
k exp

(
−
∫ a

b

L̆(t)

t
dt

)
exp

(
−
∫ x

a

L̆(t)

t
dt

))

= Wα

(
k1 exp

(
−
∫ x

a

L̆(t)

t
dt

))
,

where k1 = k exp
(
− ∫ ab L̆(t)

t dt
)

> 0.

Remark 5 If L̆ is the α-generalized reversed aging intensity function, with α < 0, of
a non-negative and absolutely continuous random variable X , it satisfies conditions
(1), (2), (3) of Theorem 3.1. In fact, from (8) we observe that L̆ is non-negative for
x ∈ (0,+∞). Moreover,

lim
x→0+

∫ a

x

L̆(t)

t
dt = lim

x→0+

∫ a

x

αFα−1(t) f (t)

1 − Fα(t)
dt

= lim
x→0+ − log

1 − Fα(a)

1 − Fα(x)
= +∞,

lim
x→+∞

∫ x

a

L̆(t)

t
dt = lim

x→+∞

∫ x

a

αFα−1(t) f (t)

1 − Fα(t)
dt

= lim
x→+∞ − log

1 − Fα(x)

1 − Fα(a)
= +∞.

Remark 6 If L̆ is a function that satisfies conditions (1), (2), (3) of Theorem 3.1 then it
determines, forα = 0 and k ∈ (0,+∞), a family of absolutely continuous distribution
functions Fk by the relationship

Fk(x) = 1 − W0

(
k exp

(
−
∫ x

a

L̆(t)

t
dt

))

= exp

⎡
⎣−k exp

⎛
⎝−

x∫

a

L̆(t)

t
dt

⎞
⎠
⎤
⎦ , x ∈ (0,+∞), (12)

and it is the 0-generalized reversed aging intensity function (i.e., the reversed aging
intensity function) for those distribution functions. This follows from corollary 4 of
Szymkowiak [16] by noting that LX

( 1
x

) = L̆ 1
X
(x).

In the following theoremwe show that, forα > 0, the distribution function of a non-
negative and absolutely continuous random variable is defined by the α-generalized
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reversed aging intensity function and that, under some conditions, a function can
be considerated as the α-generalized reversed aging intensity function for a unique
random variable.

Theorem 3.2 Let X be a non-negative and absolutely continuous random variable
with cdf F and let L̆α be its α-generalized reversed aging intensity function with
α > 0. Then F and L̆α are related, for all a ∈ (0,+∞), by the relationship

F(x) =
[
1 − exp

(
−
∫ x

0

L̆α(t)

t
dt

)] 1
α

, x ∈ (0,+∞). (13)

Moreover, a function L̆ defined on (0,+∞) and satisfying, for a ∈ (0,+∞), the
following conditions:

(1) 0 ≤ L̆(x) + ∞, for all x ∈ (0,+∞);

(2) limx→0+
∫ a
x

L̆(t)
t dt < +∞;

(3) limx→+∞
∫ x
a

L̆(t)
t dt = +∞;

determines, for α > 0, a unique absolutely continuous distribution function F by the
relationship

F(x) = 1 − Wα

(
1

α
exp

(
−
∫ x

0

L̆(t)

t
dt

))

=
[
1 − exp

(
−
∫ x

0

L̆(t)

t
dt

)] 1
α

, x ∈ (0,+∞), (14)

and it is α-generalized reversed aging intensity function for that distribution function.

Proof Fix the distribution function F with respective density function f , and put
α > 0. From the definition of L̆α it is possible to obtain

L̆α(t)

t
= αFα−1(t) f (t)

1 − Fα(t)
, t ∈ (0,+∞).

By integrating both members between 0 and x , we get

∫ x

0

L̆α(t)

t
dt =

∫ x

0

αFα−1(t) f (t)

1 − Fα(t)
dt

= − log(1 − Fα(x)),

therefore

1 − Fα(x) = exp

(
−
∫ x

0

L̆α(t)

t
dt

)
,
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and so we get (13).
Let L̆ be a function defined on (0,+∞) and satisfying, for a ∈ (0,+∞), the

conditions (1), (2), (3). We show that 1−Wα

(
1
α
exp

(
− ∫ x

0
L̆(t)
t dt

))
= F(x) defines

a distribution function of a non-negative and absolutely continuous random variable.
In fact, from (2) it follows that limx→0+ F(x) = 0, whereas from (3) we obtain

that limx→+∞ F(x) = 1.
SinceWα is increasing, α > 0 and the exponential function is increasing, in order to

show that it is an increasing function we have to prove that− ∫ x
0

L̆(t)
t dt is a decreasing

function in x i.e.,
∫ x
0

L̆(t)
t dt is increasing in x , but this is immediate because the

integrand is non negative and as x increases, the integration interval widens.
SinceWα , the exponential function, the multiplication for a scalar and the indefinite

integral x 
→ ∫ x
0

L̆(t)
t dt are continuous functions, we have a continuous function. In

order to obtain the absolute continuity of F , it suffices to observe that the derivative

F ′(x) = − 1

α

[
1 − exp

(
−
∫ x

0

L̆(t)

t
dt

)] 1
α
−1

exp

(
−
∫ x

0

L̆(t)

t
dt

)(
− L̆(x)

x

)

is non-negative in x > 0. Finally, F and L̆ are related by the same relationship found in
the first part of the theorem and so L̆ is α-generalized reversed aging intensity function
for that distribution function.

Remark 7 If L̆ is the α-generalized reversed aging intensity function, with α > 0, of
a non-negative and absolutely continuous random variable X , it satisfies conditions
(1), (2), (3) of Theorem 3.2. In fact, from (8) we observe that L̆ is non-negative for
x ∈ (0,+∞). Moreover,

lim
x→0+

∫ a

x

L̆(t)

t
dt = lim

x→0+

∫ a

x

αFα−1(t) f (t)

1 − Fα(t)
dt

= lim
x→0+ − log

1 − Fα(a)

1 − Fα(x)
< +∞,

lim
x→+∞

∫ x

a

L̆(t)

t
dt = lim

x→+∞

∫ x

a

αFα−1(t) f (t)

1 − Fα(t)
dt

= lim
x→+∞ − log

1 − Fα(x)

1 − Fα(a)
= +∞.

In a concrete situation, if we have data it is possible to obtain an estimation of both
distribution function and α-generalized reversed aging intensity functions. So it could
happen that the shape of an α-generalized reversed aging intensity function is easier
to recognize than that of the distribution function.
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4 Examples of characterization

Definition 3 We say that a random variable X follows an inverse two-parameter
Weibull distribution (seeMurthy, Xie and Jiang [11]) if for x ∈ (0,+∞) and β, λ > 0
the distribution function is expressed as

F(x) = exp

(
− λ

xβ

)
. (15)

In that case we write X ∼ invW2(β, λ).

From the cdf (15) it is possible to obtain other characteristics of the distribution.
In particular, for x ∈ (0,+∞), the pdf is

f (x) = λβ

xβ+1 exp

(
− λ

xβ

)
,

the reversed hazard rate function is

r̆(x) = f (x)

F(x)
= λβ

xβ+1 ,

and the α-generalized reversed aging intensity function, for α �= 0, is

L̆α(x) =
αx λβ

xβ+1 exp
(
− λ

xβ

)
exp

(
−λ(α−1)

xβ

)

1 − exp
(
−λα

xβ

)

= αβλ

xβ

exp
(
−λα

xβ

)

1 − exp
(
−λα

xβ

) . (16)

Let α < 0. By remark 5 we know that (16) satisfies the hypothesis (1), (2), (3) of
Theorem 3.1. So we can apply the theorem by determining the quantity

Fk(x) =
⎡
⎣1 − kα exp

⎛
⎝−

∫ x

a

αβλ

tβ+1

exp
(
−λα

tβ

)

1 − exp
(
−λα

tβ

) dt

⎞
⎠
⎤
⎦

1
α

=
⎡
⎣1 − kα

exp
(
−λα

xβ

)
− 1

exp
(
−λα

aβ

)
− 1

⎤
⎦

1
α

.

Corollary 4.1 If a random variable X has α-generalized reversed aging intensity func-

tion, α < 0, L̆α(x) = αβλ

xβ

exp
(
− λα

xβ

)

1−exp
(
− λα

xβ

) , a.e. x ∈ (0,+∞), with β, λ > 0, then the
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distribution function of X is expressed as

F(x) =
[
1 − γα

(
exp

(
−λα

xβ

)
− 1

)] 1
α

, x ∈ (0,+∞) (17)

for γ ∈ (0,+∞).

Remark 8 If γ = − 1
α
, the distribution function of Corollary 4.1 is the distribution

function of an inverse two-parameter Weibull distribution, invW2(β, λ).

Let α > 0. By remark 7 we know that (16) satisfies the hypothesis (1), (2), (3) of
Theorem 3.2. So we can apply the theorem by determining the quantity

F(x) =
⎡
⎣1 − exp

⎛
⎝−

∫ x

0

αβλ

tβ+1

exp
(
−λα

tβ

)

1 − exp
(
−λα

tβ

) dt

⎞
⎠
⎤
⎦

1
α

=
[
1 −

(
1 − exp

(
−λα

xβ

))] 1
α = exp

(
− λ

xβ

)
.

Corollary 4.2 If a random variable X has α-generalized reversed aging intensity func-

tion, α > 0, L̆α(x) = αβλ

xβ

exp
(
− λα

xβ

)

1−exp
(
− λα

xβ

) , a.e. x ∈ (0,+∞), with β, λ > 0, then X

follows an inverse two-parameter Weibull distribution, X ∼ invW2(β, λ).

Let us consider some examples of polynomial α-generalized reversed aging inten-
sity functions.

Example 1 Let us consider L̆α(x) = A > 0, for x > 0. It could be a constant α-
generalized reversed aging intensity function for α ≤ 0, in fact for α > 0 it does not
satisfy the hypothesis of Theorem 3.2.

For α = 0 it determines a family of inverse two-parameter Weibull distributions by
the relationship (see Szymkowiak [16])

Fk(x) = exp

[
−k

(
1

x

)A
]

, x ∈ (0,+∞), (18)

where k is a non-negative parameter.
For α < 0, it determines a family of continuous distributions by the relationship

Fk(x) =
[
1 + k

(
1

x

)A
] 1

α

, x ∈ (0,+∞) (19)

where k is a non-negative parameter.
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Example 2 Let us consider L̆α(x) = A + Bx , for x > 0 where A, B > 0. It could be
a linear α-generalized reversed aging intensity function for α ≤ 0, in fact for α > 0
it does not satisfy the hypothesis of Theorem 3.2.

For α = 0, it determines a family of continuous distributions by the relationship

Fk(x) = exp

[
−k

(
1

x

)A

exp(−B x)

]
, x ∈ (0,+∞) (20)

where k is a non-negative parameter.
For α < 0, it determines a family of continuous distributions by the relationship

Fk(x) =
[
1 + k

(
1

x

)A

exp(−B x)

] 1
α

, x ∈ (0,+∞) (21)

where k is a non-negative parameter.

Example 3 Let us consider L̆α(x) = Bx , for x > 0, where B > 0. It could be a linear
α-generalized reversed aging intensity function for α > 0, in fact for α > 0 it satisfies
the hypothesis of Theorem 3.2. It determines a unique continuous distribution function
by the relationship

F(x) = [
1 − exp(−Bx)

] 1
α , x ∈ (0,+∞), (22)

i.e., an exponentiated exponential distribution (see Gupta and Kundu, [9]). We note
that for α = 1 this is the distribution function of an exponential random variable with
parameter B. So if X has 1-generalized reversed aging intensity function L̆1(x) = Bx ,
for x > 0 and B > 0 then X ∼ Exp(B).

5 ˛-generalized reversed aging intensity orders

In this section we introduce and study the family of the α-generalized reversed
aging intensity orders. In the following, we use the notation Lα,X to indicate the
α-generalized aging intensity function of the random variable X and L̆α,X to indicate
the α-generalized reversed aging intensity function of the random variable X .

In the next proposition we show a useful relationship between Lα,X and L̆α, 1
X
.

Proposition 5.1 Let X be a non-negative and absolutely continuous random variable
and let 1

X be its inverse. Then the following equality holds

Lα,X

(
1

x

)
= L̆α, 1

X
(x), x ∈ (0,+∞). (23)
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Proof We obtain an expression for the distribution function and the density function
of the random variable 1

X through X , for x > 0 we have

F 1
X
(x) = P

(
1

X
≤ x

)
= P

(
X ≥ 1

x

)
= 1 − FX

(
1

x

)
,

f 1
X
(x) = 1

x2
fX

(
1

x

)
.

If α = 0 we have, for x > 0,

L̆0, 1
X
(x) = L̆ 1

X
(x) =

−x f 1
X
(x)

F 1
X
(x) log F 1

X
(x)

= − 1
x fX

( 1
x

)
(1 − FX

( 1
x

)
) log(1 − FX

( 1
x

)
)

= LX

(
1

x

)
= L0,X

(
1

x

)
.

If α �= 0 we have, for x > 0,

L̆α, 1
X
(x) =

αx(F 1
X
(x))α−1 f 1

X
(x)

1 − (F 1
X
(x))α

= α 1
x

(
1 − FX

( 1
x

))α−1
fX
( 1
x

)
1 − (1 − FX

( 1
x

)
)α

= Lα,X

(
1

x

)
.

	

Definition 4 Let X and Y be non-negative and absolutely continuous random variables
and letα be a real number.We say that X is smaller thanY in theα-generalized reversed
aging intensity order, X ≤αRAI Y , if and only if L̆α,X (x) ≤ L̆α,Y (x), ∀x ∈ (0,+∞).

In the next lemma we show a relationship between the αRAI order and the αAI
order. We recall that X ≤αAI Y if and only if Lα,X (x) ≥ Lα,Y (x), ∀x ∈ (0,+∞).

Lemma 5.1 Let X and Y be non-negative and absolutely continuous random variables
and let α be a real number. We have X ≤αRAI Y if and only if 1

X ≥αAI
1
Y .

Proof We have X ≤αRAI Y if and only if L̆α,X (x) ≤ L̆α,Y (x), ∀x ∈ (0,+∞).
By proposition 5.1 this is equivalent to Lα, 1

X

( 1
x

) ≤ Lα, 1Y

( 1
x

)
, ∀x ∈ (0,+∞), i.e.

1
X ≥αAI

1
Y . 	


Remark 9 For particular choices of the real number α we find some relationship with
other stochastic orders.Obviously, the reversed aging intensity order coincideswith the
0-generalized reversed aging intensity order. For α = 1 we have showed in remark 3
that L̆1,X (x) = xrX (x), so we get a relationship with the hazard rate order. In fact,

X ≤hr Y ⇔ rX (x) ≥ rY (x),∀x > 0 ⇔ xrX (x) ≥ xrY (x),∀x > 0
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⇔ L̆1,X (x) ≥ L̆1,Y (x),∀x > 0 ⇔ X ≥1RAI Y . (24)

For α = −1 we have showed in remark 3 that L̆−1,X (x) = xLORX (x) = L−1,X (x),
so we get a relationship with the log-odds rate order. In fact,

X ≤LOR Y ⇔ LORX (x) ≥ LORY (x),∀x > 0 ⇔ xLORX (x) ≥ xLORY (x),∀x > 0

⇔ L̆−1,X (x) ≥ L̆−1,Y (x),∀x > 0 ⇔ X ≥−1RAI Y . (25)

Moreover we have X ≥−1RAI Y ⇔ X ≤−1AI Y so they are dual relations. For
α = n ∈ N we have showed in remark 3 that

L̆n,X (x) = nx(FX (x))n−1 fX (x)

1 − (FX (x))n
= xrX(n)

(x),

so there is a connection with the largest order statistic and the hazard rate order. In
fact

X(n) ≤hr Y(n) ⇔ rX(n)
(x) ≥ rY(n)

(x),∀x > 0 ⇔ xrX(n)
(x) ≥ xrY(n)

(x),∀x > 0

⇔ L̆n,X (x) ≥ L̆n,Y (x),∀x > 0 ⇔ X ≥nRAI Y . (26)

Remark 10 Lemma 5.1 and Remark 9 provide the following series of relations

X ≤−1RAI Y ⇔ 1

X
≤−1RAI

1

Y
⇔ X ≥−1AI Y ⇔ 1

X
≥−1AI

1

Y
.

Proposition 5.2 Let X and Y be non-negative and absolutely continuous random vari-
ables such that X ≤st Y , i.e., FX (x) ≥ FY (x) for all x > 0.

(1) If there existsβ ∈ R such that X ≤βRAI Y then for allα < β we have X ≤αRAI Y ;
(2) If there existsβ ∈ R such that X ≥βRAI Y then for allα > β we have X ≥αRAI Y .

Proof (1). From X ≤βRAI Y and lemma 5.1 we have 1
X ≥βAI

1
Y . Moreover from

X ≤st Y we get 1
X ≥st

1
Y so by proposition 4 of Szymkowiak [17] we obtain that

∀α < β 1
X ≥αAI

1
Y , i.e., X ≤αRAI Y .

The proof of part (2) is analogous. 	

Proposition 5.3 Let X and Y be non-negative and absolutely continuous random vari-
ables.

(1) If there exists β ∈ R such that for all α < β we have X ≥αRAI Y then X ≥rh Y ,
i.e., r̆X (x) ≥ r̆Y (x) for all x > 0;

(2) If there exists β ∈ R such that for all α > β we have X ≤αRAI Y then X ≥st Y .

Proof (1). From X ≥αRAI Y and lemma 5.1 we have 1
X ≤αAI

1
Y , ∀α < β. So with

the use of proposition 5 of Szymkowiak [17] we obtain 1
X ≤hr

1
Y , i.e. X ≥rh Y .

The proof of part (2) is analogous. 	
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Corollary 5.1 Let X and Y be non-negative and absolutely continuous random vari-
ables.

(1) X ≤st Y and X ≥LOR Y ⇒ X ≤αRAI Y for all α ∈ (−∞,−1);
(2) X ≤st Y and X ≤LOR Y ⇒ X ≥αRAI Y for all α ∈ (−1,+∞).

Proof (1). We have X ≥LOR Y ⇔ X ≤−1RAI Y so the proof is completed with the
use of proposition 5.2.

The proof of part (2) is analogous. 	


6 Application of˛-generalized reversed aging intensity function in
data analysis

Very often it is really a difficult task to recognize the lifetimedata distribution analyzing
only the shapes of their density anddistribution function estimators.But sometimes, the
corresponding α-generalized reversed aging intensity function for a properly chosen
α can have a relatively simple form, and it can be easily recognized with the use of
the respective reversed aging intensity estimate.

For some distribution F with support (0,+∞), we obtain a natural estimator of the
α-generalized reversed aging intensity function

̂̆Lα(x) =
⎧⎨
⎩

α x f̂ (x)[F̂(x)]α−1

1−[F̂(x)]α for x > 0, α �= 0

− x f̂ (x)
F̂(x) ln[F̂(x)] for x > 0, α = 0,

(27)

where f̂ denotes a nonparametric estimate of the unknown density function f and
F̂(x) = ∫ x

0 f̂ (t)dt represents the corresponding distribution function estimate. The
proposed estimation of the aging intensity function is possible if we assume that
data follow an absolutely continuous distribution with support (0,+∞) and if the
nonparametric estimate of its density function exists. Moreover, larger sample sizes
generally lead to increased precision of estimation. We perform our study for both the
generated and the real data.

6.1 Analysis of˛-generalized reversed aging intensity function through
generated data

In the following example we consider an application of the estimator (27) for α = −1
to verify the hypothesis that some simulated data come from the family of inverse
log-logistic distributions.

Example 4 Our goal is to check if a member of the inverse log-logistic distributions
invLLog(γ, λ) with the distribution function given by

Fγ,λ(x) =
[
1 +

(
λ

x

)γ ]−1

, x ∈ (0,+∞), (28)
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for some unknown positive parameters of the shape γ and the scale λ, is the parent
distribution of a random sample X1, . . . , XN .

From presented in Sect. 4, Example 1we know that for distribution function (28), its
−1-generalized reversed aging intensity function is constant and equal to L̆−1(x) = γ .
So, we check if the respective reversed aging intensity estimator (27) is indeed an
accurate approximation of a constant function.

Therefore, we use the following procedure to obtain N independent random
variables X1, . . . , XN with invLLog(γ, λ) lifetime distribution. First, we generate
standard uniform random variablesU1, . . . ,UN using function random ofMATLAB.

Then, applying the inverse transform technique with Fγ,λ(x) =
[
1 + (λ

x

)γ ]−1
, we

get Yi = F−1
γ,λ(1 − Ui ) = λ

(
1

1−Ui
− 1

)− 1
γ
, i = 1, . . . , N , with the inverse log-

logistic distribution invLLog(γ, λ). In this way, applying the function random with
the seed= 88, we generate N = 1000 independent inverse log-logistic random
variables with the shape parameter γ = 4, and the scale parameter λ = 0.5.

To calculate the reversed aging intensity estimator (27), we apply a kernel den-
sity estimator (see Bowman and Azzalini [7]), i.e., given in MATLAB ksdensity
function,

f̂ (x) = 1

N h

N∑
j=1

K

(
x − X j

h

)
, (29)

with a chosen normal kernel smoothing function and a selected bandwidth h = 0.05.
Then, the kernel estimator of the distribution function is equal to

F̂(x) = 1

N

N∑
j=1

I

(
x − X j

h

)
,

where I (x) = ∫ x
−∞ K (t)dt . The obtained −1-generalized reversed aging intensity

function estimate (27) is equal to

̂̆L−1(x) = x f̂ (x)

F̂(x)
[
1 − F̂(x)

] =
x 1

N h

∑N
j=1 K

(
x−X j
h

)

1
N

∑N
j=1 I

(
x−X j
h

) [
1 − 1

N

∑N
j=1 I

(
x−X j
h

)] .
(30)

For our simulation data, the plot of the density estimator (29) is presented in Fig. 1.

Analyzing the plot, it is not easy to decide if the density function belongs to the
inverse log-logistic family. But, we can notice that the plot of respective estimator (30)

of −1-generalized reversed aging intensity function ̂̆L−1(x) (see Fig. 2), oscillates
around a constant function, especially after removing few outlying values at the right-
end. This gives us the motivation to accept our hypothesis that an inverse log-logistic
distribution is the parent distribution of the generated sample.

To justify our intuitive decision, we propose to carry out the following more for-
mal statistical procedure. First, we calculate the least squares estimate of the intercept
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Fig. 1 Density estimator f̂ (x) for the data from Example 4

Fig. 2 ̂̆L0(x) and adjusted regression line for the data from Example 4

which for our data equals to γ̂ = 3.7990. Next, we put it into the log-likelihood func-
tion, and determine maximum likelihood estimator (MLE) of parameter λmaximizing
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Table 1 Parameters of
invLLog(γ, λ)

γ λ

Theoretical parameters 4 0.5

Estimators 3.7990 0.4957

it. The problem resolves into finding the solution to the equation

N∑
i=1

1( xi
λ

)γ̂ + 1
= N

2
.

As the result we obtain λ̂ = 0.4957. Note that the estimators γ̂ and λ̂ based on the
empirical −1-generalized reversed aging intensity are quite precise (cf. Table 1).

Finally, by the chi-square goodness-of-fit test we check if the data really fit the
inverse log-logistic distribution. For this purpose, we apply function histogram,
available in MATLAB and group the data into k = 20 classes of observations lying
into intervals [x j , x j+1) = [x j , x j + �x), j = 1, . . . , k, of length �x = 0.21.
The classes, together with their empirical frequencies N j = N j (X1, . . . , XN ) and
theoretical frequencies based on the inverse log-logistic distribution with parameters

replaced by the estimators n j = N
[
Fγ̂ ,̂λ(x j+1) − Fγ̂ ,̂λ(x j )

]
, are presented in Table 2.

Furthermore, available inMATLAB function chi2gof determines the value of chi-
square statistics χ2 = 9.3209 with ν = 7 degrees of freedom (automatically joining
together the last twelve classes with low frequencies) and determines the respective
p-value, p = 0.2304. It means that for a given significance level less than 0.2304 we
do not reject the hypothesis that the considered data follow the inverse log-logistic
distribution.

6.2 Analysis of˛-generalized reversed aging intensity through real data

Next, we present an example of real data. Analyzing its estimated α-generalized
reversed aging intensity we could assume that the data follow the adequate distri-
bution.

Example 5 The real data (see Data Set 6.2 in Murthy et al. [11]) concern failure times
of 20 components: 0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098
0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485.

For the given data, the plot of the normal kernel density estimator (see Bowman and
Azzalini [7]), obtained byMATLAB function ksdensitywith a returned bandwidth
h = 0.0147, is presented in Fig. 3. An analysis of the graph does not enable us to
recognize the data distribution.
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Table 2 Grouped data and
respective values of empirical
and theoretical frequency

Class [x j , x j+1) N j n j

1 0.0000–0.2100 26 36.8543

2 0.2100–0.4200 322 310.6691

3 0.4200–0.6300 371 365.5653

4 0.6300–0.8400 150 168.0593

5 0.8400–1.0500 68 64.2263

6 1.0500–1.2600 29 26.5322

7 1.2600–1.4700 15 12.2550

8 1.4700–1.6800 5 6.2413

9 1.6800–1.8900 3 3.4409

10 1.8900–2.1000 3 2.0223

11 2.1000–2.3100 0 1.2522

12 2.3100–2.5200 1 0.8095

13 2.5200–2.7300 2 0.5425

14 2.7300–2.9400 1 0.3749

15 2.9400–3.1500 0 0.2660

16 3.1500–3.3600 0 0.1931

17 3.3600–3.5700 0 0.1430

18 3.5700–3.7800 0 0.1078

19 3.7800–3.9900 0 0.0826

20 3.9900–4.200 1 0.0641

Fig. 3 Kernel density estimator f̂ for the data from Example 5
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Fig. 4 ̂̆L0(x), and adjusted regression line for the data from Example 5

To identify the data distribution we propose to estimate 0-generalized reversed
aging intensity (see formula (27))

̂̆L0(x) = − x f̂ (x)

F̂(x) ln[F̂(x)] , x ∈ (0,+∞).

The plot of the estimator ̂̆L0(x) (see Fig. 4) can be treated as oscillating around
a linear function, especially after removing one outlying value at the right-end. This
motivates us to state the hypothesis that data follow an inverse modified Weibull
distribution (see Sect. 4, Example 2) with distribution function

Fγ,λ,δ(x) = exp

[
−
(

λ

x

)γ

exp(−δ x)

]
, x ∈ (0,+∞), (31)

and 0-generalized reversed aging intensity function

L̆0(x) = δ x + γ, x ∈ (0,+∞).

Moreover, we provide the following procedure. First, we determine the least squares
estimates γ̂ = 0.3441 and δ̂ = 31.6785 of the intercept and the slop of linear L̆0,
respectively. Then we determine MLE of parameter λ

λ̂ =
⎛
⎝ N∑N

i=1
exp(−δ̂ xi )

(xi )γ̂

⎞
⎠

1
γ̂
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which maximizes the likelihood function. Here we obtain λ̂ = 549.9663.
Then, to check if the data fit the inverse modified Weibull distribution we use

adequate for small data the Kolmogorov-Smirnov goodness-of-fit test (avaliable in
MATLAB function kstest), we determine statistics K = 0.1496 and p-value of the
test equal to p = 0.7072. It means that for a given significance level less than 0.7072
we do not reject the hypothesis that the considered data follow the inverse modified
Weibull distribution.

7 Conclusion

In this paper, a family of generalized reversed aging intensity functions was intro-
duced and studied. In particular, it was showed that, using the generalized Pareto
distribution to generalize the concept of reversed aging intensity function, for α > 0,
the α-generalized reversed aging intensity function characterizes a unique distribution
function, while for α ≤ 0, it determines a family of distribution functions. Moreover,
α-generalized reversed aging intensity orders were introduced and some relations with
other stochastic orders were studied. Finally, analysis of α-generalized reversed aging
intensity through generated data and real one are given.
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