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A B S T R A C T   

8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a major product of DNA oxidation, is a pre-mutagenic lesion 
which is prone to mispair, if left unrepaired, with 2′-deoxyadenosine during DNA replication. While unrepaired 
or incompletely repaired 8-oxodG has classically been associated with genome instability and cancer, it has 
recently been reported to have a role in the epigenetic regulation of gene expression. 

Despite the growing collection of genome-wide 8-oxodG mapping studies that have been used to provide new 
insight on the functional nature of 8-oxodG within the genome, a comprehensive view that brings together the 
epigenetic and the mutagenic nature of the 8-oxodG is still lacking. 

To help address this gap, this review aims to provide (i) a description of the state-of-the-art knowledge on both 
the mutagenic and epigenetic roles of 8-oxodG; (ii) putative molecular models through which the 8-oxodG can 
cause genome instability; (iii) a possible molecular model on how 8-oxodG, acting as an epigenetic signal, could 
cause the translocations and deletions which are associated with cancer.   

1. Introduction 

DNA is a dynamic molecule that is continuously subjected to 
changes, many of which may involve the alteration of both the DNA 
backbone and the normal nucleobases [1]. Some of these alterations 
reflect normal modifications of DNA, but others represent DNA damage 
that has been implicated to have a role in pathological processes such as 
neurodegeneration [2], ageing [3], and cancer [4]. It has been estimated 
that, under physiological conditions, every cell, every day has to address 
the formation of approximately 70,000 DNA nucleobase lesions that, if 
unrepaired, represent a serious threat to genome integrity [1,5,6]. 

Among the various agents that damage DNA, reactive oxygen species 
(ROS) deserve particular attention due to the almost omnipresence, and 
their ability to both compromise the structure/function of DNA, and 
alter the associated physiological processes [7,8]. Some ROS, such as the 
hydroxyl radical (•OH), are also free radicals, and contain an atom or a 
molecule with an unpaired electron that makes them highly reactive and 
capable of oxidizing molecules upon contact. Sources of ROS can be 
exogenous, such as ultraviolet (UV) light, ionizing radiation (IR), toxins, 

chemicals, and pollutants, or endogenous, such as cellular metabolism in 
the mitochondria and peroxisomes [9–11] (Fig. 1). 

To counter the production of ROS, cells possess enzymatic proteins 
(such as the superoxide dismutases, SOD, the glutathione and ascorbate 
peroxidases and peroxisomal catalase) that, acting in concert with non- 
enzymatic proteins (e.g. peroxiredoxins, thioredoxins, glutaredoxin and 
metallothionein) [12–16], and together with low molecular weight an
tioxidants (e.g. glutathione, ascorbate, carotenoids and melatonin) [16, 
17], are able to prevent the formation of oxidatively generated damage 
to important macromolecules such as lipids, proteins and nucleic acids 
[18] (Fig. 1). 

While ROS play a physiological role in cell function such as an 
intracellular signalling molecule [19–22], an overproduction of ROS, if 
not counteracted by antioxidants, represents a serious problem for cell 
health [23]. To maintain a healthy cell status, oxidants and antioxidants 
should be in a state of equilibrium. Imbalance of this equilibrium in 
favour of the oxidants causes oxidative stress (OS) that, with an increase 
of ROS levels, induces improper signalling and increased oxidation of 
macromolecules [23–25]. In particular, ROS can have a dramatic impact 
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on DNA generating a spectrum of types of damage ranging from nucle
obase and sugar modifications, to modification and breakage of the 
phosphate backbone [26–29] (Fig. 1). To mitigate these consequences, 
cells possess a number of pathways, such as DNA repair, cell cycle arrest, 
autophagy and apoptosis, which are all involved in the protective DNA 
damage response (DDR) [23,30,31]. 

2. Endogenous sources of ROS 

ROS are produced continuously upon exposure to external agents 
such as radiation and pollutants, along with endogenous metabolism 
[9–11]. Specifically, ROS are mainly generated from oxidative meta
bolism within the mitochondria, where the majority of oxygen is con
verted to water and only a small percent (0.2–2 %) to superoxide anions 
(O2

• − ) [32] (Fig. 2). Superoxide anions can be converted to hydrogen 
peroxide (H2O2) in the cytosol, either spontaneously or through catalysis 
by SOD [33]. Next, H2O2 can be reduced to H2O, or partially reduced to 
OH•, through the metal-catalysed Haber-Weiss reaction in the presence 
of reduced transition metals [e.g. Fe2+ (Fenton reaction) and Cu+] [34]. 
•OH molecules are also formed from the decay of the reactive nitrogen 
species such as the peroxynitrite (ONOO-). •OH is the main strong 
cellular oxidant and, even though it has been well documented in vivo to 
cause DNA nucleobase modifications, and single-strand breaks (SSBs) 
[35], it remains unclear how cytosol-produced •OH can travel into the 
nucleus. Indeed, such is the reactivity of the hydroxyl radical that it 
reacts immediately with any molecule close to its site of formation, 
making it difficult to explain how it can be produced in the cytosol and 
then diffuse to the nucleus [36]. To address this, it has been proposed 
that H2O2, being a molecule much more able to able to diffuse [37], and 
less reactive, than •OH, can diffuse from the site of production into the 
nucleus, or alternatively can be also produced directly in the nucleus 
where, through the Fenton, or other metal-dependent reactions, can give 
rise to local •OH, and hence DNA damage. 

Sources of nuclear H2O2 have been identified and, besides nuclear 
oxidases (e.g. NOX4 and MnSOD) [38,39], Lysine-Specific histone 
Demethylases 1 and 2 (LSD1 and LSD2) have also been recently asso
ciated with the production of H2O2 in the nucleus [40,41](Fig. 2). LSD1 
and 2 are able to demethylate the mono- and di-methylated Lys4 and 

Lys9 of histone H3 through a flavin adenine dinucleotide (FAD)-de
pendent oxidative reaction [40–42]. During the demethylation, the 
LSD1 and 2 enzymes use as cofactor the FAD that is reduced to FADH2 
and then reoxidized to FAD by oxygen with the generation of formal
dehyde (the methylating agent) and H2O2 (the oxidizing agent). 
Intriguingly, the LSD1-associated production of H2O2 promotes the 
formation of 8-oxodG [43–50]. This suggests that in the nucleus, even if 
levels of free iron are lowered by the pool of nuclear ferritin [51], 
compared to other intracellular compartments, H2O2 may still be con
verted to •OH through the Fenton reaction [34], probably involving 
iron-containing complexes associated with the DNA structure [52,53] 
(Fig. 2). Supportive of this suggestion is a report that members of the 
Jumonji-type demethylases, a superfamily of oxygenases containing a 
Fe2+ ion in their catalytic domain, can form complexes with LSD1 and 
H2O2 produced by LSD1 activity reduced in the hydroxide ion by the 
oxidation of the Jumonji-contained Fe2+ ion [49]. In close proximity of 
DNA molecules, this event may be responsible for the oxidation of 
nucleobases. Indeed, depletion of iron-containing JMJD2A, a Jumonji 
demethylase that interacts with LSD1 to activate TGF-β1-induced genes, 
inhibits the formation of nuclear 8-oxodG [49]. Together, these data 
support the hypothesis that •OH can be generated from H2O2 produced 
at sites close enough to react with DNA. 

3. 2′-Deoxyguanosine is a major target for DNA oxidation 

All DNA nucleobases are susceptible to damage by ROS [9,54,55], 
either at the level of the free nucleotide (in the dNTP pool) [56], or as the 
2′-deoxynucleoside in the context of the DNA molecule. Deoxyguanosine 
(dG) is particularly vulnerable to oxidation due to its low oxidation 
potential [57,58]. The primary products of dG oxidation are 8-oxo-7, 
8-dihydro-2′-deoxyguanosine (8-oxodG) and 2,6-diamino-4-hydroxy-5-
formamidopyrimidine (FapydG) (Fig. 3). Moreover, 8-oxodG can be 
oxidized further producing guanidinohydantoin and spi
roiminodihydantoin. The main products of dA oxidation are 8-oxo-7, 
8-dihydro-2′-deoxyadenosine (8-oxodA), 4,6-diamino-5-formamidopyr
imidine (FapydA) and 2-hydroxy-2′-deoxyadenosine (2-oxodA). Pyrim
idines can also be oxidized, and this leads to the formation of products 
such as 5-hydroxy-2′-deoxycytosine (5− OHdC), 5, 

Fig. 1. Schematic representation of balance between ROS production and antioxidant defense. ROS can be produced by endo- or exogenous sources. The oxidative 
damage is prevented by enzymatic or non-enzymatic proteins and low molecular weight antioxidants. Under a physiological cellular state, the level of ROS is stable in 
a dynamic equilibrium balanced by oxidants and antioxidants and the physiological levels of ROS modulate the signalling pathways. When the levels of oxidants and 
antioxidants are imbalanced, the ROS increase and produce different types of DNA damage ranging from base modifications and transversions to genomic instability. 

F. Gorini et al.                                                                                                                                                                                                                                   



DNA Repair 97 (2021) 103027

3

6-dihydro-2′-deoxythymidine (DHdT) and 5-hydrox
ymethyl-2′-deoxydeoxyuridine (5hmdU) [59] (Fig. 3). 

8-oxodG is understood to be the most abundant [5,59], oxidatively 
modified DNA lesion and is generated by the introduction of an oxo 
group on the C8 position, and addition of a hydrogen atom on the N7 of 

the imidazole ring of dG (Fig. 4A). 
8-oxodG is described as a premutagenic DNA lesion because when 

present in DNA during replication it leads to a dC:dG to dA:dT trans
version [60–64] (Fig. 4B). As for all the other nucleobases, 8-oxodG is 
able to assume the anti or syn conformation, depending on the angle 

Fig. 2. The formation of reactive oxygen species 
(ROS) in the cell. First, the transmembrane 
NADPH oxidases (NOX) and mitochondria 
generate superoxide anion (O2) which diffuses 
in the cytoplasm. Then, O2can be converted to 
peroxynitrite (ONOO-) in the presence of NO or 
can be converted to H2O2 by superoxide dis
mutase (SOD). The cytosolic H2O2 may also be 
generated from different oxidases (Amino oxi
dases, Phox and Xanthine oxidase) or from 
peroxisome or from mitochondria. Next, H2O2 
can be partially reduced to •OH, through the 
metal-catalysed Haber-Weiss reaction in the 
presence of reduced transition metals [e.g. Fe2+

(Fenton reaction) and Cu+]. •OH molecules are 
also formed from the ONOO-. The H2O2 may 
diffuse from the cytosol to the nucleus or can be 
produced directly into the nucleus by LSD1 
demethylation reaction or by other nuclear ox
idases. Finally, through the Fenton reaction, the 
H2O2 is converted into OH•, which in turn oxi
dizes 2′-deoxyguanosine (created with bio
render.com).   

Fig. 3. The most common DNA lesions generated by interaction of ROS with the deoxynucleosides.  
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around the glycosidic bond. When oxygen is present on the C8 position, 
the syn conformation is more energetically favourable. What nucleobase 
base-pairs with 8-oxodG depends upon whether the syn and anti 
conformation is adopted (Fig. 4B). Indeed, 8-oxodG in the syn confor
mation is able to structurally mimic deoxythymidine (dT), and this, 
during DNA replication, accounts for a pro-mutagenic of 8-oxodG (syn): 
dA (anti) Hoogsteen base mispairing [60–64]. The 8-oxodG:dA mispair 
often evades DNA repair (e.g. proofreading activity of replicative poly
merases) because it structurally mimics the dT:dA base pair, and does 
not result in any distortion of the DNA helix structure [65]. Conversely, 
the 8-oxodG:dC Watson-Crick base pair, induces a modest distortion of 
the DNA helix structure, and this is more easily recognized by the DNA 
repair proteins, leading to the removal of 8-oxodG. 

4. Base excision repair of 8-oxodG 

Base excision repair (BER) is the main mechanism of pre-replicative 
removal of 8-oxodG [5,66]. The role of BER is to specifically recognize 
and repair (largely non-bulky) DNA nucleobase alterations and SSBs 
[67,68] which, if left unrepaired, could be converted into DSBs during 
DNA replication [69]. 

BER can proceed via two different pathways – so-called short-patch 
and long-patch repair, which involve subsets of repair proteins that 
operate independently [68,70,71]. The majority of repair events involve 
the classic short-patch mechanism (characterised by the replacement of 
a single damaged nucleotide) [70,71] (Fig. 5). Long patch BER, involves 
the processing of 2–12 nucleotides, including the damaged one. The 
choice of which of these two subpathways is followed depends upon the 
DNA glycosylase which initiates BER [71,72]. BER DNA glycosylases can 
be either monofunctional, or bifunctional, and with either β-lyase ac
tivity or both β and δ lyase activity [9,71,73]. 

Monofunctional DNA glycosylases perform excision of the nucleo
base only, releasing the modified nucleobase and creating an apurinic/ 
apyrimidinic (AP) site. In contrast, the bifunctional glycosylases excise 
the modified nucleobase and subsequently hydrolyze, via the associated 
AP lyase activity, the DNA backbone. This occurs through a β-elimina
tion step forming a 3′-α,β-unsaturated aldehyde adjacent to a 5′-phos
phate. Some bifunctional DNA glycosylases can also perform a 
δ-elimination step, in which convert the 3′-aldehyde to a 3′-phosphate 
[9,68,70,71,73]. 

The predominant BER mechanism for the removal of 8-oxodG is 
initiated through the specific bifunctional glycosylase 8-oxodG DNA 
glycosylase 1 (OGG1), which recognizes and then excises the 8-oxodG 
from the sugar-phosphate backbone. OGG1 does have a weak AP lyase 
activity, and cleaves the DNA at the abasic site via a β-elimination 
mechanism generating a 3′-phospho-α,β-unsaturated aldehyde terminus 
(3′-dRP) and 5′-phosphate (AP) site. Apurinic/apyrimidinic endonu
clease 1 (APE1) then cleaves the DNA phosphate backbone creating an 
SSB forming a polymerase-ready 3′-OH residue. At this point, short 
patch BER proceeds with the repair of the arising SSBs; specifically, DNA 
polymerase β removes the downstream 5′-sugar-phosphate, using its 
dRP-lyase activity, and repairs the single-nucleotide gap inserting one 
nucleotide. Then, the DNA ligase III/X-ray repair cross-complementing 
protein 1 (XRCC1) complex ligates the 3′-OH group of the newly inser
ted nucleotide with the downstream 5′-phosphate finishing the short- 
patch BER process [9,70,71]. 

If the 5′-termini cannot be processed by SSB end-processing enzymes, 
the long-patch pathway leads to the repair of the SSB by replacing a 
stretch of 2–12 nucleotides (Fig. 5). In long-patch BER, DNA pol β in
corporates the first nucleotide into the nick, while the replicative DNA 
pol δ is required in the elongation step to perform strand displacement 
synthesis. In this scenario, replication factor C (RF–C) loads the sliding 
clamp for DNA polymerases the Proliferating Cell Nuclear Antigen 
(PCNA) and then Flap endonuclease 1 (FEN1) excises the displaced 
oligonucleotide. Finally, DNA ligase I coordinates the final ligation step 
in long-patch BER [9,71,72]. 

Frequently during DNA replication, the replicative DNA polymerase, 
such as DNA pol δ/ε, misincorporates dAMP opposite 8-oxodG instead of 
the correct dCMP [73]. The resulting 8-oxodG:dA mismatch is repaired 
by MutY glycosylase Homologue (MYH)-initiated long-patch BER [61, 
74]. The monofunctional MYH excises, unconventionally, the undam
aged Ade before another round of replication, giving the cells a second 
opportunity to avoid the fixation of the mutation caused from dC:dG to 
dA:dT transversion, by forming a substrate for OGG1. Following the 
removal of the unmodified nucleobase by MYH, the DNA ends are 
subsequently processed by APE1, as in canonical BER, resulting in a nick 
with 3′-OH and 5′-dRP moieties. The DNA polymerase λ in complex with 
the cofactors PCNA and replication protein A (RP-A) promote the 
incorporation of correct dC opposite 8-oxodG and additional one 
nucleotide during the elongation reaction. After the lesion bypass, RP-A 

Fig. 4. Chemical structures of 8-oxodG and its altered base-pairs. (A) ROS oxidize 2′-deoxyguanosine and generate 8-oxo-7,8-dihydro-deoxyguanosine (8-oxodG). (B) 
8-oxodG in the syn conformation forms Hoogsteen base pair with 2′-deoxyadenosine, whereas 8-oxodG in the anti conformation forms Watson-Crick base pair with 2′- 
deoxycytidine. 
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and DNA pol λ dissociate, instead FEN1 through the interaction with 
PCNA cleaves the 5′ flap. Subsequently, the DNA ligase I, interacting 
with PCNA, binds the created nicked intermediate and ligates the 5′-P 
ends. Overall, the MYH-initiated BER is an example of the 
inter-relationship between long-patch BER and short patch BER [73,75]. 

In addition to MYH and OGG1, two bifunctional DNA glycosylases 
NEIL (Nei-like)-1 and -2, with an associated β,δ-elimination activity, can 
also repair 8-oxodG via BER [61,76,77](Fig. 5). Both NEIL1 and NEIL2 
interact with the BER proteins and initiate an APE-independent repair 
mechanism by excising 8-oxodG and catalyzing the β,δ-elimination of 
the abasic site leaving a 3′-phosphate at the resulting strand break. The 
phosphatase polynucleotide kinase (PNK), present in mammalian cells 
but not in Escherichia coli (E. coli), removes the 3′-phosphate in the gap 
creating the substrate for DNA synthesis required by DNA polβ. The final 
step is DNA ligation-mediated by XRCC1/LigIII [61,76,77]. 

Besides BER, an intricate network of other repair pathways exist for 
the repair of oxidatively generated DNA lesions. This includes Mis- 
Match Repair (MMR) [78] and Transcription-Coupled Nucleotide Exci
sion Repair (TC-NER) [61,79] (Fig. 5). Mounting evidence suggests that 
the MMR machinery (a collection of repair-associated proteins) plays a 
role in the post-replicative removal of 8-oxodG opposite dA, competing 
with MYH for the binding to, and processing of, the mispairing. 
Furthermore, it has been shown that the dA:8-oxodG mispair is 

recognized and bound by the human MMR factors MutS homologues 2 
(hMSH2) and 6 (hMSH6), and that hMSH6 interacts with MYH [80]. It 
has also been reported that both MYH and MMR proteins interact with 
PCNA, which acts as a coordinator of 8-oxodG:dA repair [81,82]. 
Another MMR protein, MutL homologue 1 (hMLH1), has also been re
ported to play a role in the repair of 8-oxodG. Evidence for this comes 
from MMR-defective cells, in which the hMLH1 gene is silenced, show a 
four-fold higher level of 8-oxodG than MMR-proficient cells [83]. 

Additionally, a number of components of the TC-NER pathway have 
been proposed to have a role in the repair of 8-oxodG, specifically both 
the Cockayne syndrome B (CSB) and A (CSA) proteins, together with 
Xeroderma pigmentosum complementation group C (XPC) protein [84]. 
In particular, CSB could catalyse the removal of 8-oxodG and that it 
could interact with BER proteins, such as APE1 [85]. Similarly to CSB, 
CSA is also involved in the repair of 8-oxodG but its exact role is still to 
be determined [86]. Finally, the XPC protein has also been shown to 
enhance the activity of OGG1 [84]. Thus, XPC might also be involved in 
the BER of 8-oxodG, probably through the active displacement of OGG1 
DNA glycosylase after it has produced an AP site. 

Fig. 5. Scheme of 8-oxodG repair pathways. (A) When ROS attack DNA, this leads to the oxidation of 2′-deoxyguanosine and the formation of 8-oxodG which can 
pair with deoxycytidine. (B) The majority of 8-oxodG is recognized and removed by the bifunctional DNA glycosylase OGG1 through the short patch BER. Upon the 
removal of the oxidized nucleobase, the DNA polymerase β repairs the single-nucleotide gap by inserting a 2′-deoxyguanosine and then the DNA ligase III/XRCC1 
complex mediates the final ligation step. (C) If the 5-deoxyribose phosphate (5′-dRP) terminus cannot be processed by SSB-end-processing enzymes, the DNA pol β 
incorporates the first nucleotide into the nick and the DNA pol δ/ε performs strand displacement synthesis creating a 5′-flap structure which is, in a PCNA-dependent 
manner, recognized and excised by the endonuclease activity of FEN-1. Finally, the DNA ligase I coordinates the final ligation step in long-patch BER. (D) When the 8- 
oxodG is not recognized by OGG1 before the S-phase, the replicative polymerase could incorporate 2′-deoxyadenosine and the resulting 8-oxodG:dA mispair may be 
processed by MMR components such as MSH2/6,MMH1and PCNA, to remove the mis-paired native 2′-deoxynucleoside. (E) Alternatively, the 2′-deoxyadenosine 
introduced during the replication could be recognized and removed by MYH mediated BER. (F) NEIL1 or NEIL2 could also initiate the 8-oxodG repair process. (G) the 
CSA and CSB together with XPC, as components of the TC-NER pathway, have been proposed also to repair 8-oxodG (created with biorender.com). 
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5. Genome-wide mapping and the significance of the location 
for 8-oxodG 

It is seemingly well established that 8-oxodG is not distributed uni
formly across the genome, not least due to the dynamic equilibrium 
between local rate of generation and local repair efficiency. On this 
basis, the observed distribution of 8-oxodG provides a snapshot of such a 
state of equilibrium. The first genomic view of the 8-oxodG distribution 
was provided by Nakabeppu and coworkers using immunofluorescence 
detection of 8-oxodG with a monoclonal antibody on human metaphase 
chromosomes from human peripheral lymphocytes [87]. The authors 
demonstrated that 8-oxodG is not uniformly distributed in normal 
human cells. Indeed, they cytogenetically mapped the position of the 
8-oxodG signal, at megabase resolution, to the boundary regions of R 
and/or G chromosomal bands that are known as transition zones of DNA 
replication timing. Moreover, they also found that chromosomal regions 
with a high density of 8-oxodG are located within regions with a high 
frequency of recombination and single nucleotide polymorphisms 
(SNPs), thus suggesting that 8-oxodG could contribute to the genomic 
diversity in humans [87]. 

Subsequently, Toyokuni’s group provided a higher resolution map of 
8-oxodG in the genome of normal rat kidney cells, by combining 
immunoprecipitation of 8-oxodG-containing DNA with microarray hy
bridization [88]. They showed that 8-oxodG is preferentially located at 
gene deserts and not associated with the transcription activity of genes. 
Moreover, they suggested that the spatial location of genomic DNA in 
the nucleus determines its susceptibility to oxidation as a strong corre
lation between 8-oxodG levels with lamina-associated domains (LADs) 
was found [88]. 

Recently, genome-wide strategies have been reported by different 
laboratories to map steady-state levels of 8-oxodG in the yeast, mouse 
and human genomes [89–91]. Burrow’s laboratory developed OG-Seq to 
identify the 8-oxodG sites in the mouse genome [89]. OG-Seq is based on 
the chemical labelling of 8-oxodG with biotin for affinity purification. 
This approach allowed the mapping of 8-oxodG, with a 150 bp genomic 
resolution, in both wild-type and OGG1-/- MEFs. This study provided the 
first genome-wide evidence that certain, specific gene loci (including 
promoters, 5′-UTRs, 3′-UTRs, exons and introns) are enriched for 
8-oxodG when compared with the intergenic regions to a random dis
tribution of the 8-oxodG peaks throughout the genome. In addition, the 
authors also demonstrated that 8-oxodG-containing peaks harboured 
more G-quadruplex (G4) and 5′-GG-3′ reactive sequences than expected 
by chance [89]. 

The single-nucleotide-resolution mapping of 8-oxodG has been re
ported for Saccharomyces cerevisiae genome by Sturla’s lab [90]. The 
authors developed the Click-code-seq technique to insert a biocompat
ible locator code, readable by high-throughput sequencing, by coupling 
the specificity of DNA repair enzymes with the efficiency of a click DNA 
ligation reaction. In this study, it was reported that 8-oxodG accumu
lates at sites of high nucleosome occupancy when compared to 
nucleosome-free linker regions. Moreover, local sequence context 
analysis performed at the flanking regions of the 8-oxodG revealed that 
the first dG in a 5′-GG-3′ dinucleotide is most easily oxidized [90]. 

Poetsch et al. developed AP-seq for genome-wide mapping of apur
inic sites and 8-oxodG in human cells at a resolution of approximately 
300 base pairs [91]. The authors used an aldehyde reactive probe (ARP) 
that, under recommended conditions, specifically reacts with the alde
hyde group of the AP-site, arose from excision of 8-oxodG, and in
troduces a covalent biotin tag into the DNA at the damage site. Then, the 
biotin-tagged DNA fragments are pulled down using 
streptavidin-labelled magnetic beads and sequenced using 
high-throughput technology. Genomic features, as well as functional 
elements, have a role in shaping the local distribution of oxidatively 
generated damage. Among genomic features, the GC content has a major 
role. Indeed, 8-oxodG formation tends to increase as local GC content 
rises up around 47 % and decreases when GC content goes beyond this 

value, suggesting that nucleobase composition alone cannot explain the 
accumulation of 8-oxodG in regions with higher GC content. Moreover, 
8-oxodG is reported to be enriched at genic regions within introns and in 
functional elements, such as transposable and repetitive elements and 
G4 structures [91]. 

We recently developed OxiDIP-seq to isolate and map 8-oxodG- 
enriched DNA fragments in human and mouse cells with a resolution 
of about 200–300 bp [92]. This is a pull-down-based approach using an 
8-oxodG-specific antibody to enrich 8-oxodG-containing DNA frag
ments, followed by high-throughput sequencing. We found that 42 % of 
the identified 8-oxodG peaks are localized at gene loci, with both pro
moter regions and gene body regions enriched for 8-oxodG. In partic
ular, the accumulation of 8-oxodG at gene loci is associated with 
activation of the DNA damage response (DDR) and the occurrence of 
DSBs [92]. Moreover, we found G4-enrichment at 8-oxodG-containing 
regions and a complex association between 8-oxodG and GC content. 
Promoter regions with high (> 47 %) GC content display low levels of 
8-oxodG [93]. This suggested to us that other mechanisms, such as the 
epigenetics involved in the regulation of transcription and replication 
regulation, may be involved in the accumulation of 8-oxodG. Intrigu
ingly, we demonstrated that DNA replication and transcription have a 
role in shaping local distribution 8-oxodG [92,93]. 

Balasubramaniam’s group recently published the “snAP-seq” method 
to map AP sites in the human genome at single-nucleotide resolution 
[94]. As AP sites are intermediates in the repair of 8-oxodG, this 
approach may be used partly as a proxy for the distribution of 8-oxodG. 
The approach uses Click chemistry to attach biotin to AP sites using the 
Hydrazino-iso-Pictet-Spengler (HIPS) reaction. Despite the ability of the 
technique to identify AP sites at single-nucleotide resolution, snAP-seq 
was not able to detect a consensus position between the mapped AP 
sites, at least when applied to HeLa cells [94]. This suggests that AP sites 
do not accumulate site-specifically at single-nucleotide level in the 
population of in vitro cultured cells. In this case, usage of a peak calling 
bioinformatic tool allowed the identification of DNA stretches where AP 
sites accumulate in control and APE1 knocked-down cells [94]. Ac
cording to previous reports [89,91–93], AP sites are enriched at genomic 
locations associated with open chromatin, suggesting that these regions 
are more prone to the formation of AP sites, compared to other forms of 
DNA damage [94]. 

Fang and Zou established the “enTRAP-seq” protocol to identify 8- 
oxodG in mouse embryonic fibroblasts with a resolution of 250bp 
[95]. This approach is based on the ability of an OGG1 mutant (K249Q) 
to trap, as a stable complex, the 8-oxodG-containing DNA fragments for 
subsequent enrichment via affinity purification. Notably, enTRAP-seq 
revealed enrichment of 8-oxodG in regulatory elements such as pro
moters, 5′UTR, CpG islands and G4, thus supporting the findings re
ported by other previous studies [95]. 

Recently, two studies reported the genome-wide mapping of the 
oxidation-associated AP sites [96,97]. The first work mapped AP sites, 
along with the binding of OGG1 and APE1 proteins, and G4 structures 
and revealed that 8-oxodG-derived AP sites occur predominantly at G4 
sequences [96]. Furthermore, activation of the BER pathway at 
8-oxodG-enriched G4 sequences triggers the formation of G4 structures 
through the binding of APE1 to G4 sequences. Moreover, APE1 promotes 
both the folding and stabilization of G4 structures at promoter regions as 
well as the loading of transcription factors to mediate gene expression 
[96]. The second work provides a highly sensitive and quantitative 
approach (named “Nick-seq”) to map, at single-nucleotide resolution, 
oxidation-induced AP sites in DNA from E. coli treated with a sub-lethal 
dose of hydrogen peroxide [97]. This study showed that the 
oxidation-induced AP sites are non-randomly distributed and preferen
tially associated with DNA regions undergoing replication or transcrip
tion during H2O2 stress, suggesting that transcriptionally active and 
single-strand DNA regions are vulnerable to oxidatively-induced DNA 
damage [97]. 

All the above described experimental genome-wide methodology 
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used to map oxidatively generated DNA damage possess benefits and 
weaknesses. Differences in methods, with their advantages and disad
vantages, have been recently reviewed in [98]. 

6. 8-oxodG as an epigenetic mark 

8-oxodG and its repair intermediates play a role in the regulation of 
gene expression and as such, they may have epigenetic-like features. 
Several molecular mechanisms have been described for the gene regu
latory function of 8-oxodG and have been described elsewhere [53, 
98–100]. 

Multiple studies showed that the formation of 8-oxodG within G- 
quadruplex structures is important for the epigenetic gene regulation. 
Indeed, the oxidatively generated modification of dG in potential G- 
quadruplex forming sequences (PQSs) leads to an increase in the tran
scription levels of the associated region. Specifically, when the OGG1 
recognizes and excises 8-oxodG from the duplex, it creates an AP site 
which leads to the formation of a G-quadruplex structure in the PQS [26, 
101]. The G-quadruplex structure extends the binding of the catalyti
cally inactive APE1 on the AP site and this favours the recruitment of 
other transcription factors (TF) for gene activation [26,101]. This 
mechanism has been proposed for the control of expression of various 
genes, such as VEGF, PCNA, NTHL, HIF1-α and NEIL [99,102–105]. 
Conversely, other studies have demonstrated that the oxidation of dG in 
PQSs can also downregulate gene expression [106–108]. Indeed, 
recently it has been shown that the oxidation of dG in PQSs modulates 
both magnitude and direction of gene expression change (activation or 
repression) through a mechanism that could depend on the distance of 
the PQS from the transcription start site and its strand of occupancy 
(coding versus non-coding strand). 

It has also been proposed that the binding of OGG1 to 8-oxodG in 
promoter regions of NF-κB target genes induces gene expression [109, 
110]. The binding of enzymatically inactive OGG1 to 8-oxodG-contain
ing promoter regions induces a bend in the DNA helix that facilitates the 
recruitment of specific TFs (NF-κB/RelA and Sp1) and the assembly of 
the transcriptional machinery [109,110]. Furthermore, increased levels 
of 8-oxodG have been found in binding regions of other TFs in associ
ation with the recruitment of the co-transcription factor LSD1 [43–47, 
49,50,111]. In this regard, another mechanism has been described to 
explain the epigenetic function of the 8-oxodG. Specifically, the TF 
mediates the recruitment to its binding regions of the LSD1 enzyme 
whose activity, as already described above, promotes transcription 
activation via 8-oxodG formation. Indeed, it has been proposed that the 
DNA nicks generated upon the removal of 8-oxodG by the BER ma
chinery facilitate the entrance of the endonuclease Topoisomerase IIβ 
(TOPIIβ), and induce a permissive chromatin architecture (i.e. relaxa
tion) for transcription initiation. This process of requiring 
LSD1-mediated DNA oxidation has been proven necessary for the tran
scription of the target genes of the estrogen receptor (ER), Myc, 
androgen receptor and TGF-β1 respectively [43–47,49,50,111]. 

Finally, 8-oxodG could also perform its epigenetic function in concert 
with the DNA methylation. Indeed, even if the mechanisms are not yet 
well defined, the repair of 8-oxodG is linked to DNA methylation. Taken 
together, these findings reveal that 8-oxodG clearly has potential roles in 
gene regulation. 

7. 8-oxodG as a source of genomic instability 

8-oxodG is a useful biomarker of oxidative stress [112] and its 
accumulation in the genome has been associated with cancer initiation 
and progression and has been proposed as a prognostic factor in breast 
cancer [113]. Genetic knock-out mouse models have been particularly 
useful to identify which proteins of the BER pathway play a crucial role 
in genome maintenance. Indeed, OGG1+/- and -/- mice have been 
generated [114–118]. These mice are viable and fertile and despite the 
lack of a pathological phenotype, they show an increase in nuclear and 

mitochondrial 8-oxodG levels, with an elevated dC:dG to dA:dT trans
version rates at 18 months after birth. In addition, OGG1+/- and -/- mice 
show a slightly elevated predisposition for lung cancer and, when 
exposed to the genotoxic agents; they also show a multiorgan enhanced 
susceptibility for cancer development [114–118]. Similarly, MYH+/- 

mice are viable and fertile and show only a slight predisposition to 
develop intestinal cancer [118,119]. Interestingly, OGG1-/- and MYH-/- 

mice display a strong susceptibility for lung and ovarian cancers and 
lymphomas [118]. These data suggest that the secondary 8-oxodG repair 
mechanisms are capable of compensating for the loss of either OGG1 or 
MYH individually, under physiological conditions. However, they are 
insufficient under conditions of an exacerbated threat to genetic integ
rity, e.g. via genotoxin exposure, or when more than one BER pathway, 
or backup repair mechanism, is compromised. The data also suggests 
that OGG1 and MYH are key to maintaining genomic instability and 
prevention of certain cancers. Finally, lacking other proteins involved in 
the repair of 8-oxodG, such as APE1, Pol β, XRCC1, DNA ligase I and III 
display embryonic lethality suggesting that the proteins at the core of 
the repair of 8-oxodG (and indeed other adducts) have a crucial role in 
the preservation of the correct programs of transcription, replication and 
in the maintenance of genomic stability [64,120–125]. 

8-oxodG contributes to ROS-induced genome instability via several 
mechanisms many of which are associated with the effects of unrepaired 
8-oxodG, as well as the accumulation of SSBs unrepaired intermediates 
deriving from the incompleted repair of 8-oxodG repair. 

7.1. Unrepaired 8-oxodG as a source of genome instability 

In the syn conformation, 8-oxodG has the ability to mimic dT and, if 
not repaired, during DNA replication, it represents the main source of 
dC:dG to dA:dT transversion mutations [61,126,127] (Fig. 6.1). This can 
be formally demonstrated by using a unique system named Tracing DNA 
Adducts by TArgeted Mutagenesis (TATAM system) [128]. Indeed, using 
the TATAM system, 8-oxodG was stably introduced in the genome of a 
human lymphoblastoid cell line and the genetic mutation generated by 
the adduct integration was traced. A single 8-oxodG was able to generate 
a spectrum of mutations, but predominantly dC:dG to dA:dT trans
versions (Fig. 6) and single-base deletions. To further link 8-oxodG to 
genome instability, the dC:dG to dA:dT transversion has been identified 
to be the predominant somatic mutation, in a study that analysed the 
coding regions of 518 cancer-related genes in 210 different human 
cancers. Independent studies [129] also demonstrated that the dC:dG to 
dA:dT transversion represents one-third of the 22,910 somatic sub
stitutions identified in a lung cancer cell line [130] and the second most 
predominant mutational signature in melanoma cells [131]. 

8-oxodG can lead also to dA:dT to dC:dG mutations (Fig. 6), and can 
occur when 8-oxodGTP, from the deoxyribonucleotide pool, is errone
ously incorporated during DNA replication and the mismatch is not 
recognized by polymerase proofreading and MYH. Subsequently, unre
paired 8-oxodG pairs with deoxycytidine in the next round of replica
tion, and causes dA:dT to dC:dG mutations [132–136]. Such dA:dT to 
dC:dG mutations are found in oesophageal adenocarcinoma and in
flammatory Barrett’s oesophagus [137,138]. 

Intriguingly, 8-oxodG has been reported to impact on, and affect the 
catalytic activity of, human topoisomerase 1 (TOP1) and in particular 
when the 8-oxodG lesion occurs just downstream (at the +1 position in 
the scissile DNA strand) to the TOP1 cleavage site [139]. TOP1 is an 
essential enzyme, which is able to address DNA topological problems (e. 
g. supercoils, catenates and knots) by cleaving one DNA strand through 
the formation of transient enzyme-DNA cleavage complexes (TOPcc), 
with phosphotyrosine linkages between the catalytic tyrosyl residue of 
the enzymes and the DNA ends [140,141]. TOP1 plays an important role 
in the transcription and replication processes. It resolves DNA over
winding ahead of RNA and DNA polymerases, enabling DNA trans
location [142,143], and overwinding resulting from the convergence of 
replication forks and transcription bubbles [144,145]. TOP1 enzymes 
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also prevent replication fork stalling promoting the advancement of 
replication forks [146]. Notably, the crystal structure of human TOP1 in 
a non-covalent complex with an 8-oxodG-containing DNA 

oligonucleotide shows that the O8 atom of the 8-oxodG, clashes steri
cally with Thr-718 residue in the TOP1 cleavage site, which reorganizes 
the active site of TOP1 into an inactive conformation [139]. If the 

Fig. 6. Two mechanisms of 8-oxodG induced transversions. (A) 
ROS can directly attack DNA, oxidize 2′-deoxyguanosine and 
form the dC:8-oxodG base pair. Subsequently, when replication 
occurs across the DNA region containing 8-oxodG, often the 8- 
oxodG is erroneously bypassed and this results in the insertion 
of 2′-deoxyadenosine insertion, forming a dA:8-oxodG base 
pair. If the dA:8-oxodG mispair is left unrepaired during a 
second round of replication it will produce a dA:dT base pair 
leading a dC:dG to dA:dT transversion mutation. (B) ROS can 
also oxidize dGTP, in the dNTP pool, to 8-oxodGTP, which is 
then erroneously incorporated during DNA replication, giving 
rise to the 8-oxodG:dA mismatch. If replication or inappro
priate MYH excision of 2′-deoxyadenosine occurs, the 8-oxodG 
pairs with cytidine. 8-oxodG:dC mispairs are a substrate for 
OGG1-initiated repair which, in this context, produces the dA: 
dT to dC:dG mutations (created with biorender.com).   

Fig. 7. Proposed alternative molecular models for 8-oxodG-mediated DSB formation at ODCL. A DSB could be formed from two SSBs localized on opposite DNA 
strands. These two SSBs could be generated by either: (A) the BER of a 8-oxodG on one strand and 8-oxodG-mediated TOP-DPC formation on the other strand; (B) 
BER of two proximal 8-oxodG localized on opposite strands; (C) BER of two distant 8-oxodG localized on different strands, followed by DNA resection and fill-in 
processes, mediated by the 3′-5′exonuclease activity of APE1/APE2 and by a DNA polymerase, respectively. Arrows indicate the 8-oxodG involved in the genera
tion of SSBs. The red dashed lines indicate DSBs. 
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8-oxodG is left unrepaired it traps TOPcc in a topoisomerase 
DNA-protein crosslinks (TOP-DPC) complex that threatens genome 
integrity. The TOP-DPC complex is genotoxic, as it favours the accu
mulation of spontaneous SSB, but may be resolved by the Tyrosyl-DNA 
phosphodiesterase 1 (TDP1) [140,141,147]. Recently, Sordet and co
workers identified a mechanism for the formation of 
transcription-associated DSBs in non-replicating cells. In particular, the 
authors showed that a transcription-induced DSB is formed by two SSB 
on opposing DNA strands. One SSB arises from the cleavage of an R-loop 
by XPF/XPG endonucleases and the other from the repair of a TOP-DPC 
by the TDP1 pathway [145]. Since 8-oxodG accumulates at R-loop-
containing regions in non-replicating cells, and also induces the 
TOP-DPC complex formation, we speculate that 8-oxodG may also 
contribute to the formation of the SSBs, and then to DSBs, in the 
above-proposed mechanism [145]. Alternatively, within a cluster of 
Oxidatively-generated Clustered DNA Lesions (OCDL), a DSB could be 
formed from two close SSBs where the first one could derive from the 
BER of the 8-oxodG and the second from an 8-oxodG-mediated 
TOP1-DPC (Fig. 7A). 

Future studies are required to demonstrate whether this form of 8- 
oxodG-associated genome instability is mechanistically linked to TOP- 
DPC formation and TDP1 pathway activation. 

7.2. Incomplete repair of 8-oxodG as a source of genome instability 

The correct balance of the activity of the BER proteins is essential to 
the cell to carry out efficient and error-free DNA repair [73]. In fact, an 
imbalanced, or uncoordinated, BER activity can result in the incomplete 
repair of 8-oxodG, with a consequent accumulation of SSBs, various 
intermediate products of repair, and DSBs resulting in genome 
instability. 

It has been demonstrated that a low BER activity can cause an 
accumulation of SSBs intermediates, genome instability and lead to 
neoplasia [50,68,69,148,149]. High BER activity, on the other hand, can 
also be detrimental for the cell, as it has been shown to interfere with 
DNA replication and transcription processes [149–153]. 

Genetic alterations in genes coding for BER proteins, and damage to 
repair proteins themselves [154], can result in an unbalancing of the 
BER pathway via impairment of one or more enzyme activities, 
contributing to genome instability, neurodegeneration, ageing and 
cancer development. Indeed, in relation to the cancer predisposition, 
even if hereditary deficiencies have not yet reported for the OGG1 ac
tivity, the polymorphisms and somatic mutations affecting the OGG1 
gene (such as R46Q, R131Q) [155], and its function, have been asso
ciated with several types of cancer [156]. In addition, germline muta
tions in MYH have been found and associated with colon, breast and 
pancreatic cancers and also with some pediatric cancers, such as glioma 
and astrocytoma [74]. Decreased levels of MYH, OGG1 and Nudix 
(Nucleoside Diphosphate Linked Moiety X)-Type Motif 1 (e.g. MTH1) 
have been reported in adenocarcinoma, hepatocarcinoma and prostate 
carcinoma [157–159]. In addition to the protective role against muta
tions and tumour formation, MYH is also able to initiate apoptosis in 
oxidatively stressed cells [160]. Mechanistically, p53 mediates the 
transcriptional upregulation of MYH. This leads to MYH hyperactivation 
which in turn causes an accumulation of SSBs in the nuclear genome and 
PARP1-activation of the apoptotic process [161]. 

Among the BER proteins, defects in APE1 activity have been exten
sively demonstrated to be implicated in cancer [162]. Overexpression of 
APE1 leads to SSB accumulation and genomic instability in 
XRCC1-deficient cells [163]. Interestingly, p53 is able to coordinate the 
BER activity by downregulating the transcription of APE1 via Sp1 acti
vation [164]. Conversely, impairment of p53 function, a characteristic 
of many cancers, leads to upregulation of APE1 and increased genomic 
instability [165]. Very recently, using Xenopus egg extract and an in vitro 
reconstitution system, it has been reported that APE1 can ‘sense’ the 
presence of SSBs and initiate, with APE2, a two-step 3′-5′ SSB end 

resection. After this, the SSB is eventually repaired by activation of the 
ATR– Chk1 DDR pathway [166]. 

As for other BER proteins, mutations have been documented in the 
DNA polymerases (Pol) β and λ, which affect their activities, and lead to 
tumour formation [73]. While few polymorphisms of Pol β are associ
ated with various cancers [167,168], the T221 P and R438W poly
morphisms in Pol λ have been demonstrated to decrease its nucleobase 
substitution fidelity and increase mutation frequency in breast cancer 
[169]. Interestingly, the stability of both Pol β and λ is dependent on the 
ARF/p53 pathway [170–172]. At steady-state levels, Pol β and λ protein 
are ubiquitinated by the E3 ubiquitin ligase Mule (ARF-BP1/HectH9) 
and degraded via the proteasome (Fig. 8). ARF is capable of counter
acting such a process by interacting with, and inhibiting, the E3 ubiq
uitin ligase Mule activity and thus impairing the proteasomal 
degradation of Pol β and λ with a consequent upregulation of the flow of 
BER enzymes into the nucleus from newly synthesized BER enzymes. 
ARF, therefore, represents an important player in the regulation of BER, 
for while it supports efficient BER by increasing the levels of Pol β and λ 
and, at the same time, it can decrease BER activity through the inhibi
tion of the E3 ubiquitin ligase MDM2 and consequent upregulation of 
P53. p53 activation, in turn, downregulates APE1 (Fig. 8). 

Among the BER proteins, dysfunction of XRCC1 has been extensively 
studied in carcinogenesis [173,174]. Knock-down of the XRCC1 gene, as 
well as the R280H germline variant [175], have been shown to cause: (i) 
deficiencies in BER; (ii) the accumulation of unrepaired SSBs; (iii) 
genome instability and (iv) cell transformation. In the literature, there 
are a plethora of data regarding XRCC1 expression levels in many 
different types of cancer and this is reviewed in detail in [73]. Briefly, 
the data appear to be contradictory as both high, as well as a low, 
expression levels of XRCC1 have been detected in tumour samples, and 
have been associated with both a poor and a good overall survival. 
Further studies are required to better clarify how the activity of XRCC1 
correlates with cancer progression. 

Mechanistically, the model of genome instability mediated by un
balanced BER of 8-oxodG requires the accumulation of persistent SSBs. 
Indeed, closely opposed SSBs, derived from closely opposed 8-oxodG 
within OCDLs, are able to produce DSBs [176] (Fig. 7B). Alternatively, 
two distant oxidatively-generated SSBs could produce a DSB when DNA 
resection takes place, mediated by the 3′-5′exonuclease activity of 
APE1/APE2, to generate ssDNA. The subsequent infilling of the ssDNA, 
mediated by a DNA polymerase, could give rise to a DSB (Fig. 7C). 
Notably, DSBs associated with the 8-oxodG repair are predominantly 
repaired by the error-prone NHEJ pathway [176]. In accordance with 
this view, we recently mapped the accumulation of endogenous 8-oxodG 
in human fragile promoters showing characteristic features of genomic 
instability, such as GC skewness, G4 structures, R-loops, bidirectional 
transcription [93]. These oxidized promoters showed an increased 
occurrence of SSBs, DSBs, together with DDR activation, and recruit
ment of the NHEJ protein, XRCC4. We also noted translocation break
points, of the kind commonly identified in cancer. Moreover, we found 
that transcription and replication have a role in shaping the spatial 
distribution of local oxidatively damaged DNA [92,93]. Indeed, our data 
showed that: (i) the accumulation of 8-oxodG in genes containing 
8-oxodG at promoter regions correlated with the occupancy of the 
processive isoform of RNAPII and with levels of active transcription; (ii) 
a subset of promoters maintain this accumulation of 8-oxodG, even in 
the absence of DNA replication; (iii) more highly transcribed genes do 
not show 8-oxodG enrichment; (vi) the accumulation of 8-oxodG also 
occurs at some other fragile regions (e.g. DNA replication origins located 
within the gene body of long genes, as well as at a subset of fragile 
promoters) where transcription and replication conflicts have been 
frequently observed. We, therefore, hypothesize that 
transcription/replication-generated fragile structures (e.g. R-loop
s-containing regions) could contribute to genome instability as they 
favour the formation of ODCLs where the BER of two proximal 8-oxodG 
can generate SSBs and, consequently, DSBs (Fig. 7). 
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8. Conclusions and perspectives 

8-oxodG is widely described as a type of DNA damage, but it is 

increasingly clear that there is more to it than that. Indeed, while 
unrepaired 8-oxodG causes transversions [60–64,126], it can also lead 
to the formation of DSBs [69,93,176,177], and thought this genomic 

Fig. 8. ARF regulation of the levels of BER 
proteins. In the absence of DNA damage 
detection, the concomitant intracellular level of 
ARF is decreased and the synthesized BER 
proteins are ubiquitinated by Mule and subse
quently polyubiquitinated by CHIP (Carboxy- 
terminus of Hsc70 Interacting Protein) for pro
teasomal degradation. Following DNA damage 
detection, ARF accumulates in the cells and, by 
inhibiting Mule activity, increases the nuclear 
levels of the BER enzymes. Accumulation of 
ARF after DNA damage detection can also 
decrease the levels of BER proteins via a nega
tive feedback loop where ARF inhibits the 
MDM2 protein and stabilizes the p53 protein 
which in turn downregulates the transcription 
of the APE1 gene.   

Fig. 9. Proposed model of 8-oxodG-mediated genome instability (8-oxodG model) analagous to the AID/dU-mediated model of Class Switch Recombination (dU 
model). 
8-oxodG model: Schematic representation of a genetic locus showing two genes subject to 8-oxodG-mediated transcription initiation. AID/dU model: Organization of 
the IgH locus in mice [including the antigen recognition V(D)J gene segment, the switch (S) regions, the constant (C) region exon segments, and the enhancers (E)] 
and associated CSR process. 
(I) Specific stimuli initiate the transcription process that determines R-loops formation and RNAPII accumulation at respectively the S regions of the dU model and at 
oxidized promoters of the 8-oxodG model. (II - III) The recruitment of Activation-induced Cytidine Deaminase (AID) at the S regions in the dU model and the 
recruitment of LSD1 at the promoters of the genes loci in the 8-oxodG model (II) determine the accumulation of deoxyuridine respectively at the S regions in the dU 
model and of 8-oxodG at the promoters in the 8-oxodG model (III). (IV) The recruitment of specific BER enzymes: the uracil-DNA glycosylase UNG in the dU model 
and OGG1 in 8-oxodG model. These remove dU and 8-oxodG, respectively, generating multiple AP sites. These AP sites are processed to SSB and then to DSB by the 
APE1/APE2/MMR protein activities in both models. (V) Finally, two regions (each one containing one DSB) are brought together as a result of chromatin looping and 
ligated by the NHEJ proteins, causing a genetic translocation and deletion in both the models. 
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instability [50,68,69,148,149]. Furthermore, there is growing evidence 
that 8-oxodG has a role in the epigenetic regulation of transcription [26, 
43,44,47,49,50,109,110].This epigenetic role could be intrinsically 
associated with its nature as DNA damage. Mechanistically, the repair of 
8-oxodG, as deliberate DNA damage generated locally by LSD1 activity, 
is capable of leading to SSB formation which, in gene promoter regions, 
relaxes the local chromatin structure and/or determines chromatin 
looping and/or G4-formation. This chromatin reorganization, in turn, 
facilitates the crosstalk between several protein complexes involved in 
transcription regulation. 

Interestingly, in the context of a subset of promoter regions of 
transcribed genes, the occurrence of 8-oxodG is associated with RNAPII 
occupancy, R-loops and G4 structures [93]. R-loops have been found to 
be a peculiarity of 8-oxodG-enriched DNA regions and this is probably 
because of the presence of ssDNA that is more easily oxidized than 
dsDNA, and more prone to form G4 structures. Oxidized promoters are 
also associated with the accumulation of ɣ-H2AX, SSBs, DSBs, NHEJ 
proteins and genetic translocations/deletions [93]. These data suggest a 
model in which 8-oxodG serves as a driver of the transcription process, 
but under deregulated conditions, or within genomic intrinsic fragile 
structures, 8-oxodG could cause the formation of DSBs and chromo
somal translocations/deletions. 

This model, along with the described genetic and epigenetics fea
tures associated with 8-oxodG-enriched promoters (namely the “8- 
oxodG model” - Fig. 9, left panel), is analogous to the molecular model 
established for Class Switch Recombination [178] (here named as the 
“dU model” - Fig. 9, right panel), where the Activation-Induced cytidine 
Deaminase (AID) activity causes accumulation of deoxyuridine (dU) and 
recruitment of a specific BER enzyme, the uracil-DNA glycosylase UNG, 
which generates an AP site that is first processed to an SSB and then to a 
DSB by the APE1/APE2/MMR protein activities. 

Based on the many similarities shared by the above two processes, 
one associated with 8-oxodG and the other with dU, it is conceivable 
that the molecular rules of the AID-UNG-APE1 action could be applied to 
the LSD1-OGG1-APE1 action. Moreover, as these two models act on a 2′- 
deoxynucleoside associated with the dC:dG base pair (with 8-oxodG 
model targeting 8-oxodG and dU model addressing the dC) and both 
could cause SSBs, it is conceivable that, when they operate simulta
neously on the dC:dG base pair, and can be a source of DSBs. 

It is hoped that this provocative comparison is a source of inspiration 
for developing new insight into 8-oxodG for which its epigenetic func
tion could be the other (positive) side of its well-known role in genome 
instability. However, it is still far from clear how and if the emerging 
epigenetic role of 8-oxodG is linked with its ability to induce or influence 
genome instability. A future challenge will be to find answers to the 
significant number of open questions on the full, biological role of 8- 
oxodG for moving forward the pharmacological targeting of the oxida
tively damaged DNA, and its repair in therapies for cancer and other 
diseases in which oxidative stress is implicated. 
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J. Bauer, D. Beare, A. Butler, R.J. Carter, L. Chen, A.J. Cox, S. Edkins, P.I. Kokko- 
Gonzales, N.A. Gormley, R.J. Grocock, C.D. Haudenschild, M.M. Hims, T. James, 
M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L.J. Mudie, Z. Ning, 
T. Royce, O.B. Schulz-Trieglaff, A. Spiridou, L.A. Stebbings, L. Szajkowski, 
J. Teague, D. Williamson, L. Chin, M.T. Ross, P.J. Campbell, D.R. Bentley, P. 
A. Futreal, M.R. Stratton, A comprehensive catalogue of somatic mutations from a 
human cancer genome, Nature (2010), https://doi.org/10.1038/nature08658. 

[132] H. Maki, M. Sekiguchi, MutT protein specifically hydrolyses a potent mutagenic 
substrate for DNA synthesis, Nature (1992), https://doi.org/10.1038/355273a0. 

[133] M. Inoue, H. Kamiya, K. Fujikawa, Y. Ootsuyama, N. Murata-Kamiya, T. Osaki, 
K. Yasumoto, H. Kasai, Induction of chromosomal gene mutations in Escherichia 
coli by direct incorporation of oxidatively damaged nucleotides: new evaluation 
method for mutagenesis by damaged dna precursors in vivo, J. Biol. Chem. 
(1998), https://doi.org/10.1074/jbc.273.18.11069. 

[134] K. Satou, K. Kawai, H. Kasai, H. Harashima, H. Kamiya, Mutagenic effects of 8- 
hydroxy-dGTP in live mammalian cells, Free Radic. Biol. Med. (2007), https:// 
doi.org/10.1016/j.freeradbiomed.2007.02.024. 

[135] K. Satou, M. Hori, K. Kawai, H. Kasai, H. Harashima, H. Kamiya, Involvement of 
specialized DNA polymerases in mutagenesis by 8-hydroxy-dGTP in human cells, 
DNA Repair (Amst). (2009), https://doi.org/10.1016/j.dnarep.2008.12.009. 

[136] T. Suzuki, H. Kamiya, Mutations induced by 8-hydroxyguanine (8-oxo-7,8- 
dihydroguanine), a representative oxidized base, in mammalian cells, Genes 
Environ. (2017), https://doi.org/10.1186/s41021-016-0051-y. 

[137] N. Murugaesu, G.A. Wilson, N.J. Birkbak, T.B.K. Watkins, N. McGranahan, 
S. Kumar, N. Abbassi-Ghadi, M. Salm, R. Mitter, S. Horswell, A. Rowan, 
B. Phillimore, J. Biggs, S. Begum, N. Matthews, D. Hochhauser, G.B. Hanna, 
C. Swanton, Tracking the genomic evolution of esophageal adenocarcinoma 
through neoadjuvant chemotherapy, Cancer Discov. (2015), https://doi.org/ 
10.1158/2159-8290.CD-15-0412. 

[138] C.S. Ross-Innes, J. Becq, A. Warren, R.K. Cheetham, H. Northen, M. O’Donovan, 
S. Malhotra, M. Di Pietro, S. Ivakhno, M. He, J.M.J. Weaver, A.G. Lynch, 
Z. Kingsbury, M. Ross, S. Humphray, D. Bentley, R.C. Fitzgerald, S.J. Hayes, 
Y. Ang, I. Welch, S. Preston, S. Oakes, V. Save, R. Skipworth, O. Tucker, J. Davies, 
C. Crichton, C. Schusterreiter, T. Underwood, F. Noble, B. Stacey, J. Kelly, 
J. Byrne, A. Haydon, D. Sharland, J. Owsley, H. Barr, J. Lagergren, J. Gossage, 
A. Davies, R. Mason, F. Chang, J. Zylstra, G. Sanders, T. Wheatley, R. Berrisford, 
T. Bracey, C. Harden, D. Bunting, T. Roques, J. Nobes, S. Loo, M. Lewis, 
E. Cheong, O. Priest, S.L. Parsons, I. Soomro, P. Kaye, J. Saunders, V. Pang, 
N. Welch, J.A. Catton, J.P. Duffy, K. Ragunath, L. Lovat, R. Haidry, H. Miah, 
S. Kerr, V. Eneh, R. Butawan, M. Lewis, E. Cheong, B. Kumar, L. Igali, S. Walton, 
A. Dann, P. Safranek, A. Hindmarsh, V. Sudjendran, M. Scott, A. Cluroe, 
A. Miremadi, B. Mahler-Araujo, B. Nutzinger, C. Peters, Z. Abdullahi, J. Crawte, 
S. MacRae, A. Noorani, R.F. Elliott, L. Bower, P. Edwards, S. Tavare, M. Eldridge, 
J. Bornschein, M. Secrier, T.P. Yang, J.R. O’Neill, K. Adamczuk, P. Lao-Sirieix, 
N. Grehan, L. Smith, S. Lishman, D. Beardsmore, S. Dawson, Whole-genome 
sequencing provides new insights into the clonal architecture of Barrett’s 
esophagus and esophageal adenocarcinoma, Nat. Genet. (2015), https://doi.org/ 
10.1038/ng.3357. 

[139] P. Pourquier, L.M. Ueng, J. Fertala, D. Wang, H.J. Park, J.M. Essigmann, M. 
A. Bjornsti, Y. Pommier, Induction of reversible complexes between eukaryotic 
DNA topoisomerase I and DNA-containing oxidative base damages: 7,8-dihydro- 
8-oxoguanine and 5- hydroxycytosine, J. Biol. Chem. 274 (1999) 8516–8523, 
https://doi.org/10.1074/jbc.274.13.8516. 

[140] Y. Sun, S. Saha, W. Wang, L.K. Saha, S.Y.N. Huang, Y. Pommier, Excision repair of 
topoisomerase DNA-protein crosslinks (TOP-DPC), DNA Repair (Amst). 89 (2020) 
102837, https://doi.org/10.1016/j.dnarep.2020.102837. 

[141] Y. Sun, L.K. Saha, S. Saha, U. Jo, Y. Pommier, Debulking of topoisomerase DNA- 
protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non- 
proteolytic pathways, DNA Repair (Amst). 94 (2020) 102926, https://doi.org/ 
10.1016/j.dnarep.2020.102926. 

[142] L.C. Garg, S. DiAngelo, S.T. Jacob, Role of DNA topoisomerase I in the 
transcription of supercoiled rRNA gene, Proc. Natl. Acad. Sci. U. S. A. (1987), 
https://doi.org/10.1073/pnas.84.10.3185. 

[143] I. Collins, A. Weber, D. Levens, Transcriptional consequences of topoisomerase 
inhibition, Mol. Cell. Biol. (2001), https://doi.org/10.1128/mcb.21.24.8437- 
8451.2001. 

[144] S.G. Manzo, S.R. Hartono, L.A. Sanz, J. Marinello, S. De Biasi, A. Cossarizza, 
G. Capranico, F. Chedin, DNA Topoisomerase I differentially modulates R-loops 
across the human genome, Genome Biol. (2018), https://doi.org/10.1186/ 
s13059-018-1478-1. 

[145] A. Cristini, G. Ricci, S. Britton, S. Salimbeni, S. yin, N. Huang, J. Marinello, 
P. Calsou, Y. Pommier, G. Favre, G. Capranico, N. Gromak, O. Sordet, Dual 
processing of R-Loops and topoisomerase I induces transcription-dependent DNA 
double-strand breaks, Cell Rep. (2019), https://doi.org/10.1016/j. 
celrep.2019.08.041. 

[146] S.H. Chen, N.L. Chan, T.S. Hsieh, New mechanistic and functional insights into 
DNA topoisomerases, Annu. Rev. Biochem. (2013), https://doi.org/10.1146/ 
annurev-biochem-061809-100002. 

[147] S.W. Yang, A.B. Burgin, B.N. Huizenga, C.A. Robertson, K.C. Yao, H.A. Nash, 
A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA 
and type I topoisomerases, Proc. Natl. Acad. Sci. U. S. A. (1996), https://doi.org/ 
10.1073/pnas.93.21.11534. 

[148] J.K. Horton, M. Watson, D.F. Stefanick, D.T. Shaughnessy, J.A. Taylor, S. 
H. Wilson, XRCC1 and DNA polymerase B in cellular protection against cytotoxic 
DNA single-strand breaks, Cell Res. (2008), https://doi.org/10.1038/cr.2008.7. 

[149] A.A. Nemec, S.S. Wallace, J.B. Sweasy, Variant base excision repair proteins: 
Contributors to genomic instability, Semin. Cancer Biol. (2010), https://doi.org/ 
10.1016/j.semcancer.2010.10.010. 

[150] J. Yamtich, A.A. Nemec, A. Keh, J.B. Sweasy, A germline polymorphism of DNA 
polymerase Beta Induces genomic instability and cellular transformation, PLoS 
Genet. (2012), https://doi.org/10.1371/journal.pgen.1003052. 

[151] L. Servant, A. Bieth, H. Hayakawa, C. Cazaux, J.S. Hoffmann, Involvement of DNA 
polymerase β in DNA replication and mutagenic consequences, J. Mol. Biol. 
(2002), https://doi.org/10.1006/jmbi.2001.5307. 
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