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Abstract
Purpose of Review Obstructive sleep apnea (OSA), obesity, and disturbed glucose homeostasis are usually considered distinct clinical
condition, although they are tightly related to each other. The aim of ourmanuscript is to provide an overview of the current evidence on
OSA, obesity, and disturbed glucose homeostasis providing epidemiologic evidence, biological insights, and therapeutic strategies.
Recent Findings The mechanisms hypothesized to be involved in this complex interplay are the following: (1) “direct weight-
dependent”mechanisms, according to which fat excess compromises respiratory mechanics, and (2) “indirect weight-dependent”
mechanisms such as hyperglycemia, insulin resistance and secondary hyperinsulinemia, leptin resistance and other hormonal
dysregulations frequently found in subjects with obesity, type 2 diabetes, and/or sleep disorders. Moreover, the treatment of each
of these clinical conditions, through weight loss induced by diet or bariatric surgery, the use of anti-obesity or antidiabetic drugs,
and continuous positive airway pressure (CPAP), seems to positively influence the others.
Summary These recent data suggest not only that there are multiple connections among these diseases but also that treating one
of them may result in an improvement of the others.
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Introduction

Obstructive sleep apnea (OSA) is a sleep disorder character-
ized by recurrent apneic events, with increased upper airway
resistance in the presence of respiratory effort,which leads to
intermittent hypoxia (IH) and sleep fragmentation [1]. OSA
is diagnosed through polysomnography, whichmeasures the
following: (1) apnea events that are defined as episodes of
cessation of breathing of at least 10 s with or without oxygen
desaturation, (2) hypopnea events characterized by a reduc-
tion of respiration of at least 10 s with a reduction of at least

30% of the nasal pressure signal, (3) the respiratory effort-
related arousal (RERA) events that correspond to any respi-
ratory disturbance of at least 10 s not entered in the previous
categories [2], and [3] the apnea-hypopnea index (AHI)
which is obtained from the sum of apnea and hypopnea
events and serves to classify the OSA syndrome in mild,
moderate, or severe, if AHI is included between 5 and 15,
15–30, or if it is > 30, respectively [2]. The obstruction that
determines OSA syndrome can be caused by an abnormal
anatomy (narrow airways, enlarged tonsils) [4], by a reduc-
tion in muscle tone, and more frequently by an obese anato-
my due to fat accumulation in the neck and in pharyngeal
tissue [3, 5]; in fact, OSA is most frequently found in obese
middle-aged men [6]. The main adverse effects of OSA are
oxygen desaturation, IH, and sleep fragmentation; however,
numerous evidence also suggest a destabilization of sleep
homeostasis andunfavorable repercussions onmetabolic pa-
rameters, insulin sensitivity, and the cardiovascular system
[7, 8, 9••, 10, 11], thus creating an interesting connection
between sleep disorders and metabolic pathologies such as
obesity, diabetes mellitus, and metabolic syndrome.
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OSA has a prevalence of 17% in the general population,
which reaches 40–70% in obese subjects and 58–86% in in-
dividuals with type 2 diabetes mellitus (T2DM), therefore
significantly higher than the total population [12–14]. In fact,
an OSA prevalence of 86% was observed in 306 individuals
with T2DM with severe obesity, body mass index > 36.5 ±
5.8 kg/m2, and waist circumference > 115.0 ± 13.0 cm [15].
The prevalence of moderate to severe OSA (AHI ≥ 15) was
46.3% in long-standing type 1 diabetes mellitus (T1DM) with
29 ± 14 years duration [16•]. The high prevalence of OSA in
both T2DM and T1DM would therefore suggest the possibil-
ity that this disorder is associated not only with an excess of
adiposity but also with hyperglycemia [17].

In several studies, a clear association between obesity and
AHI has been demonstrated; in particular, it seems that viscer-
al obesity and neck circumference (NC) are more specifically
related to the development of OSA [18, 19]. Furthermore, it
has been shown in a cross-sectional analysis of a population
sample of 1912 Turkish adults subjected to biochemical in-
vestigations and measurement of neck circumference that the
NC correlates with homeostasis model assessment of insulin
resistance (HOMA-IR), as index of insulin resistance, and NC
was associated significantly with metabolic syndrome [20].
This latter result was confirmed in another cross-sectional
study carried out in 120 subjects with obesity, subjected to
anthropometric and biochemical assessments and
polysomnography, which showed that NC is independently
associated with the metabolic syndrome and OSAS, and in
particular, a NC of ≥ 38 cm had a sensitivity of 54% and
58% and a specificity of 70% and 79% in predicting the pres-
ence of metabolic syndrome and OSAS, respectively [21].
Prolonged obesity causes some adverse health outcomes such
as hypertension, insulin resistance, dyslipidemia, increased
risk of cardiovascular morbidity and mortality, T2DM, some
types of tumors and neurological disorders, and increased
mortality for all causes. Overall, this set of risk factors results
in metabolic syndrome [22]. The same risk factors for meta-
bolic syndrome along with middle age, sedentary life, poor
diet, and genetic factors increase the risk of developing OSA.
Therefore, it is clear that there is a connection between these
pathologies and that this link originates from common phys-
iopathological mechanisms triggered by excess weight. The
aim of this manuscript is to review the epidemiologic evi-
dence, biologic insights, and therapeutic strategies linking
OSA, obesity, and disturbed glucose homeostasis.

Physiophathologic Interconnections
BetweenOSA, Obesity, andDisturbedGlucose
Homeostasis

It has been reported that obesity, OSA, and disturbed glucose
homeostasis share common links [3, 15]. The accumulation of

fat in the neck, tongue, and pharyngeal tissue involves a great-
er effort for the muscles assigned to the patency of the upper
airways, which in a phase like that of rapid eye movement
(REM) sleep, characterized by reduction in muscle tone, they
may not be able to prevent obstruction, leading to apnea or
hypopnea [5, 23]. Moreover, excess weight can also directly
worsen the pulmonary dynamics, in particular by reducing the
residual functional capacity and tidal volume [24].

These mechanisms that we could define as “direct weight-
dependent” are not sufficient to justify the pathogenesis of
OSA, since it also affects lean subjects, and not all the obese
ones [7, 25], suggesting that there may be other mechanisms
definable as “indirect weight-dependent.”

Themost studied “indirect weight-dependent”mechanisms
are hyperglycemia, insulin resistance, and leptin resistance,
typical of the obese and diabetic subject, which on the one
hand can contribute to the pathogenesis and worsening of
OSA, while on the other hand, they themselves can be influ-
enced by the presence and intensity of sleep disorders.

With regard to hyperglycemia, there are several studies that
support an association between apnea and poor glycemic con-
trol: in fact, nocturnal hypoxemia has been independently as-
sociated with abnormal glycemic metabolism both in diabetic
and non-diabetic subjects, defined in these last by the finding of
glycosylated hemoglobin (HbA1c) values between 6 and 6.5%,
and with a higher incidence of T2DM in men previously
euglycemic [26•, 27•, 28•]. Furthermore, the association be-
tweenOSA and alteration of glucosemetabolism could precede
the onset of T2DM, as demonstrated by the fact that in non-
diabetic individuals, the severity of OSA is associated with
greater variability of the circadian glucose rhythm [8]. In
T2DM and T1DM, hyperglycemia alters the responsiveness
of the carotid body to the hypoxic stimulus [29]. Interestingly,
oxygen and glucose signals on glomus cells in the carotid body
can enhance each other, leading to episodes in which hypergly-
cemia may lead to a dysregulation of oxygen and carbon diox-
ide, consequently altering breathing [30]. It was observed that
the injection of glucose into the isolated carotid sinus of cats
reduced by 20% the activity of carotid body chemoreceptors
and increased their threshold to hypoxia, while in the mouse,
the reduced sensitivity of the carotid body due to hyperglyce-
mia worsened the ventilatory response [31, 32]. Moreover, in
the diabetic subjects, the carotid atherosclerosis could also lead
to a dampening of the reactivity to hypoxemia, predisposing to
the OSA [33]. The effect of hyperglycemia could also depend
on the long-term development of autonomic neuropathy, which
has been shown to have an effect on the chemical control of
respiration by altering the signal of central and peripheral che-
moreceptors and of glossopharyngeal, vagal, and propriocep-
tive nerves [34–36]; this may partly justify the prevalence of
26% of mild OSA found in diabetic subjects with autonomic
neuropathy compared with non-autonomic neuropathy diabetic
control group [37].
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In turn OSA may blunt glycemic homeostasis. Several ex-
perimental studies using animal and in vitro models have sug-
gested that IH, typically found in OSA, leads to pancreatic β-
cell dysfunction and insulin resistance in insulin target organs,
skeletal muscle, and adipose tissue [38••]. In particular, an
increased sympathetic activity would appear to be involved,
with increased secretion of epinephrine and norepinephrine
and consequently an increase in hepatic gluconeogenesis and
a reduction in glucose uptake from target tissues, as demon-
strated in IH exposed mice [39, 40]. IH can also lead to hy-
peractivation of the corticotropic axis, as a response to a stress-
ful stimulus, resulting in higher cortisol-circulated levels,
whose effects are well-known: hyperglycemia, reduced insu-
lin secretion, and insulin sensitivity that results in increased
risk of developing T2DM [41, 42]. Subjects with OSA present
high concentrations of proinflammatory cytokines, just as
mice subjected to IH experience an alteration of inflammatory
mediators in the upper and lower airways [43••]. Therefore,
this condition of chronic systemic inflammation can also lead
to the worsening of glucose metabolism [44].

Insulin resistance and secondary hyperinsulinemia also
seem to play an important role in the intricate cross-talk be-
tween sleep disorders and metabolism. Several clinical studies
have found that insulin resistance is independently associated
with OSA; however, the mechanisms responsible for this asso-
ciation are only partially known [7, 45•, 46•](Table 1). It has
been demonstrated that hyperglycemia induced in rats by
streptozotocin (STZ) treatment resulted in altered control of
ventilation, including reduction in the hypercapnic ventilatory
response and hypoxic ventilatory response and an increase of
apnea episodes, and that treatment with insulin or oral antidia-
betic drugs improved respiratory disorders in mice with sec-
ondary diabetes, suggesting a potential causal role of hypergly-
cemia in the pathophysiology of OSA [51, 52]. Regarding the
role of OSA in worsening insulin sensitivity, various mecha-
nisms have been suggested including in particular a hyperacti-
vation of the sympathetic system. In fact, it has been reported
that patients with OSA show an increase in sympathetic tone:
this could be explained by the evidence that the blocking of the
sympathetic response by alpha adrenergic blockade or adrenal
medullectomy in rodents seems to prevent the insulin resistance
induced by prolonged exposure to IH [53–55]. Probably, this is
due to the fact that the sympathetic hypertone stimulates lipol-
ysis, favoring the release of free fatty acids that worsen insulin
sensitivity, as supported by evidence that acipimox lipolysis
inhibitor prevented impairments in fasting glycemia, glucose
tolerance, and insulin sensitivity in mice exposed to IH [56,
57•]. In addition, in a polygenic rodent model of T2DM, it
was shown that IH leads to an increase in pancreatic oxidative
stress, insulin-secreting cell apoptosis, and worsening of β-AR
agonist-mediated insulin release, demonstrating that oxidative
stress may represent a linking mechanism between OSA and
insulin resistance [58].

The role of leptin in sleep disorders is still a subject of
discussion. Leptin is a satiety hormone produced by adipose
tissue in proportion to its extension, but according to clinical
evidence, there would seem to be a positive association be-
tween OSA and leptin, independent from body fat, suggesting
that leptin plays a role independently from weight in the path-
ogenesis of OSA [59, 60]. However, the data available so far
are discordant: if on the one hand, the positive association
between OSA and leptin is well-known and documented, on
the other one, knockout mice for the leptin ob gene seem to
present respiratory disorders and a reduced hypercapnic ven-
tilatory response, just as subjects with lipodystrophy present a
greater risk of developing OSA [61–63]. This discordance
could be explained considering that in obese, leptin resistance
may not affect all the actions of leptin, preserving its sympa-
thetic system stimulating function, thus justifying its effect on
the regulation of respiration [64].Moreover, it has been shown
in a human study that leptin resistance also has a role in the
obesity hypoventilation syndrome, causing a worsening of
hypercapnic ventilatory response, probably due to an effect
on the chemoreceptors [65•].

Regarding hormonal mechanism, melatonin seems to be
another hormone involved in the link between OSA, obesity,
and disturbed glucose homeostasis. Melatonin is a hormone
produced by the pineal gland, with a peak of nocturnal secre-
tion modulated by suprachiasmatic afferents, which regulates
the sleep-wake circadian rhythm [66]. It has been shown that
patients with OSA have lower melatonin levels, measured by
the ratio of their urinary metabolite to creatinine [67••]. Even
in subjects with T2DM, lower melatonin concentration com-
pared with controls was found, which could partly contribute
to the etiology of glycemic decompensation since there are
melatonin receptors on pancreatic alpha and beta cells, mod-
ulating insulin secretion [68, 69].Therefore, as already sug-
gested by some studies, the severity of OSA may correlate
with nighttime melatonin levels, which are in turn associated
with worse glycemic control and an increased risk of T2DM
[69, 70]. (Fig. 1).

Potential Connections Based on Response
to Treatment

Another way to explore the relationship between OSA obesity
and diabetes mellitus is to evaluate the effect that the treatment
of each of these conditions has on others. Some studies have
shown that dietary weight loss programs are effective in re-
ducing the severity of OSA, measured by AHI [71]. In partic-
ular, in obese subjects with T2DM, an intensive lifestyle in-
tervention lasting 1 year has shown to lead to a reduction in
AHI and in the prevalence of severe OSA, as well as a remis-
sion rate of 3 times higher than in the control group [72]. The
main limitation of intensive diet programs is poor long-term
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compliance and recovery of lost weight. However, Kuna et al.
have shown that in obese adults with T2DM and OSA, bene-
ficial effects of intensive lifestyle intervention onAHI at 1 year
persisted at 4 years, despite an almost 50% weight regain,
suggesting that the effect of intensive lifestyle intervention
on AHI was largely, but not entirely, due to weight loss [73].

Besides dietary intervention, it has been reported that pharma-
cological treatment of obesity could result in an improvement
of OSA. Liraglutide is a glucagon-like peptide-1 (GLP-1) an-
alog that was born as a drug for the treatment of T2DM and is
currently indicated at a dose of 3 mg for the treatment of
obesity, exploiting its pleiotropic metabolic effects such as

Directly weight-dependent:
• Narrowed airway
• Mechanical load

Indirectly weight-dependent:
• Hyperglycemia

• Hyperinsulinemia
• Lep�n resistance

Obesity and type 2 

diabetes mellitus

Obstructive sleep

apnea

• Intermi�ent Hypoxia
• Sleep Fragmenta�on 

Fig. 1 The bidirectional link between obesity, type 2 diabetes mellitus,
and obstructive sleep apnea (OSA). OSA causes intermittent hypoxia and
sleep fragmentation which results in an impairment of obesity and type 2
diabetes mellitus (T2DM) that in turn can induce or worsen OSA through
direct weight-dependent and indirect weight-dependent mechanisms.
Increased mechanical load and narrowed airway are the principal direct

weight-dependent mechanisms, and they are directly associated with the
accumulation of adipose tissue. The indirect weight-dependent
mechanisms, such as hyperglycemia, hyperinsulinemia, and leptin
resistance, are metabolic and hormonal alterations very common in
obesity and T2DM that can contribute to the pathogenesis of OSA.

Table 1 Clinical studies showing association between insulin resistance and OSA

Study Patients Main findings

Pamidi et al. [7] 52 healthy subjects Subjects with OSA had 27% lower insulin sensitivity and
37% higher total insulin secretion than the control subjects,
despite comparable glucose levels.

Brúsik et al. [45•] 40 healthy subjects Subjects with moderate-to-severe OSA had increased REE
paralleled by impaired insulin resistance.

Araujo et al. [46•] 53 subjects with obesity Minimum O2 saturation was inversely related with insulin
resistance in subjects with obesity.

Lam et al. [47] 61 subjects with moderate/severe OSA CPAP treatment of OSA for 1 week improved insulin resistance,
and the improvement was maintained after 12 weeks of
treatment in those with moderate obesity.

West et al. [48] 42 diabetic subjects with OSA A 3-month CPAP treatment did not significantly improve glycemic
control or insulin resistance.

Kohler et al. [49] 41 subjects with OSA receiving CPAP Insulin resistance did not change significantly after 2 weeks of
CPAP withdrawal compared with the CPAP group.

Hoyos et al. [50] 65 subjects with OSA, CPAP naıve There were no significant changes in insulin resistance and fasting
plasma glucose over the first 12 weeks of CPAP treatment; at
week 24 improved ISx.

OSA Obstructive sleep apnea, REE resting energy expenditure, CPAP continuous positive airway pressure
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stimulation of insulin secretion and inhibition of glucagon
secretion by the pancreas, slowing of gastric emptying, in-
crease in the sense of satiety, and reduction of appetite, acting
directly on the centers of regulation of hunger in the central
nervous system [74]. In the SCALE sleep apnea, a double-
blind randomized clinical trial, obese subjects with moderate
or severe OSA were randomized for 32 weeks to liraglutide
3.0 mg or placebo, both following a diet (500 kcal day−defi-
cit) and lifestyle recommendations [75•]. This study showed a
reduction of AHI greater with liraglutide than with the place-
bo, in addition to a greater percentage reduction in weight.
The ameliorative effect of the drug onOSA could depend both
on the greater weight loss of the treated group and on the direct
metabolic effects of liraglutide, as the reduction of hypergly-
cemia. In the field of bariatric surgery, it has been reported that
patients undergoing a Roux-en-Y Gastric Bypass (RYGB)
showed a significant improvement in excessive daytime sleep-
iness (EDS) as scored by the Epworth Sleepiness Scale, al-
ready in the first month after the surgery, therefore before a
satisfactory weight loss was achieved [76].

Furthermore, bariatric surgery interventions have a differ-
ent impact on glucose metabolism to such an extent that the
RYGB and vertical sleeve gastrectomy (VLS) are defined as
metabolic surgery procedures unlike the laparoscopic adjust-
able gastric band (LAGB) [77•]. It is possible to summarize
these metabolic effects as the acronym BRAVE: bile flow
alteration, restriction of gastric size, anatomical gut rearrange-
ment and altered flow of nutrients, vagal manipulation, and
enteric gut hormonemodulation [78]. In the LAGB, there is an
improvement in glycemic metabolism parallel to weight loss,
while in the other procedures, there are mechanisms indepen-
dent of weight that make this improvement occurring earlier
[77•, 79]. Two studies evaluated the percentage of OSA re-
mission 1 year after bariatric surgery: in the first case, it is of
62% after the VSG, of 38% after the LAGB, and of 66% after
the RYGB, and also in the second, study overlapping percent-
ages of 66% after RYGB, 57% after VSG, and 29% after
LAGB have been found [80, 81], concluding that the remis-
sion rate after VSG and RYGB is comparable and approxi-
mately the double of LAGB. Furthermore, it has been shown
that the LAGB, although achieving a greater weight loss than
the diet, did not have a better effect on OSA [82]. So, it would
probably seem that OSA improves more after metabolic sur-
gery or diet than with LAGB, supporting the hypothesis of the
importance of “indirect weight-dependent” effects on respira-
tory disorders. A recent study also showed a correlation be-
tween OSA, obesity, and systemic inflammation, showing that
soluble TNF-alpha receptor 2 is the biomarker best correlated
with OSA [83]. Because malabsorptive bariatric techniques
reduce the main biomarkers of inflammation, this could help
to create an anti-inflammatory state that is also protective for
sleep disorders [83]. Looking at the link between OSA, gly-
cemic derangements, and T2DM, we could hypothesize that

the first-line treatment of OSA syndrome, i.e., continuous
positive airway pressure (CPAP), could result in an improve-
ment of glycemic control. However, the evidence currently
available is not all in favor of this hypothesis.

Some studies have shown an improvement in insulin
sensitivity and glycemic derangements after CPAP in
obese patients with severe OSA [47•, 84•]. On the con-
trary, other studies after treatment with CPAP of at least
3 months failed to demonstrate an improvement in glyce-
mic control and insulin sensitivity evaluated using HbA1c,
HOMA index, and hyperinsulinemic–euglycemic clamp,
respectively [48, 49, 85, 86].These conflicting results
could be due to poor adherence to the use of CPAP, a
treatment with well-known poor compliance by patients,
or the duration of treatment. In fact, one study showed an
improvement in insulin sensitivity after 24 weeks, but not
after 12 weeks [50]. Maybe the CPAP could have an effect
in prediabetes but not in the overt diabetes, as suggested
by a study in which CPAP treatment improved glycemic
variability in non-diabetic, but not in diabetic subjects and
by a meta-analysis according to which this therapy could
prevent the incidence of T2DM in non-diabetic subjects
[9••, 87••].

Regarding the effect of hypoglycemic therapy on OSA,
unfortunately, the data are still insufficient; however, preclin-
ical studies in non-obese rats have shown that sleep apnea is
induced by high-fat diet and prevented and reversed by met-
formin, independently from weight, probably thanks to its
insulin sensitizing effect due to the increased number and
affinity of insulin receptors, thus decrease circulating insulin
concentrations [88]. In another study, the administration of
metformin to adolescent girls with polycystic ovarian syn-
drome (PCOS) resulted in significant decrease in sleep distur-
bances scale, and Epworth Sleepiness Scale compared with
the untreated PCOS group [89]. In two Japanese studies, the
administration of sodium glucose cotransporter 2 inhibitors
(SGLT2i) to obese diabetic subjects demonstrated an improve-
ment in the oxygen desaturation index of 3% in case of mod-
erate or severe disease [90••], and a reduction in AHI, respec-
tively [91••]. Although the clinical improvement reported in
these studies may depend on a significant reduction in BMI, it
cannot be excluded that it depends on the effect of these anti-
diabetic drugs on glycemic control and insulin resistance, ac-
cording to those mechanisms previously discussed. About
melatonin treatment, there is not sufficient consensus regard-
ing its use in patients with OSA and T2DM. In fact, if on the
one hand, the serum levels of melatonin in subjects with OSA
are lower than normal and supplementation with melatonin
has been associatedwith an improvement in insulin resistance,
inflammation, and oxidative stress in an animal model [92,
93], on the other hand, it has been shown that melatonin can
worsen insulin secretion [94•]. Therefore, the use of this hor-
mone in diabetic patients certainly needs further investigation.
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Conclusions

In light of these evidences, we could conclude that OSA,
obesity, and disturbed glucose homeostasis are connected with
each other. OSA causes episodes of IH that can lead to an
increase in insulin resistance, sympathetic tone, and systemic
inflammation, all of which underlie the development and
maintenance of diabetes. At the same time, both hyperglyce-
mia and diabetic neuropathy can make the carotid body less
sensitive to hypoxic stimulation, promoting OSA. Although
there is still no sufficient evidence to recommend the use of
anti-obesity or antidiabetic drugs as a first-line treatment for
OSA, an adequate control of body weight, healthy eating
habits, and regular physical activity are recommended along
with standard treatment of OSA, as well as the treatment of
OSA is suggested in subjects with obesity, mostly in diabetic
ones, in order to improve glucose metabolism.
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