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Abstract: This paper introduces a novel iterative 3D mapping framework for large scale natural
terrain and complex environments. The framework is based on an Iterative-Closest-Point (ICP)
algorithm and an iterative error minimization mechanism, allowing robust 3D map registration.
This was accomplished by performing pairwise scan registrations without any prior known pose
estimation information and taking into account the measurement uncertainties due to the 6D
coordinates (translation and rotation) deviations in the acquired scans. Since the ICP algorithm
does not guarantee to escape from local minima during the mapping, new algorithms for the local
minima estimation and local minima escape process were proposed. The proposed framework
is validated using large scale field test data sets. The experimental results were compared with
those of standard, generalized and non-linear ICP registration methods and the performance
evaluation is presented, showing improved performance of the proposed 3D mapping framework.
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1. INTRODUCTION

In recent years, the applications of autonomous robot sys-
tems have been migrating from indoor to outdoor environ-
ments. The high complexity of outdoor environments poses
a special challenge for existing autonomous robotic tech-
nologies, especially for robots performing the desired tasks
without continuous human guidance. Fully autonomous
exploration and 3D mapping of rough terrain and unstruc-
tured environments impose the robot’s capability to reason
about the characteristics of the outdoor environment. One
of the main challenges of such a task is the optimal and
timely fusion of 3D data in order to improve the perception
capabilities and the scene understanding.

In order to successfully navigate through rough unstruc-
tured terrain, the autonomous robotic system needs pro-
duce a precise 3D reconstructed map of the complex en-
vironment and to provide good mobility. Our paper is
focused on 3D model reconstruction based on the point
cloud representation. The point clouds are used by the
3D perception systems as an basic input data in order
to represent the scanned environment. In order to extract
useful information from the point clouds it is first neces-
sary to process and register the individual 3D scans into a
global representation. One of the main requirements of the
3D map reconstruction is to match different consecutive

data measurements in order to estimate the changes in the
pose between these two measurements. The output of the
pose estimation is a transformation matrix representing
the rotation and translation.

In our paper, the matching and displacement estimation
of two consecutive point cloud measurements is solved by
using a novel framework based on an improved Iterative-
Closest-Point (ICP) method allowing fast and accurate
registration of 3D environmental models. The proposed
framework, named Local Minima Escape ICP (LME-ICP),
is hierarchically organized into a multi-level processing
schema. It does not require any prior known pose esti-
mation information acquired from sensing systems like
odometry, global positioning system (GPS) or inertial
measurement units (IMU). The main improvements of the
existing ICP algorithm lie in the estimation of the local
minima situations for the new environmental scan and a
novel mechanism for a local minimum escape. These pro-
vide a good matching accuracy and an optimal registration
process for the 3D map building. The advantage of this
approach is the ability to deal with large-scale outdoor
environment data sets, while providing a fast registration,
map building and a precise pose estimation. An additional
component within the framework has the ability to esti-
mate the local minima and escape from them.

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2018.11.558



Haris Balta et al. / IFAC PapersOnLine 51-22 (2018) 298-305 299

2. RELATED WORK

In this section, we present an overview of related work
on 3D map reconstruction. The goal of a 3D map regis-
tration process is to estimate the transformation parame-
ters between two partially overlapping scans. 3D mapping
of an unstructured outdoor environments is currently a
very popular research topic. Research is carried out using
different type of mapping strategies and algorithms, as
presented in (Zhang et al. (2011)). Additionally, consider-
able effort has been introduced for finding suitable sensor
systems for such 3D mapping tasks (Mobedi and Nejat
(2012)). In (Rattar and Sammut (2015)), the authors use
an active stereo vision camera and a laser rangefinder for
building a 3D map of the environment. In (Thrun et al.
(2004)), two orthogonal 2D laser rangefinders are used to
reconstruct 3D maps of indoor and outdoor environments,
while authors in (Nuchter et al. (2005)) use 2D range
finders mounted on a tilt unit that is able to acquire a
very precise 3D scan of the environment.

Depending on the methodology for assessing the initial
displacement, 3D registration algorithms may be catego-
rized into two main groups: feature-based and featureless
methods. For feature-based registration methods (Stamos
and Leordeanu (2003), Mian et al. (2010)), the theoretical
framework is well developed and it applies predefined off-
line geometric shape descriptors. These descriptors values
are used as features to find correspondences between two
3D scans. The major advantage of using a feature-based
approach over a featureless methodology is the possi-
bility to reduce the dimensionality of the search space.
Consequently, irrelevant points such as outliers have no
direct effect on the 3D registration process. An additional
advantage is that the registration process is not directly
dependent on the initial alignment of the scans. Neverthe-
less, feature-based approaches are suffering from a high
computational complexity. Moreover, the performance of
the registration is directly dependent on the process of
finding distinct features which are common in both scans.
These facts may impose limitations on using this approach
on large scale outdoor environments.

In contrast to the feature-based approach, the featureless
approach can be applied to unstructured outdoors envi-
ronments, where finding distinct features is an challenging
task. One of the commonly used featureless registration
approaches is the iterative closest point (ICP) algorithm
introduced in (Besl and McKay (1992)). The ICP algo-
rithm is mainly used for 3D object reconstruction and 3D
mapping. The ICP algorithm takes as input two 3D scans
(point clouds) M ,,04e1 and Pgoyrce and tries to iteratively
update the transformation T in order to minimize the
distance (error) between the two data scans. One data
scan is fixed, while the estimated transformation is applied
on the second one in order to match the reference. The
transformation parameters are estimated by using closed-
form solutions as presented in (Lorusso et al. (1995)). ICP
approaches can use multiple different existing registration
techniques, like point-to-point, point-to-plane, or point-to-
projection techniques.

However, for any type of the registration technique, when

there is a weak overlap between the two data scans, a
probable convergence to the local minima is impossible

to avoid. This is true because of the gradient descent
based optimization procedure which can not guarantee
an global optimal solution. It is obvious that in a local
minimum situation, the registration of the data scans
does not correspond to a good alignment. A possible
approach for solving the local minima in such a situation
would be an effective initial estimation (e.g. odometry
of the robot) of the transformation. However, in realistic
operating conditions, it is not an easy task to guarantee
that an initial estimation is a good one especially when
we are dealing with unstructured outdoor environments.
There are some efforts of solving the local minima problem,
as proposed in (Yang et al. (2013)) with a global optima
ICP (Go-ICP) solution. This method combines the ICP
with a branch-and-bound (BnB) scheme to obtain the
optimal solution. However, due to the high computational
requirements this method is not very useful for large-scale
outdoor environment data sets.

Ensuring that our proposed framework is performing its
desired mapping task without any pose information was
important due to the specific constraints of the operational
missions of this research work in the domains of search
and rescue and humanitarian demining. In such appli-
cation scenarios, working conditions include GPS-denied
environments with magnetic interference due to strong
magnetic fields coming from the mobile robot platform and
from collapsed buildings. Moreover, only tracked vehicles
can be used, implying that the precision of odometry is
drastically compromised. In section 3, we present this novel
3D mapping framework with its main characteristics and
capabilities.

3. PROPOSED 3D MODEL REGISTRATION AND
MAP BUILDING FRAMEWORK

The proposed novel 3D model registration framework,
which is based on the local minima estimation and the
local minima escape (LME-ICP) method, is illustrated
in Fig. 1. The 3D model registration schema introduces
the following four-step process: data handling and prepa-
ration, ICP fine alignment, local minima estimation and
local minima escape.

These processes are described in the rest of this section.
8.1 Data Handling and Preparation

The data handling and preparation module includes noise
reduction through filtering and downsampling for input
datasets (point clouds). It provides outliers analysis and
removal, and gets more unified dense datasets, thereby
saving computational and memory resources in further
processing steps. The output of this framework is the
filtered point cloud. More details about this are given in
(Balta et al. (2018)).

8.2 ICP Fine Alignment

The ICP registration approach is one of the most popular
registration method for unorganized 3D data sets (Besl
and McKay (1992)). The algorithm is based on an iterative
gradient descent method which estimates the optimal
transformation between two adjacent 3D scans using a
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Euclidean distance error between their overlapping areas.
The ICP method used in our paper is given in more details
in (Pomerleau et al. (2015)).

3.8 Local Minima Estimation

Due to the open loop and iterative nature of the ICP
algorithm, it is not possible to guarantee the avoidance of
local minima. Additional drawbacks of the ICP approach
are a small convergence domain and the requirement for a
high number of iteration steps until convergence is reached.
If the ICP algorithm gets trapped into a local minimum,
this leads to erroneous estimations which can be far away
from a global optimal solution. Most usual cases where the
ICP algorithm fails are poor initial alignment of the data
scans and additional noise coming from the unstructured
outdoor environments. A possible approach for solving the
local minima in such a situation would be providing a good
initial estimation of the transformation. However, it is not
an easy task to guarantee that the initial estimation is
good, especially when dealing with harsh environments.
Because of that, our proposed 3D mapping framework
does not rely on any prior known pose estimation infor-
mation (like odometry, GPS, IMU). In order to overcome
situations where the estimation transformation of the 3D
registration method is far from a global optimal solution
we have introduced an error evaluation mechanism to
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Fig. 1. Novel 3D model registration framework scheme.

perceive the local minimum situation. Using this mecha-
nism we define a cost function which represents the mean
of the squared Euclidean distance between corresponding
points of the source Pgource = {p;}, and the reference
M 041 = {m;}, datasets, where i = 1,..., N,..

The mean square error e function is defined as:
N, )
> lmi—p; |l
i=1

e & 1)
where m; and p,; represent the nearest corresponding
points between the reference and source dataset, respec-
tively. The corresponding pair points are found by utilizing
the K - d tree nearest neighbour search algorithm (Klasing
et al. (2009)). Using the distance measure between the
corresponding pair points (m;, p;), we can calculate the
mean squared error between the scans. Each new scan
will incrementally increase the global map by adding new
environmental information. Some of the new points will
not have corresponding overlapping points in the global
map and they introduce a large distance error. In order
to get a better error estimation, we calculate the pair of
corresponding points (m;, p,) only in an overlapping area
which is defined within a certain radius 7.

An example of such situation is shown in Fig. 2. Two
successive scans are presented with the blue and red point
clouds. The overlapping area contains a subsite of N,
points between the two scans. In the Fig. 2 the overlapping
area is represented by the green colored points, with a
number of N, = 24 points in total. In this case, the
overlap radius is taken as a fixed value of r between two
points and the error estimation is computed. As already
mentioned, defining a radius is necessary in order to avoid
error accumulation of points which represent new data of
the global map.

By tracking the error we can determine if the matching
has achieved an accurate registration result or it has been
trapped into a local minimum. Fig. 3 shows a situation
where the system has detected a local minimum situation.
In this figure we can see a sudden change in angle of
rotation of the position of the scan (90 degrees) which is
indicated with the blue scan. In this case the error has
significantly increased and the system is trapped into the
local minima.

Evaluating the error we can usually anticipate that a
higher value of the error means that the registration
processes has reached a local minimum situation, while
a lower value indicates that the registration is successful.
However, due to sensor noise a perfect registration is
usually not possible to obtain. Therefore we need to define
a threshold value in order to evaluate the computed error.
If the evaluated error is below a given threshold (which is
empirically evaluated using scan evaluation and is usually
between 0.5 and 0.7) the alignment is good and the new
scan can be merged into the global map. If not, the local
minima escape mechanism will be activated.

8.4 Local Minima Escape

If the new scan was trapped in a local minimum as shown
in Fig. 3, a new transformation is computed which is going
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Fig. 2. Scan registration sequence, upper left and right
illustrations are showing two successive scans, left
lower figure is showing the overlapping area with the
error estimation in certain radius r, right lower figure
shows registred scan where green points representing
the overlapping points and the black point are the
new added point from the second scan (red).

Fig. 3. Local minima situation caused by an significant
change of the angle of rotation.
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Fig. 4. Local minima escape, computation of surface nor-
mals and two step local minima escape.

to move the scan out of the local minimum situation. First,
we find all the overlapping points between the global map
and the new scan by utilizing the nearest neighbor search
(Segal et al. (2009),Bentley (1975)). In the second step the
surface normals (Klasing et al. (2009)) are computed on
the new scan point cloud and overlapping points from the
global map as shown in Fig. 4.

This gives an additional robustness to the transformation
as we take in consideration the type of surfaces. For
example points from a wall will be matched only to other
points in a wall and so on. The surface normals are directly
estimated from the point cloud dataset. The general idea
of estimating the normal to a point on the surface is
approximated by the normal estimation of a plane tangent
to the surface. In general this becomes a least-square
plane fitting estimation problem. This computation can be
done by calculating the covariance matrices of the points
and then extracting the eigenvalues and eigenvectors. By
analyzing the eigenvalues and eigenvectors we can define
the surface normals of a point. Pseudocode representation
of the implemented surface normal estimation is presented
in the (Klasing et al. (2009)).

After the surface normal estimation, we extract pairs of
points form the new scan and overlapping points from
the map which have similar normals. After the pairs of
points with similar normals have been extracted from the
new scan and global map, a rigid transformation between
the pairs is computed. With this transformation, we are
able to bring the new scan closer to the global map and
avoid the local minima. An additional step has been added
to improve the transformation efficiency. Because most of
the matched pairs come from around the center of the
new scan, the new transformation will be close to the
local minima. Therefore, we avoid using these points all
together. As a result, the new transformation places the
new scan further away from the local minima (Algorithm
1).

The experimental verification of the proposed 3D model
registration framework is given in the next section.

4. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

In order to provide required perceptual data input for en-
vironmental perception and navigation assistance, a depth
sensing system was integrated on the UGV (RMA tEODor
UGYV). This exteroceptive 3D mapping system is dedicated
to gathering 3D data of the mission environment. The
RMA tEODor UGV (Fig. 5) has excellent maneuverability
over the rough terrains and good off-road performance
through its tracked system. During the mapping process
the RMA tEODor UGV usually traverses 4 - 5 m between

Algorithm 1 Pseudocode representation of the local
minima escape process
INPUT

: New 3D data scan and global map: Pgsyyrce =
{pj}, M 0der = {m;}, Nearest points in
M — P

OUTPUT: The correct transformation, T', which aligns

Mmodel and Psource

if error > thrashError then

Find nearest points in M with points in
P [excluding points near the center] — K;
Calculate normals for point clouds P and K;
Find pairs of points from P and K with similar
normals — P, and K ;
Find rigid transformation between Py and K, — T

end
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each scan. The distance between scans is one of the key
parameters in the mapping framework. Because this allows
a good overlap between the scans. For each scan of the
environment the laser scanner needs to perform a full
revolution which usually takes around 10 sec. Afterwards
the iterative 3D mapping framework is applied performing
point cloud registration, where the latest scan is localized
and matched to previous scans increasing the overall 3D
map of the environment. The process is repeated until a
complete 3D map is constructed.

In order to assess the proposed 3D mapping framework,
we have used an accurate geodetic reference model of
the scanned area created by an terrestrial geodetic laser
system Z+F IMAGER 5010 and registered with geodetic
precision. Due to the high precision and accuracy (1 mm)
of the geodetic reference model, we were able to use it as
ground truth in order to compare it with the generated
model by our 3D mapping framework. Moreover, we have
performed a qualitative and quantitative evaluation of our
proposed LME-ICP method in presence of the local min-
ima in acquired scans by adding additional translational
and rotational errors. The computation time and CPU
occupancy for the reconstruction of the 3D global map
from acquired scans were analysed and a comparative
analysis between three state of the art ICP registration
methods and our proposed 3D mapping framework was
also elaborated. In all cases we have used the least square
method, which is extensively used in regression analysis
and estimation, to compare the obtained final results.

The experimental setup presented here was carried out
at the Camp Roi Albert, one of the largest military
bases of the Belgian Defence (locateMarche-en-Famenne,
Belgium). Our proposed method will be compared with
three concurrent methods: Standard ICP, Generalized
ICP, Non-linear ICP. For the first evaluation step, we
have analyzed the convergence of our proposed mapping
framework and the three other ICP methods for a scan-by-
scan registration approach using as an input two random
successive scans. After the scan-by-scan evaluation, a
global map registration analysis was performed. In this
step we have evaluated the complete dataset for both
experiments while taking the performance evaluation as
well as the matching accuracy in order to generate a
complete and consistent model. In the last section of
the results, we have presented the ground truth data

Fig. 5. RMA tEODor UGV with the 3D mapping hard-

ware.

evaluation, were the global maps registered by our 3D
mapping framework have been compared with respect to
a reference model ground truth data calculated with high-
accuracy geodetic precision.

4.1 Scan-by-Scan Convergence Evaluation

In this subsection a rigorous testing procedure was per-
formed with respect to coordinate errors between two
consecutive scans. The error we introduced was randomly
generated within the values of respective x, y, z Cartesian
coordinates e; € [-10m, +10m] for the translation er-
ror and for the rotational error the ¢, 6, ¥ (roll, pitch,
yaw) angles were produced within the values of e, €
[—75°, +75°] for each axis respectively. These generated
errors are significantly larger than the real ones and impose
more extensive and strict demands for testing procedures
of the effectiveness and robustness of the methods.

Fig. 6 shows the registration results of around 40 trans-
formation error test on the rubble field scenario. As an
indicator for the quality of the method, both the average
translation and rotation errors were employed. Even by
introducing large errors, our proposed 3D mapping frame-
work was able to guarantee exceptional matching accuracy,
while the other methods produced significant errors caused
by failure to escape from local minima.

In the considered scenario, the average rotational and
translational errors obtained by applying the proposed
LME-ICP method are respectively 0.05° and 0.1m. In
comparison to the other three considered methods, these
errors are at least 30 times smaller for the translational
component and at least 380 times smaller for the rota-
tional component of the error. Too larger translational
and rotational errors of the other methods between two
consecutive scans are the result of the absence of the local
minima escape mechanism.

To clearly demonstrate the superiority of our proposed
method the additional evaluation parameters are used.
These parameters are translation errors about respective
coordinate axes x, y, z, average translational error pup and
variance of translational error ¢2. The same parameters
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are considered for the rotational error ¢, 0, ¢». Table 1
gives an analytical representation of the registration re-
sults with introduced transformation error for transla-
tional and rotational components of the registration meth-
ods. The obtained results additionally confirm the supe-
riority the proposed method in comparison to the other
three considered methods. This means that the values of
the all parameters are noticeably smaller in the case when
our method is applied.

Table 1. Analytical representation of the results

Dataset Rubble
Translational Error [m]

Method

x y z urT o7,
ICP 4.09 3.07 1.76 2.98 6.67
G-ICP 6.14 3.56 2.06 3.92 11.83
NL-ICP 4.18 3.03 1.68 2.97 6.63
LME-ICP  0.21 0.07 0.01 0.10 0.20
Method Rotation Error [deg] ,
6 0 ¢ un 0%
ICP 14.60 14.82 40.16 23.19 378.76
G-ICP 10.65 14.22 34.66 19.84 423.61
NL-ICP 11.62 1441 3994 2199 317.18
LME-ICP  0.04 0.06 0.05 0.05 0.02

Table 2 shows the error where 90% of the point which
are within the given distance. For our proposed LME-ICP
method, we have an average error of around 0.17 m, allow-
ing us to generate a consistent model of the environment.

Table 2. Point to Point Evaluation

90% of the points are within

the distance of Rubble field scenario

ICP 0.55m
G-ICP 0.55m
NL-ICP 0.59 m
LME-ICP 0.17m

4.2 Global Map Evaluation

In this subsection, the results of performance analysis, as
well as the qualitative comparison of the reconstructed
maps are given. In order to evaluate the ability of the local
minima escape process, several indicators are used: the
computation time (time of execution - ToE), the quality
of the global map reconstruction (Average matching error -
AME) and the required computer resources (Average CPU
load - ACP) for the completion of the specified task. For
each scenario, we acquired number of scans (NoS) more
than 90 for the global map reconstruction (in our scenario
95). The computational time is the time needed for the
reconstruction of the complete global map. Furthermore,
the number of local minima (NLM) and escape from local
minima (ELM) are also determined.

The obtained results shown in Table 3 indicate that the
proposed method generates the global map of the rubble
field 7-9 times faster than G-ICP and NL-ICP. In com-
parison with the ICP method, our method is a bit slower
in terms of the computation time, as it requires some
time to perform the local minima escape process. However,
the ICP method is not able to consistently reconstruct
the global map due to the fact that that it has no local
minima escape mechanism, as well as other considered

ICP-based methods. It is important to note that our
method simultaneously satisfies both desired capabilities:
the ability to reconstruct a consistent and accurate global
map and the possibility to generate the global map within
a satisfactory time interval. The proposed method suc-
cessfully escapes from the local minima and it requires
approximately 13.39 seconds. In terms of CPU load needed
for the global map reconstruction, the smallest CPU effort
is needed for ICP method.

Table 3. Performance analysis for the Dataset Rubble.

Dataset RUBBLE

Method ToE(s) ACP(%) NLM ELM AME(m)
ICP 243.07 25.18 5 failed 0.28
G-ICP 3179.32 26.19 68 failed 0.52
NL-ICP 2138.27 27.25 13 failed 0.32
LME-ICP 340.44 27.03 9 9 0.27

The resulting reconstructed global maps using the consid-
ered ICP methods are shown in Figs.7a-d.

These ICP-based methods generate inconsistent and poor
global maps due to lacking of the local minima escape. On
the contrary, the proposed LME-ICP method produces a
comprehensive map fulfilling the necessary requirements
to accurately match all the scans. Producing these good
results was directly linked to the problem of the local
minima escape which was the main contribution of this
paper. The real environment and the scanning trajectory
of the robot is shown in the Fig. 8.

The obtained robot global map trajectories for all consid-
ered methods are shown in Fig. 9. Trajectories obtained
by using concurrent ICP based methods are inconsistent
which are a direct consequence of their poor local minima
escape capabilities, whereas our proposed method is capa-
ble to reconstruct the 3D environmental model from the
acquired scans.

The time needed for the global 3D map reconstruction
with respect to the number of scans, using the considered
methods, is shown in Fig. 10. The G-ICP and NL-ICP
methods spent much more time in processing of data for
map reconstruction from the scans than the ICP and the
proposed LME-ICP methods. The ICP method required
less time in comparison to our method, but it has no
ability to generate consistent 3D global map. Our proposed

(¢) NL-ICP map

(d) LME-ICP map

Fig. 7. Reconstructed global maps.
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Fig. 8. Real environment :: Rubble field scenario

method successfully escapes from the local minima in the
average time of 13.39 seconds.

In order to estimate the deviation of the other considered
methods from the proposed LME-ICP method, we have
calculated the Euclidian distance between corresponding
robot positions each scan. The obtained results, given in
Table 4, list the average Euclidian distance for all three
methods. From these results, it can be concluded that
the coordinate deviation is significant in all three cases,
especially in the case of G-ICP method.

Table 4. Trajectory Error Analysis dataset Rubble

Registration Method || Average Euclidian Distance (m)
ICP 8.62
G-ICP 47.22
NL-ICP 15.09

4.8 Ground Truth Data Evaluation

For evaluation the global maps registered by our 3D
mapping framework, we have used as reference model
ground truth data measured with high accuracy geodetic
precision. Ground truthing was performed in collaboration
with the IMM institute (Bedkowski et al. (2014)). We
compared the data reconstructed using our 3D mapping
framework with respect to the ground truth using the least
square method. The comparison of the maps generated by
our 3D mapping framework and the ground truth data is
shown in Fig. 11.

Rubble Dataset :: Global map trajectory and scan positions
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Fig. 9. Trajectory for all considered methods.

Rublle Dataset :: Global map time vs Number of scans
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Fig. 11. Comparison of the reference ground truth model
(multi-colored) and resulting maps of our proposed
mapping framework (gradient-green-red) for the rub-
ble field scenario. Dataset: Military-base Marcheen-
Famenne, Belgium.

In order to compare other ICP methods with respect
to the ground truth reference model, the point to point
histograms of the point distribution with respect to their
distances are calculated. The obtained point to point
histograms are shown in the Fig. 12. Table 5 shows the
error, were 90 % of the point which are within the given
distance.

Table 5. Point to Point Evaluation

90% of points within given distance Rubble field scenario
(014 0.88m
G-ICP 0.89m
NL-ICP 0.86 m
Proposed LME-ICP 0.53m

5. CONCLUSIONS

A novel iterative 3D mapping framework for large-scale
natural terrain and complex environments has been pro-
posed in this paper. The main parts of this framework
are the local minima estimation and the local minima
escape mechanism. The novel framework, entitled LME-
ICP, is introduced to enforce the standard ICP method



Haris Balta et al. / IFAC PapersOnLine 51-22 (2018) 298-305 305

a5 X 10% Rubble Dataset :: Point to point distance histogram

[ IProposed LME-ICP
sk A [_INL-icP ]
Ail( ICP
I [Ja-Icp
2.5 F I 1
B |
<
g 2r -
ks
g 151 1
g1
=}
c
1k ]
05 ]Iu
i |
}
o |||||| !
0 01 02 03 04 05 1

distance (m

Fig. 12. Point to point error histograms calculated by the
distances between points from the ground truth refer-
ence model and the maps generated by our proposed
3D mapping framework.

in order to escape from identified local minima. The pro-
posed framework is validated using a large scale field data
sets. The experimental results were compared with those
of standard, non-linear and generalized ICP registration
methods. Moreover, we have validated our framework with
reference model ground truth data calculated with high
accuracy geodetic precision. The results and performance
evaluation are presented, showing excellent performance
of the proposed framework.
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