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Abstract
Cardiovascular diseases (CVD) represent to date the leading cause of mortality in both genders in the developed countries. In
this context, a strong need for CVD prevention is emerging through lifestyle modification and nutrition. In fact, several
studies linked CVD with unhealthy nutrition, alcohol consumption, stress, and smoking, together with a low level of
physical activity. Thus, the primary aim is to prevent and reduce CVD risk factors, such as impaired lipid and glycemic
profiles, high blood pressure and obesity. Different types of diet have been, therefore, established to optimize the approach
regarding this issue such as the Mediterranean diet, Dietary Approaches to Stop Hypertension diet (DASH), vegetarian diet,
ketogenic diet, and Japanese diet. Depending on the diet type, recommendations generally emphasize subjects to increase
vegetables, fruits, whole grains, and pulses consumption, but discourage or recommend eliminating red meat, sweets, and
sugar-sweetened beverages, along with processed foods that are high in sugar, salt, fat, or low in dietary fiber. In particular,
we evaluated and compared the peculiar aspects of these well-known dietary patterns and, thus, this review evaluates the
critical factors that increase CVD risk and the potential application and benefits of nutritional protocols to ameliorate dietary
and lifestyle patterns for CVD prevention.

Introduction

Cardiovascular diseases (CVD) are the consequence of
several different disorders such as excessive abdominal
adipose tissue, hypertension, dyslipidemia, and glucose
intolerance [1], which increase the risk of developing car-
diovascular events such as stroke and heart attack.
Certainly, CVD often overlaps with several of the above-
mentioned comorbidities, which represent the greatest risk
factors for all-cause mortality worldwide [2] and, indeed,
CVD is still the first cause of mortality in both genders in

industrialized countries worldwide [3]. Furthermore, the
increasing incidence of CVD over the last 3 decades has
become a burning health and socioeconomic priority, as
well as the need for prevention of CVD and CV events
through modifications of lifestyle [4]. The development of
CVD is linked to unhealthy nutrition patterns (i.e., exces-
sive intake of sodium and refined foods; added sugars;
unhealthy fats; low intake of fruit and vegetables, whole
grains, fiber, pulses, fish, and nuts), alcohol consumption,
stress, and smoking, together with a sedentary lifestyle
[5, 6].

Thus, a large body of scientific evidence has described
how dietary intervention, and physical activity, might be
the most important factors for prevention of CVD and
could reduce heart disease. As the number of older
individuals continues to increase, it is important to
understand the pathophysiological mechanisms of meta-
bolic changes in order to develop interventions that can
be easily implemented to prevent noncommunicable
diseases, such as CVD, which significantly alter quality
of life, increase morbidity and mortality and, also,
socioeconomic costs.
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Thus, this review will evaluate and highlight the poten-
tial nutritional factors predisposing to the increase of CVD
risk and the potential of nutritional protocols to
prevent CVD.

Search strategies

Articles were individually retrieved by each author up until
August 2019, by search in PubMed (MEDLINE) using the
following search terms: “Cardiovascular Diseases”, “Obe-
sity”, “Diet”, “nutrition”, “glucose metabolism”, Medi-
terranean diet (MeDi), ketogenic diet (KD), Japanese diet,
vegetarian diet (Veg diet), Dietary Approaches to Stop
Hypertension (DASH) diet. The reference lists of relevant
articles and reviews were also searched manually. Eight
hundred papers were identified, of which 136 were selected
and included in the paper.

Nutritional factors

Energy excess

It is well known that diets characterized by energy excess,
which leads to obesity, increase cardiovascular risk. Pub-
lished data indicate how a 20–50% reduction in energy
intake, in the absence of malnutrition, delays the onset of
metabolic diseases, such as obesity and type 2 diabetes, in
experimental animal models such as rats and mice [7].
Indeed, published clinical studies confirm that energy
restriction reduces cardiovascular risk.

Interestingly, a small pilot study involving 24 subjects
demonstrated how a 10-week energy restriction (80% of
habitual) significantly reduced both systolic and diastolic blood
pressure levels [8], which is known to be a CVD risk factor. In
addition, a significant reduction of glucose levels was observed
after a similar 10-week energy restriction diet [9], which
implies an improvement of metabolic pattern, which is an
additional risk factor for cardiometabolic disorders.

Furthermore, several studies indicate how a long-term
reduced energy nutritional pattern improves cardiovascular
risk demonstrating that a 2-year energy restriction diet could
improve serum lipid profile, fasting glycaemia, and blood
pressure levels [10–12].

More recently, the Comprehensive Assessment of the
Long-term Effect of Reducing Intake of Energy trial eval-
uated the effect of long-term energy restriction on cardio-
vascular health. This multicenter randomized trial, which
involved 218 subjects, was conducted as follows: two
groups of subjects of which one had for 2 years a diet of
25% energy reduction and the other followed 2 years of
habitual energy intake. The results indicated that already
after 6 months of low-energy diet there was a significant

reduction of body weight, and an improvement of lipid
profile and blood pressure levels [13], both related to high
CVD risk.

Saturated fat intake

High intake of saturated fat is linked to an increased
CVD risk, primarily due to an increased concentration of
low-density lipoprotein (LDL) cholesterol. Even more
important, diets rich in saturated fat lead, in particular, to
atherosclerosis [14] and insulin resistance, independently of
adiposity status due to the increase they can induce in the
level of atherogenic lipoproteins, LDL and very-low-den-
sity lipoprotein (VLDL), and the reduction of high density
lipoproteins (HDL) [15]. Furthermore, diets rich in satu-
rated fat lead to a low-grade inflammation status, considered
a cardiovascular risk and a cause of insulin resistance.
Further, intake of saturated fat promotes lipopolysaccharide
uptake in the gut which can cause inflammation [16, 17] by
its binding to TLR-4, which further explains the increased
CVD risk. Activation of TLR-2, ceramide production and
formation of lipid rafts also appear involved in the inflam-
matory process due to saturated fat [18–20]. The Seven
Countries Study was one of the first trials evaluating CVD
risk linked to saturated fat intake. This study evaluated
cardiovascular mortality in 11,579 men who were observed
for 15 years and the results demonstrated a positive corre-
lation between cardiovascular deaths and saturated fat
intake [21]. In the following years, a study investigated
Japanese men living in Japan and Western countries indi-
cating an increased prevalence of cardiovascular mortality
in the Western country group, likely correlated to a diet with
high-saturated fat intake, strongly suggesting that an
imbalance of nutrients intake can alter homeostasis leading
to an increase in CVD risk [14, 22].

Free sugars and refined starches’ intake

Published data describe how people with overweight or
obesity significantly eat more sweet products as compared
with people with a healthy body weight and the risk of
obesity or overweight increases of about 14% with each
additional spoon of sugar (5 g) eaten every day [23].
Moreover, diets with high intake of free sugars and refined
starches’ are linked to elevated fasting triglycerides, a
recognized CVD risk factor, while data on the effects on
LDL-cholesterol levels are conflicting. In particular, the
American Heart Association Scientific Statement recom-
mended to significantly decrease the amount of free sugars
intake and, further, to avoid fructose, instead of sucrose,
often used for preventing hypertriglyceridemia, since fruc-
tose intake has been linked to increased metabolic altera-
tions [24–27].
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Diets with high amount of free sugars support de novo
lipogenesis and liver fat and, in particular, the conversion of
free sugars and refined starches to fat generates saturated
fat, which is a well-known CVD factor risk. Fructose is the
main sugar implicated in de novo lipogenesis due to its
hepatic metabolism, in contrast to glucose that is pre-
dominantly metabolized in extrahepatic tissues, such as
muscle tissue [28]. Also, fructose appears implicated in
insulin resistance [29].

Further, conflicting data are present in the literature about
the role of free sugars on blood pressure. Nevertheless, a
recent meta-analysis confirmed that the use of free sugars
within an isoenergetic diet does not have negative effects on
blood pressure [30].

Dietary fiber intake

Dietary fibers can be defined as the portions of plant foods
that are edible but cannot be completely broken down by
digestive enzymes. It has been largely described that low
dietary fiber intake is linked to increased risk of CVD
while, in contrast, diets rich in fruits, vegetables, and whole
grains have high-fiber contents. [31]. The positive effects of
fiber on cardiovascular health are due to several factors such
as increase in bile acids excretion, lowering cholesterol
levels [32], reduction in fatty acid synthesis in the liver
through the production of short-chain fatty acids resulting
from fermentation [33], increase of insulin sensitivity [34]
and increase in satiety, due to the space occupying food
mass by fiber, leading also to a decrease in food intake,
which then leads to a lower energy density diet [35].

Data in the literature report an inverse correlation
between dietary fiber intake and CVD and total mortality. In
particular, a recent study has demonstrated that people
following a diet with low-fiber intake (∼15.0 g/day) have a
23% higher total mortality as compared with people with a
high fiber intake (∼26.9 g/day), and this association
appeared to be uninfluenced by either sex or race [36].
Moreover, a recent meta-analysis evaluated 15 prospective
cohort studies with 1,409,014 subjects and confirmed the
inverse association between dietary fiber intake and mor-
tality for CVD [37]. In particular, similarly to what was
demonstrated previously, an intake of ∼29.6 g/day, com-
parable with the recommended doses of 30 g/day, was
associated to a 23% reduced CV mortality compared with a
low intake of ∼14.0 g/day.

Fruit and vegetable intake

A low fruit and vegetable intake is considered one of the
main causes of premature death worldwide, being respon-
sible for 25.5 million deaths in 2013 [38]. Beneficial effects
of fruit and vegetable are due to dietary fiber (as discussed

later), vitamins, minerals, antioxidants content that reduce
chronic diseases, total mortality and have a beneficial effect
on gut microbiota [39, 40]. Furthermore, published data
provide evidence of a positive effect of dietary fiber, fruit,
and vegetable intake on serum cholesterol levels, blood
pressure levels, inflammation, and platelet aggregation [41].
A recent meta-analysis, evaluating 95 unique cohort studies,
showed that for each daily increase of 200 g of fruit,
vegetables, and combined intake of fruit and vegetables
there was an 8–16% reduction in the relative risk of cor-
onary heart disease, 13–18% reduction in the relative risk of
stroke, 8–13% reduction in the relative risk of CVD [42].
Overall, people with high fruit and vegetable intake (∼500
g/day) have a 22% reduction of cardiovascular risk com-
pared with people with low intake (0–40 g/day).

Dietary fiber

Several studies have highlighted the benefits of dietary fiber
on cardiovascular health by improving the lipid profile and
decreasing blood pressure; whereas a low dietary fiber
intake is linked to higher CVD risk [43]. Moreover, high
dietary fiber intake is associated with lower all-cause mor-
tality [44]. Although the specific functions and mechanisms
of action are not fully understood, the proposed mechanisms
are that dietary fiber decreases cholesterol, glucose
absorption and downregulates the expression of oxidative
stress-related cytokines or the inflammatory response
mediated by gut microbiota [45, 46].

Furthermore, the protective role of dietary fiber seems to
be influenced not only by the amount of fiber but also by the
specific type and source [47]. In fact, different types or
sources of dietary fiber may be responsible for different
physiological effects: soluble fibers are responsible for the
cholesterol-lowering effect, whereas insoluble fibers influ-
ence the intestinal absorption of foods and the glycemic
response [33, 48].

Interestingly, a recent study, in an experimental animal
model of hypertensive mice, demonstrated that fibers and
acetate led to the downregulation of the transcription factor
Egr1, considered a master regulator in homeostasis in many
systems, since it modulates the expression of a wide range of
genes and pathways implicated in CVD processes, such as
cardiac hypertrophy, renal fibrosis, and inflammation [49].

Moreover, regarding the lipid-lowering effect, soluble
fibers found in whole grains, pulses, seeds, and nuts play a
crucial role [50]. In particular, many studies have high-
lighted the potential benefits of beta-glucan, a water-soluble
fiber mostly found in oat and barley. Beta-glucan con-
sumption has been associated with lower triglycerides and
LDL-cholesterol levels ∼5–10% [51–53].

In this regard, a meta-analysis by Whitehead et al.
highlighted that diets containing ∼3 g/day of oat beta-
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glucan decreased triglycerides and LDL-cholesterol levels,
but without significant effect on HDL-cholesterol levels,
even with a high beta-glucan intake (up to 12.4 g/day).
Interestingly, a higher LDL-cholesterol-lowering effect was
observed in subjects with type 2 diabetes and subjects with
higher baseline LDL-cholesterol levels [54], suggesting a
better efficacy in those with a worse metabolic profile.

Mirmiran et al. performed a prospective cohort study on
2295 healthy subjects followed for 4.7-year demonstrating
that dietary fiber intake, especially from pulses, fruit,
vegetable, and nut sources, had protective effect against the
development of CVD events. Beneficial effects of vegetable
fibers in reducing CVD risk appeared related to decreased
triglycerides and triglycerides to HDL-cholesterol ratio
during the study follow-up [55]. Finally, another recent
study highlighted the link between dietary fiber, gut
microbiota, and reduction of CVD risk, suggesting a
potential role of microbiota in the modulation of CVD risk
[56].

Polyunsaturated fatty acids (PUFA): omega-3

There is a growing evidence showing that omega-3 PUFAs
have a variety of cardioprotective properties, such as
reduction of plasma triglycerides, regulation of blood
pressure, reduction of arrhythmias and inflammation, and
improvement of endothelial dysfunction [57].

Omega-3, in particular eicosapentaenoic acid and doc-
osahexaenoic acid, have been topics of experimental studies
that have demonstrated several different mechanisms by
which circulating and incorporated omega-3 PUFAs might
act at cellular and molecular levels, including genetic and
epigenetic modulations [58].

Nonesterified omega-3 PUFA or their acyl-CoA thioe-
sters can bind and directly modulate activities of nuclear
receptors and transcription factors that regulate gene
expression in multiple tissues [59].

These receptors are central regulators of several cellular
functions related to CVD, including lipid metabolism, glucose-
insulin homeostasis, and inflammation [60]. Interestingly,
effects of omega-3 PUFA on these pathways likely contribute
to triglyceride-lowering [61] and increased production of
“beneficial adipokines, batokines” known to improve meta-
bolic homeostasis [62]. Moreover, omega-3 PUFA can reduce
translocation of nuclear factor-kappa B to the nucleus,
decreasing inflammatory cytokines production [63].

The anti-arrhythmic effects of omega-3 PUFAs appear
mediated through mechanisms that include direct and
indirect modulation of ion channel properties, membrane
composition and fluidity, as well as anti-inflammatory and
anti-fibrotic effects [64].

Interestingly, long-term omega-3 PUFA supplementation
in humans induces prolonged atrial refractoriness and

reduced vulnerability to inducible atrial fibrillation [65],
which could explain their anti-arrhythmic effects. PUFA
consumption can also affect resting heart rate and both
systolic and diastolic blood pressure [66]. In short-term
trials, omega-3 PUFA intake increased nitric oxide pro-
duction, mitigated vasoconstrictive responses to nor-
epinephrine and angiotensin II, enhanced vasodilatory
response and improved arterial compliance [67–70]. Such
effects could contribute to decrease systemic vascular
resistance and blood pressure.

Monounsaturated fatty acids (MUFA)

More controversial are the available data on MUFA and
cardiovascular protection, due to the small number of
published studies. The most common MUFA in food are
oleic acid, palmitoleic acid, and vaccenic acid.

The results of a recent meta-analysis indicate an overall
reduction of risk of all-cause mortality (11%), cardiovas-
cular mortality (12%), cardiovascular events (9%), and
stroke (17%) when comparing the top versus bottom third
of MUFA, olive oil, oleic acid, and MUFA: small fatty
acids ratio [71]. In particular, only olive oil seems to be
associated with reduced CVD risk. In fact, several other
studies indicate that extra virgin olive oil (EVOO) seems to
be the relevant factor in lowering the incidence of cardio-
vascular events, including myocardial infarction and stroke
[72, 73]. Even if the molecular mechanisms exerted by
EVOO are not fully understood, the healthy role of EVOO
might be referred to its high level of MUFA and several
biologically active phenolic compounds known to play
important roles in cardiovascular protection [74].

Anthocyanins

Anthocyanins are polyphenolic compounds responsible for
red, violet, and blue colors of fruit and vegetables, present
also in red wine.

Several epidemiological revisions support the preventive
effect of both anthocyanins and polyphenols towards the
onset of CVD [75, 76], due to their antioxidant and anti-
atherosclerotic activity [77, 78]. Moreover, preclinical stu-
dies, both in experimental animal models and in vitro cel-
lular systems, support their potential role in influencing
lipid profile, a commonly used biomarker of CVD risk.
Anthocyanins can slow or inhibit the absorption of lipids
and glucose in the gut and inhibit cholesterol synthesis,
which results in a decrease in serum triglyceride, total
cholesterol, and non-HDL cholesterol and in an increase in
serum HDL [78, 79].

Phenolic compounds have a very low bioavailability: only
10% is absorbed in the small intestine, whereas about 90% is
excreted or metabolized by the intestinal microbiota [80].
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Therefore, the primary protective effect of anthocyanins
cannot be due to the antioxidant properties, which will be
active only at the intestinal level (where the concentration is
high), but to their action as secondary intracellular media-
tors in different signaling pathways.

Other studies highlighted the cardioprotective and anti-
inflammatory effect of anthocyanins. Specifically, antho-
cyanins intake promotes nitric oxide production that
improves blood circulation and, on the other hand, can
inhibit Nfk-B transcription, decreasing pro-inflammatory
molecules production [81].

Zhu et al. highlighted the anti-inflammatory effect of
anthocyanins in a randomized controlled clinical trial (RCT)
[82]. In this study, a total of 150 subjects with hypercho-
lesterolemia consumed a purified anthocyanins mixture
(320 mg/day) or a placebo twice a day for 24 weeks.
Anthocyanins consumption significantly reduced the levels
of serum C-reactive protein (−21.6% vs. −2.5%), soluble
vascular cell adhesion molecule-1 (−12.3% vs. 0.4%) and
plasma IL-1β (−12.8% vs. −1.3%) compared with the
placebo. They also found a significant difference in the
LDL-cholesterol (−10.4% vs. 0.3%) and HDL-cholesterol
level changes (14.0% vs. −0.9%) between the two groups.

If micronutrients play an important role in modulating
CVD risk, it is also well known that maintaining normal
body weight is a protective factor for CVD.

Bertoia et al. performed three prospective cohort studies
on 124,086 men and women to assess whether dietary
intake of specific flavonoid subclasses was associated with
body weight change over time. Interestingly, increased
consumption of most flavonoid subclasses, including
anthocyanins, was inversely associated with body weight
change over a 4-year time interval. The greatest magnitude
of association was observed for anthocyanins, flavonoid
polymers, and flavonols [83]. Thus, in this context, choos-
ing high flavonoid fruits and vegetables, such as apples,
pears, berries, and peppers, might help with weight control
and CVD prevention.

Vitamins

Several studies indicate that vitamins E, C, and other anti-
oxidants can reduce CVD by trapping organic free radicals
and deactivating excited oxygen molecules to prevent tissue
damage [84]. Antioxidants may have the ability to slow or
prevent atherosclerotic plaque formation, likely, by inhi-
biting LDL-cholesterol oxidation [85].

However, data regarding the role of vitamin C and E in
CVD prevention in human studies are still controversial.

In a pooled analysis of nine cohorts, vitamin C supple-
ment usage, exceeding 700 mg/day, was significantly
associated with a 25% reduction in coronary heart disease
risk [86].

Sesso et al. performed a RCT on 4641 US middle-age
men to evaluate whether long-term vitamin E or vitamin C
supplementation decreases the risk of major cardiovascular
events demonstrating, with an 8-year follow-up, that neither
vitamin E nor vitamin C supplementation could reduce the
risk of major cardiovascular events [87].

A RCT conducted by Ellulu et al. in 64 people with
obesity and hypertension and/or diabetes, reported the
potential anti-inflammatory effect of 500 mg of vitamin C,
twice daily. Vitamin C might act by inducing a decline in
CRP, IL-6, and fasting blood glucose after 8 weeks of
treatment [88].

Regarding dietary vitamins intake (not supplemented),
few studies were, to date, performed. A huge study by Zhao
et al. examined the association of total carotene, vitamin C,
and vitamin E from diet and the risk of mortality from all
causes, cancer, and CVD in over 130,000 Chinese adults
[89]. The results indicated an inverse association of total
carotene and vitamin C with all-cause mortality in men.
Compared with the lowest quintiles, the corresponding risk
reductions in the highest quintile were 17% for both car-
otene and vitamin C. Although these associations were
weaker in women than in men, the results were interesting
and statistically significant.

Another study evaluated the intake of antioxidant vita-
mins (vitamin E, C, and A) from food and supplements in
over 3000 postmenopausal women with no CVD for a
period of 7-years follow-up, demonstrating that the intake
of vitamin E from food was inversely associated with the
risk of death from coronary heart disease without using
vitamin supplements. Instead, the intake of vitamins A and
C was not associated with lower risks of CVD death [90].

Age-related changes in body composition, metabolic
factors, and hormonal levels, accompanied by a decline in
physical activity, might all provide mechanisms for the
tendency to lose muscle mass, gain fat mass and, also,
increase subclinical inflammatory status which has been
described as one of the mechanisms involved in ather-
ogenesis and in CVD [1, 2].

In particular, obesity, which is due to an imbalance
between energy intake and energy expenditure over a pro-
longed period, has always been known and recognized as a
risk factor for metabolic diseases and CVD [91, 92]

Sedentary behavior

It is well known that lifestyle can strongly influence the
development of metabolic chronic diseases, including CVD
[93, 94]. In particular, physical activity and exercise can
improve health and decrease CVD Risk [95]. However, few
studies have evaluated whether patterns of sedentary time
are linked with higher risk for CVD and data on sedentary
time and higher risk for CVD are based mainly on self-
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report. Interestingly, a recent published study, performed on
over 5000 older women, demonstrated that high sedentary
time, and long mean bout durations, were associated in a
dose-response manner with higher CVD risk [96]. Another
interesting recent study was performed with the aim of
examining the association of sitting and moderate to vig-
orous physical activity (MVPA) with CVD and all-cause
mortality, and of estimating the theoretical effect of repla-
cing sitting time with physical activity. Interestingly, among
the 149,077 subjects evaluated over an 8.9-year (median)
follow-up a total of 8689 deaths, of which 1644 were due to
CVD, occurred, demonstrating a statistically significant
interaction between sitting and MVPA for all-cause mor-
tality [97].

Different type of diets

Several types of diet have been proposed to prevent and
reduce risk factors for CVD. Interestingly, in ancient Greek
medicine, the word diet meant a set of rules of life to
maintain the state of health and wellness of the subject,
including nutrition and physical activity. However, the
modern meaning refers to diet as what people eat. However,
the word diet should include nutritional indications, in
qualitative and quantitative terms, aimed to maintain good
health and wellness in healthy individuals and, thus,
intended to correct potential dietary mistakes, but, also,
nutritional indications to subjects affected by certain
pathological conditions for therapeutic, preventive, or
experimental purposes. Different types of diets have,
somehow, been characterized and/or developed to approach
these specific issues. MeDi, DASH diet, Veg diet, KD, and
Japanese appear to play a role in maintaining health and/or
prevent metabolic chronic diseases in different subject
categories.

Depending on the type of diet, recommendations
emphasize increasing consumption of vegetables, fruits,
whole grains, and pulses but discourage or even recommend
eliminating red meat, sweets, and sugar-sweetened bev-
erages, along with processed foods that are high in sugar,
salt, or fat or low in fiber [98, 99].

Mediterranean diet (MeDi)

The MeDi diet is characterized by high consumption of
fruits, nuts, vegetables, whole-cereal products, fish, and
seafood; in particular, the consumption of whole-grain
cereal products high in dietary fiber and the consumption of
fruit and vegetables, have been reported to contribute to the
reduced risk of obesity, type 2 diabetes and CVD. More-
over, this dietary regimen strongly suggests limitation of red
meat, refined sugars, and saturated fatty acids [100]. MeDi
has a large body of evidence in regard to its correlation with

significant reduction in the incidence of mortality caused by
CVD [101, 102]. Indeed, MeDi has been proven, by RCTs,
observational studies, and meta-analyses to be beneficial for
both primary and secondary prevention of CVD. One of the
most prominent aspects of the MeDi is the high con-
centration of unsaturated fats, the significant sources of fiber
and protein, coupled with a paucity of saturated fats. Both
the American Heart Association/American College of Car-
diology (AHA/ACC) and the European Society of Cardi-
ology guidelines strongly endorse substituting mono- and
polyunsaturated fats in place of saturated and trans-fatty
acids for both primary and secondary prevention [103].
Data indicating the positive effects of MeDi have been
produced in the RCT Lyon Heart Study, which showed that
composite endpoints of CVD events and death were
reduced for up to 4 years after an initial event in those
subjects who were randomized to the MeDi group, thus
establishing it as a staple also for secondary prevention
[104, 105]. Recently, the PREvenciòn con Dieta MEDiter-
ànnea investigators shows that subjects following the MeDi
had fewer monocytes, inflammatory markers, and beneficial
modulation of gene expression involved in LDL oxidation,
[106]. Mechanisms underlying the beneficial effects of
unsaturated fats content in olive oil, fish oil, and nuts on
cardiovascular disease include improved lipid profiles and
reduced blood pressure likely through reduced inflamma-
tion, oxidation, and coagulation [107]. Moreover, the
increased fruit and vegetable intake in MeDi has also been
linked to a lower body mass index and reactive oxygen
species level. Thus, MeDi has been recognized by
UNESCO as “intangible cultural heritage of humanity” for
the well-demonstrated health benefits.

Dietary Approaches to Stop Hypertension (DASH) diet

The DASH diet was born in the USA with the aim to reduce
blood pressure and, also, to prevent CVD [103]. This diet
recommends a reduction of salt intake, a main factor for
hypertension and it emphasizes the intake of fruits, vege-
tables, vegetable proteins, whole grain, low-fat dairy foods,
and reduced saturated and total fat, being quite similar to the
MeDi recommendations. The benefits of the DASH dietary
pattern have been recognized by general dietary guidelines
from the US-based National Heart, Lung, and Blood Institute
(NHLBI) and the United States Department of Agriculture
(USDA). International diabetes and cardiovascular clinical
practice guidelines have also recommended the DASH diet-
ary pattern for cardiovascular risk reduction [108].

In fact, RCT studies of the DASH dietary pattern demon-
strated a decrease in LDL-cholesterol among other cardio-
metabolic risk factors and it also appeared, in prospective
cohort studies, that the DASH diet was associated with a
reduction in diabetes and cardiovascular mortality [109].

What is the best diet for cardiovascular wellness? A comparison of different nutritional models 55



Vegetarian diet (Veg diet)

Veg diets are characterized by reduced or abolished con-
sumption of animal products typically emphasizing vege-
tables, fruits, grains, pulses, and nuts intake. Though lacking
a standardized definition, “vegetarian” generally describes a
lacto-ovo vegetarian dietary pattern (here in, referred to as
vegetarian), which is free of meat, poultry, and fish; how-
ever, “vegetarian” is occasionally used interchangeably to
describe more restrictive dietary patterns such as vegan
(eliminates eggs and dairy), semi-vegetarian (varying defi-
nitions), and fish-vegetarian (consumes fish but not meat).
Abolishing meat, an attribute of Veg diets, is commonly
presumed to contribute to the improved CVD health out-
comes [110]. The AHA/ACC issued nutrition recommen-
dations which include Veg diets among the dietary patterns
that help to accomplish the AHA/ACC guidelines, together
with the Mediterranean and the DASH diets. Populations
following traditional plant-based diets, such as in rural
Africa or in Asia, have low prevalence of CVD. The first
major study to look at the vegetarian dietary patterns in the
USA was conducted among Seventh-day Adventists and
described a clear dose-response relationship between meat
consumption and CVD risk [111]. The EPIC-Oxford study
showed a 32% lower risk of CVD in vegetarians as com-
pared with nonvegetarians (HR 0.68; 95% CI 0.58–0.81). In
particular, a Veg diet is rich in phytonutrients such as car-
otenoids, lycopene, flavonoids, anthocyanins, and others,
which work synergistically to reduce inflammation and
oxidative stress, leading to CVD protection [112]. However,
the Veg diet is characterized by lower bioavailability and
absorption of vegetable proteins and of iron, zinc, and cal-
cium, which are minerals important to maintain health status
and wellness. In fact, these vegetal foods contain high levels
of antinutritional factors, which may be naturally occurring
(e.g., digestive enzyme inhibitors, tannins, phytate, gluco-
sinolates, and isothiocyanates), formed during processing
(e.g., D-amino acids, lysinoalanine), or due to genetic mod-
ification (e.g., lectins). Pulses, cereals, potatoes, and toma-
toes contain inhibitors of digestive proteolytic enzymes.
Soybeans are the most concentrated source of trypsin inhi-
bitors, whereas peas and processed soybean products contain
considerably lower levels [113–115].

Ketogenic diet (KD)

The KD was developed in the 1920s to control seizures in
epilepsy. It implies a high-fat (60–80%) and protein
(10–20%) content and very low-carbohydrate amount
(5–10%). It could reproduce some of the effects of fasting,
with the beneficial effects mostly ascribed to the production
of ketones, such as β-hydroxybutyrate, acetoacetate, and
acetone in the liver [116]. The clinical use of KD received

increased attention in the 1990s, and KD is now an estab-
lished non-pharmacological therapy for difficult-to-treat epi-
lepsies in addition to a wider use in a variety of neurological
disorders. Recently, KD has also been used as therapy for
treatment of obesity and prevention of CVD [117]. Studies
regarding KD and prevention of CVD risk factors are still
controversial [118]. A study by Sharman and colleagues,
conducted in adult men, indicated that adaptation to this diet
resulted in significant reductions in fasting plasma tria-
cylglycerols (TAG) (−33%), postprandial lipemia after a fat-
rich meal (−29%), and fasting insulin concentrations
(−34%). Also, there was a significant increase in LDL par-
ticle size with no change in oxidative LDL concentrations.

Interestingly, the authors described a significant increase
in HDL cholesterol after 3 weeks of KD. Collectively, the
responses in serum lipids, insulin, and lipid subclasses to
the KD were favorable in terms of overall CVD risk profile.
In addition, KD seems to have a benefit on weight loss,
notably by increasing energy expenditure in animals and
decreasing food intake in humans, leading to loss of both fat
and lean mass. Weight loss is probably due to a greater
energy deficit, but the mechanisms have not been fully
described as yet, and no relationship between weight loss
and ketosis was found at any time during the diet period.
Long-term studies are nevertheless needed to fully depict
the evolution of weight loss and better characterize the
mechanisms involved. On the contrary, liver fat content was
shown to be increased during an isoenergetic high-fat low-
carbohydrate diet. This event suggests that high-fat intake in
KD might increase the risk of nonalcoholic fatty liver dis-
ease (NAFLD), even if other studies, in which high-
carbohydrate (“standard”) hypoenergetic diet and hypoe-
nergetic low-carbohydrate diet (KD) were compared,
demonstrated that liver fat content was significantly reduced
during KD [119–121]. This effect appeared limited in time,
with no significant difference after 11 weeks. KD have also
been associated with a stronger decrease in liver volume
compared with a standard hypocaloric diet, probably due to
the depletion of liver glycogen. Finally, the response to KD
may be influenced by genetic predisposition to NAFLD, as
shown by two studies with a better response to KD for
patients with variants of the PNPLA3 gene [122]. Indeed,
subjects with PNPLA3 variants had a lower liver fat content
than controls when fed with KD [123]. However, no data
are available to date regarding the low-fiber intake with KD,
thus further longitudinal studies are needed to fully char-
acterize all the issues regarding this type of nutritional
pattern in long-term studies.

Japanese diet

The Japanese diet includes a wide variety of foods as beans
and bean products, fresh fish, vegetables, Japanese pickles,
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fungi, seaweeds, and fruits [124]. Even though the food is
different from diets in Western countries, the Japanese diet
has characteristics similar to MeDi. Previous published
studies showed that intake of individual food groups such as
fruits, vegetables, beans, and fish were inversely associated
with both all-cause and/or CVD mortality in Japan
[125, 126]. The Japanese diet has been characterized by
high-sodium intake and a low-potassium intake contributing
to a high sodium-to-potassium (Na–K) ratio, which may be
a strong indicator for risk of CVD mortality [127]. In par-
ticular, studies show that Na–K ratio was positively asso-
ciated with hemorrhagic stroke, but was borderline
significant for ischemic stroke. In addition, this diet is rich
in acidogenic foods, such as fish, and cheese, but low in
alkaline foods, such as fruit and vegetables, which can
induce endogenous acid production [128]. High dietary acid
load has been linked to an unfavorable profile of cardio-
metabolic risk factors, including insulin resistance [129],
high blood pressure or hypertension [130, 131], large waist
circumference, high triglycerides and LDL cholesterol, and
type 2 diabetes [132, 133]. In contrast, recent studies have
indeed shown how this type of nutritional pattern can
reduce mortality for both cancer and CVD disease
[134, 135], suggesting a potential nutritional alternative
pattern for CV health.

Conclusion

CVD is a multifactorial disease and is linked to unhealthy
nutrition patterns. In particular, several studies suggest that
an excessive intake of sodium and refined foods; added
sugars; unhealthy fats; low intake of fruit and vegetables,
whole grains, fiber, pulses, fish, and nuts; alcohol con-
sumption, stress, smoking together with a deficiency of
physical activity promote the risk of CVD.

Among the different types of diets analyzed in this
review, MeDi appears the diet with the best nutritional
pattern since it includes whole grains, pulses, fibers, PUFAs
without completely excluding food of animal origin such as
meat, fish, dairy products, eggs, and limiting alcohol con-
sumption. Moreover, the MeDi style takes into considera-
tion not only foods, but also conviviality and physical
activity, which means a specific lifestyle not limited to food.
Indeed, several studies demonstrate that subjects who are
adherent to MeDi have lower risk of obesity, type 2 dia-
betes, inflammatory markers, and beneficial modulation of
gene expression involved in LDL oxidation [106] and all
causes of CVD event risk. On the contrary, despite the
scientific evidence we discussed, the other diets analyzed do
not seem to have enough data to be considered better diets
than MeDi in the prevention of CVD, since the nutrition
patterns proposed limit or exclude some food in favor of

others based on limiting risk without considering nutrition
as a lifestyle.
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