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A network model of Italy shows that intermittent
regional strategies can alleviate the COVID-19
epidemic
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Marco Coraggio 2, Carmela Calabrese 2, Agostino Guarino 2, Ricardo Cardona-Rivera 2,

Pietro De Lellis 2, Davide Liuzza 3, Francesco Lo Iudice 2, Giovanni Russo 4 & Mario di Bernardo 2✉

The COVID-19 epidemic hit Italy particularly hard, yielding the implementation of strict

national lockdown rules. Previous modelling studies at the national level overlooked the fact

that Italy is divided into administrative regions which can independently oversee their own

share of the Italian National Health Service. Here, we show that heterogeneity between

regions is essential to understand the spread of the epidemic and to design effective stra-

tegies to control the disease. We model Italy as a network of regions and parameterize the

model of each region on real data spanning over two months from the initial outbreak. We

confirm the effectiveness at the regional level of the national lockdown strategy and propose

coordinated regional interventions to prevent future national lockdowns, while avoiding

saturation of the regional health systems and mitigating impact on costs. Our study and

methodology can be easily extended to other levels of granularity to support policy- and

decision-makers.
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Regionalism is an integral part of the Italian constitution.
Each of Italy’s twenty administrative regions is independent
on Health and oversees its own share of the Italian National

Health service. The regional presidents and their councils can
independently take their own actions, strengthening or, at times,
weakening national containment rules. Previous studies have
modelled the spread of the epidemics and its evolution in the
country at the national level1–5, and some have looked at the
effects of different types of containment and mitigation strate-
gies6–11. Limited work12–21 has taken into account the spatial
dynamics of the epidemic but, to the best of our knowledge, no
previous paper in the literature has explicitly taken into con-
sideration the pseudo-federalist nature of the Italian Republic and
its strong regional heterogeneity when it comes to health matters,
hospital capacity, economic costs of a lockdown and the presence
of inter-regional people’s flows.

In this study, we investigate the whole of the country as a
network of regions, each modelled with different parameters. The
goal is to identify if and when measures taken by the Italian
government had an effect at both the national, but most impor-
tantly, at the regional level. Also, we want to uncover the effects
on the epidemic spread of regional heterogeneity and inter-
regional flows of people and use control theoretic tools to propose
and assess differentiated interventions at the regional level to
reopen the country and avoid future recurrent epidemic
outbreaks.

As aggregate models of the COVID-19 epidemic cannot cap-
ture these effects, to carry out our study we derived and para-
meterized from real data a network model of the epidemic in the
country (see Fig. 1a), where each of the 20 regions is a node and
the links model both proximity flows and long-distance trans-
portation routes (ferries, trains and planes). The model is first
shown to possess the right level of granularity and complexity to
capture the crucial elements needed to correctly predict and
reproduce the available data. Then, it is used to design and test
differentiated feedback interventions at the regional level to
alleviate the epidemic impact.

Using the model and an ad hoc algorithm to parameterize it
from real data, we evaluate the effectiveness of the national
lockdown strategy implemented by the Italian government pro-
viding evidence of its efficacy across regions. Also, we show that
inter-regional fluxes must be carefully controlled as they can have
dramatic effects on recurrent epidemic waves. Finally, we con-
vincingly show that regional feedback interventions, where each
of the twenty regions strengthens or weakens local mitigating
actions (social distancing, inflow/outflow control) as a function of
the saturation of their hospital capacity, can be beneficial in
mitigating possible outbreaks and in avoiding recurrent epidemic
waves while reducing the costs of a nationwide lockdown.

Results
Model formulation and fitting procedure. To capture the
regional diversity of the response to the epidemic in Italy, we
derive a network model where each node represents a different
region and links capture fluxes of people traveling among the
regions (see Fig. 1a). Using a data-driven compartmental mod-
elling approach, a set of ODEs is obtained describing the
dynamics of six different compartments in each region (Suscep-
tibles, Infected, Hospitalized, Quarantined, Deceased and
Recovered); data analysis being used (see Methods) to define
flows among compartments. The resulting model is then para-
meterized using a predictor-corrector algorithm applied to both a
national aggregate model and to each of the twenty regional
models, identifying the time points at which parameter values
present significant changes. Soft constraints are used to enforce

continuity of the trajectory between different time windows and
avoid parameters changing too abruptly (see Methods and Sup-
plementary Notes for further details). Estimating all the para-
meters in each region allows us to fit the available data and to
describe the different regional situations and the diverse impact
that regional policies had on the epidemic spread in each of the
Italian regions.

As further explained in the Methods and Supplementary
Information, we fit the model parameters to the official data for
the COVID-19 epidemic22, as collected by the Dipartimento della
Protezione Civile—Presidenza del Consiglio dei Ministri (the
Italian Civil Protection Agency). Also, publicly available mobility
data is used to estimate inter-regional fluxes and data on the
number of ICU beds8,9 to evaluate the capacities of regional
health services. To assess the economic costs of national and
regional lockdowns we use official data and estimates from Italian
governmental agencies23–26. Further details on the input data and
the official repositories they were obtained from can be found at
https://github.com/diBernardoGroup/Network-model-of-the-
COVID-19.

Regional effects of the national lockdown. Our approach suc-
cessfully uncovers the regional effects of the national lockdown
measures set in place by the Italian government initially in two
northern regions (Lombardy and Veneto from the February 27,
2020), and then nationally from March 8, 2020 till May 4, 2020.
We observe that notable parameter changes, detected auto-
matically by our parameterization procedure (see Methods),
occur as an effect of such measures with a certain degree of
homogeneity across all regions (see Supplementary Fig. 13 and
Supplementary Table 4 showing the changes in the social dis-
tancing parameter ρi over the period of interest). This confirms
the effectiveness across the country of the strict social distancing
rules implemented at the national level as also noted in previous
work1,2,14 modelling the country as a whole.

The representative examples of two regions, Lombardy in the
North and Campania in the South, highlighted in Fig. 1, show
that the model correctly captures the effect of such measures in
both the regions, see Table 1. The model also captures the effect
of the flow of people that travelled from North to South when the
national lockdown measures were first announced on March 8,
2020. As shown in Table 1, the estimated number of infected
predicted by the model for the Campania region in the time
window March 19–March 30, 2020 is detected to suddenly
increase at the beginning of the next time window. This can be
explained as a possible effect of the movement of people from
North to South that occurred around 15 days before. Also, data
analysis shows that the mortality rate varies as a function of the
level of occupancy of the hospital beds in each region (see
Supplementary Fig. 14 and Supplementary Notes for further
details).

Regional heterogeneity counts. After confirming the predictive
and descriptive ability of the proposed model, we investigated the
influence of the regional heterogeneity on the onset of an epi-
demic outbreak and the occurrence of possible recurrent epi-
demic waves. To this aim we set the model with parameters
capturing the situation in each region on May 3, 2020, when the
effects of the national lockdown were fully in place, and simulated
the scenario where just one of the twenty regions (e.g., Lombardy
in the North of Italy) fully relaxes its lockdown. As reported in
Fig. 2, we found that a primary outbreak in that region would
quickly propagate causing secondary recurrent outbreaks in other
regions including Emilia-Romagna and Piedmont. At the national
level this would cause the onset of a second epidemic wave that, if
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not contained, would end up afflicting more than 25% of the
entire population. An even more dramatic scenario would emerge
if inter-regional flows were concurrently restored to their pre-
lockdown levels (see Supplementary Fig. 1) or all regions were to
relax their current restrictions concurrently (see Supplementary
Fig. 2).

Feedback regional interventions can be beneficial. A crucial
open problem is to support decision-makers in determining what
form of interventions might be beneficial to avoid the onset of
future outbreaks while mitigating the cost of Draconian inter-
ventions at the national level. To this aim we compared the effects
of national measures (e.g., general lockdown) against those of a
regional feedback strategy, where social distancing measures are
put in place or relaxed independently by each region according to
the ratio between hospitalized individuals and the total capacity
of the health system in that region. In particular, we assume that
each region implements a stricter lockdown when such a ratio
becomes greater than or equal to 20% and relaxes the social
distancing rules when it is below 10% (see Methods for further
details). Figure 3 confirms that a differentiated strategy among
the regions (Fig. 3b) is as effective as a national lockdown in
avoiding future waves of the epidemic (Fig. 3c and Supplementary
Fig. 4). At the same time, an intermittent regional strategy
guarantees that no region exceeds its own hospitals’ capacity and
yields a lower economic cost for the country (Table 2 and Sup-
plementary Table 1), since regional economies can be restarted
and remain open for a much longer time. This advantage
becomes even more apparent when regions concurrently increase
their testing capacity as shown in Fig. 4 and reported in Table 2.

Discussion
Following the initial COVID-19 outbreak in Northern Italy, the
Italian government, as many other governments around the
world, adopted increasingly stricter lockdown measures at the
national level to mitigate the epidemic. Despite their success, their
high economic costs have stirred a hot national debate on whe-
ther such measures were necessary in the first place and on how
to relax them while avoiding future epidemic waves. Several
attempts have been made in the literature at addressing these
pressing open issues by means of aggregate models (originated
from the classical SIR model) to describe the effects of different
intervention strategies at the national level6,7. A network model
has also been recently proposed to describe the spatial dynamics
of the spread of the COVID-19 epidemic among the 107 Italian
provinces14. Other works in the literature have explored the
effects of intermittent measures, either periodic or as a function of
some observable quantities, as a viable alternative to long, con-
tinuous periods of national lockdown. However, the effects of
these strategies have only been investigated on theoretical
aggregate models at the national level7,27.

An important missing aspect that we considered in our study is
the effect of regional heterogeneity on the efficacy of the measures
taken so far and the possibility of adopting differentiated and
localized intervention strategies thanks to the pseudo-federalist
administrative structure of the Italian Republic. Our results
confirm the effectiveness at the regional level of the national
lockdown measures taken so far. They also convincingly reveal
the presence of important regional effects due, for example, to the
saturation of regional healthcare systems or to the presence of
notable North–South flows in the country that followed the

Table 1 Estimated parameter values for Campania in the South (region no. 6) and Lombardy in the North (region no. 11), where
the initial outbreak occurred.

Region Breakpoint ρi αi ψi κi H κi Q ηi Q ηi H ζi I0 If R0,i
Campania 19/3/20 0.467 0.014 0.064 0.000 0.100 0.018 0.000 0.022 1231 1816 1.26

30/3/20 0.221 0.067 0.019 0.006 0.040 0.018 0.000 0.011 2231 234 0.57
Lombardy 27/2/20 0.727 0.009 0.092 0.000 0.040 0.010 0.053 0.033 1799 28900 1.69

19/3/20 0.303 0.018 0.056 0.000 0.027 0.010 0.029 0.024 28900 6731 0.84

These regions are highlighted in a darker colour in Fig. 1. Here, I0 is the number of infected estimated in the region at the beginning of each time window, while If is the number of infected at the end of
each time window estimated by running the model (14)–(16), given the set of identified parameters and the initial condition on the infected I0. The first breakpoint is the date when 10 deaths and 10
recovered were first reported in the region and the analysis started. The second breakpoint is the end of the first window and the start of the second window (ending on May 3, 2020).

a b

Index Region Index Region
1 Abruzzo 11 Lombardy

2 Aosta Valley 12 Marche

3 Apulia 13 Molise

4 Basilicata 14 Piedmont

5 Calabria 15 Sardinia

6 Campania 16 Sicily

7 Emilia-Romagna 17 Tuscany

8 Friuli-Venezia Giulia 18 Trentino-Alto Adige

9 Lazio 19 Umbria

10 Liguria 20 Veneto
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Fig. 1 Schematic diagram of the network-model structure and representative regional parameters. a Representative graph of the network-model
structure used in the paper. Only a subset of all links is shown for the sake of clarity (the complete graphs are depicted in Supplementary Fig. 8). Solid lines
represent proximity links, dashed lines long-distance transportation routes (planes and trains), dotted lines show major ferry routes between insular
regions and the Italian mainland. b Table of the Italian region names and their labels in the graph.
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announcement of national measures. Also, contrary to previous
work, we explicitly accounted for the strongly nonlinear nature of
the model and the uncertainty present in the data by performing
a sensitivity analysis on the estimated parameters that further
confirmed the robustness of the proposed strategies for a wide
range of parameter changes.

Our study strongly suggests for policy and decision-makers the
potential benefits of differentiated (but coordinated) feedback
regional interventions, which can be used independently or in
combination with other measures, in order to avoid future epi-
demic waves or even to contain the outbreak of potential future
epidemics. Despite having been focused on Italy, our methodology

0 100 200 300
0

1

× 10–4 × 10–3 × 10–3× 10–4 × 10–4 × 10–3 × 10–4 × 10–4

× 10–4 × 10–4 × 10–4× 10–4 × 10–4 × 10–3 × 10–4 × 10–4

× 10–4 × 10–3 × 10–3× 10–4 × 10–4 × 10–3

× 10–4 × 10–4 × 10–4 × 10–4 × 10–3 × 10–4 × 10–4

× 10–4 × 10–3

× 10–3

× 10–3× 10–4 × 10–4 × 10–4 × 10–4 × 10–3

0

0.5

1

Abruzzo

0 100 200 300
0

1

0

0.5

1

Aosta

0 100 200 300
0

1

0

0.5

1

Apulia

0 100 200 300
0

1

0

1

2

Basilicata

0 100 200 300
0

1

0

5

Calabria

0 100 200 300
0

1

0

5

Campania

0 100 200 300
0

1

2

0

5

Emilia

0 100 200 300
0

1

0

5

Friuli

0 100 200 300
0

1

0

1

Lazio

0 100 200 300
0

1

0

2

4

Liguria

0 100 200 300
0

0.005

0.01

0

0.1

0.2

Lombardy

0 100 200 300
0

1

0

1

Marche

0 100 200 300
0

1

0

5

Molise

0 100 200 300
0

2

0

0.01

Piedmont

0 100 200 300
0

1

0

0.5

1
Sardinia

0 100 200 300
0

1

0

5

Sicily

0 100 200 300
0

1

0

0.5

1

Tuscany

0 100 200 300
0

1

0

1

Trentino

0 100 200 300
0

1

0

1

Umbria

0 100 200 300
0

1

0

2

Veneto

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

0

0.05

0.1

0.15

Italy

a

b

Fig. 2 Only one region relaxes its lockdown. Double scale plots of the a regional and b national dynamics in the case where only one region (Lombardy in
Northern Italy) relaxes its containment measures at time 0, while inter-regional fluxes are set to the level they reached during the lockdown. (Regional
dynamics when the fluxes between regions are set to their prelockdown level are shown in Supplementary Fig. 1 showing even more dramatic scenarios.)
The scale on the left vertical axis (in red) applies to the fraction of hospitalized requiring ICU (red solid line) and the ICU beds capacity threshold (TH

i =Ni,
dashed red line). The scale on the right vertical axis (in black) applies to the infected (blue), quarantined (magenta), recovered (green) and deceased
(black). The time scale, on the horizontal axis, is given in days. Panels of regions adopting a lockdown are shaded in red while those of regions relaxing
social containment measures are shaded in green. Results are averaged over 10,000 simulations with parameters sampled using a Latin Hypercube
technique (see Methods) around their nominal values set as those estimated in the last time window for each region as reported in Supplementary Table 4.
Shaded bands correspond to twice the standard deviation. The regions identified with a red label are those where the total hospital capacity is saturated.
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and modelling approach can be easily extended to other levels of
granularity, e.g., countries in a continent or counties in a state, and
adapted to any other nation where regional heterogeneity is
important and cannot be neglected; notable examples are coun-
tries with a federal state organization such as Germany or the
United States of America.

Future work needs to address further aspects as, for example,
exploring how the structural properties of the inter-regional
network can influence the dynamics of the epidemic or adopting
more sophisticated cost functions to design more effective region-

specific mitigation strategies in other contexts or for other
purposes.

Methods
Regional and national model. As a regional model of the COVID-19 epidemic
spread, we use the compartmental model shown in Fig. 5, which we found from
data analysis and identification trials to be the simplest model structure able to
capture the real data. Specifically, we constructed the model by testing how dif-
ferent configurations of the links among its compartments affected the model
ability to capture the available data.
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Fig. 3 Intermittent regional measures. a Each of the 20 panels shows the evolution in a different region of the fraction in the population of infected (blue),
quarantined (magenta) and hospitalized requiring ICUs (red) averaged over 10,000 simulations with parameters sampled using a Latin Hypercube
technique (see Methods) around their nominal values set as those estimated in the last time window for each region as reported in Supplementary Table 4.
Shaded bands correspond to twice the standard deviation. Dashed red lines represent the fraction of the population that can be treated in ICU (TH

i =Ni).
Regions adopt lockdown measures in the time windows shaded in red while relax them in those shaded in green. During a regional lockdown, fluxes in/out
of the region are set to their minimum level. b National evolution of the fraction in the population of infected (blue), quarantined (magenta) and
hospitalized requiring ICUs (red) obtained by summing those in each of the 20 regions adopting intermittent regional measures. c National evolution of the
fraction in the population of infected (blue), quarantined (magenta) and hospitalized requiring ICUs (red) when an intermittent national lockdown is
enforced with all regions shutting down when the total number of occupied ICU beds at the national level exceed 20%, reopening when it goes back below
10%. Regional dynamics corresponding to this scenario are shown in Supplementary Fig. 4. All plots are shown with a double scale. The scale on the left
vertical axis (in red) applies to the hospitalized requiring ICU and the ICU beds capacity threshold, while the right vertical axis (in black) applies to the
infected and quarantined. The time scale, on the horizontal axis, is given in days.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18827-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5106 | https://doi.org/10.1038/s41467-020-18827-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


The full model equations describing the dynamics of susceptible (Si), infected
(Ii), quarantined (Qi), hospitalized (Hi), recovered (Ri) and deceased (Di) are

_Si ¼ �ρiβ
SiIi
Ni

; ð1Þ

_Ii ¼ ρiβ
SiIi
Ni

� αiIi � ψiIi � γIi; ð2Þ

_Qi ¼ αiIi � κHi Qi � ηQi Qi þ κQi Hi ð3Þ

_Hi ¼ κHi Qi þ ψiIi � ηHi Hi � ζ i Hi � κQi Hi ð4Þ

_Di ¼ ζ i Hi; ð5Þ

_Ri ¼ γIi þ ηQi Qi þ ηHi Hi ð6Þ
where β and γ are the infection and recovery rate, respectively, which are assumed
to be the same for all regions as COVID-19 is transmitted from person to person
and there is no parasite vector or evidence of environmental parameters
significantly altering its infection rate, ρi ∈[0, 1] is a parameter modelling the
effects of social distancing measures in the i-th region, αi is the rate of infected that
are detected and quarantined, ψi is the rate of infected that needs to be hospitalized,
ηQi is the rate of quarantined who recover, ηHi is the fraction of hospitalized who
recover, κQi is the rate of hospitalized that is transferred to home isolation, κHi is the
rate of quarantined who need to be hospitalized, and ζi is the mortality rate that
was shown from data analysis (see Supplementary Notes) to be a function of the
ratio between Hi and the maximum number, say TH

i , of patients that can be treated
in ICU at the hospitals in i-th region. Ni is the actual population in region i, i.e., the
resident population without those removed because they had been quarantined,
hospitalized, deceased or had recovered.

Extending previous approaches for modelling Dengue fever in Brazil28, we
obtain the national network model of the COVID-19 epidemic in Italy as a network
of twenty regions (see Fig. 1a) interconnected by links modelling commuter flows
and major transportation routes among them.

The network model of Italy we adopt in this study is, for i= 1, …, 20,

_Si ¼ �
XM

j¼1

XM

k¼1

ρjβϕij tð ÞSi
ϕkj tð ÞIk
Np
j

; ð7Þ

_Ii ¼
XM

j¼1

XM

k¼1

ρjβϕij tð ÞSi
ϕkj tð ÞIk
Np
j

� αiIi � ψiIi � γIi; ð8Þ

_Qi ¼ αiIi � κHi Qi � ηQi Qi þ κQi Hi; ð9Þ

_Hi ¼ κHi Qi þ ψiIi � ηHi Hi � κQi Hi � ζ Hi=T
H
i

� �
Hi; ð10Þ

_Di ¼ ζ Hi=T
H
i

� �
Hi; ð11Þ

_Ri ¼ γIi þ ηQi Qi þ ηHi Hi ð12Þ

Np
i ¼

XM

k¼1

ϕki tð Þ Sk þ Ik þ Rkð Þ ð13Þ

where in addition to the parameters and states described above, we included the
fluxes ϕij(t) between regions; ϕij tð Þ : R ! 0; 1½ � denoting the ratio of people from

region i interacting with those in region j at time t, such that
P

j ϕij tð Þ ¼ 1: Note
that, as a result of the identification procedure illustrated in Supplementary Notes,
in Eqs. (10) and (11) the mortality rate ζ is expressed as a function of the saturation
of the regional health systems whose expression is given in Supplementary Notes.

Model parameterization from real data and model validation. We divide the
model parameterization into two stages. Firstly, we estimate from the available data
the parameters of each of the twenty regional models; then, we use publicly
available mobility data in Italy to estimate the fluxes among the regions.

As a compromise between the estimates reported in the literature on COVID-
192,14 in Italy (see Supplementary Table 5), we set β= 0.4 and γ= 1/14 [days−1]
for all regions. We make the ansatz that parameters remain constant over time
intervals Tk but do not assume the number or duration of such intervals known a
priori. Therefore, we set the problem of estimating the parameters values and when
they change in each region (as a likely result of national containment measures).
We start estimating the parameters in each region from the first date when the
number of deceased and the number of recovered is greater than or equal to 10.

Note that the official data for the COVID-19 epidemic22, as collected by the
Dipartimento della Protezione Civile—Presidenza del Consiglio dei Ministri (the
Italian Civil Protection Agency), includes for each region the daily numbers of
quarantined (~Qi), hospitalized ( ~Hi), deceased (~Di) and the daily number of
individuals that recovered from those who were previously hospitalized or
quarantined, say ~RO

i . To fit the model to these data, we discretize and rewrite Eqs.
(1)–(6) for each region (i= 1, …, 20) as (dropping the subscripts to the parameters
for notational convenience)

Ŝi t þ 1ð Þ ¼ Ŝi tð Þ � ρβ
Ŝi tð Þ̂Ii tð Þ

Ni 0ð Þ � ~Qi tð Þ � ~Hi tð Þ � ~Di tð Þ
ð14Þ

Îi t þ 1ð Þ ¼ Îi tð Þ þ ρβ
Ŝi tð Þ̂Ii tð Þ

Ni 0ð Þ � ~Qi tð Þ � ~Hi tð Þ � ~Di tð Þ
� γÎiðtÞ � τ ÎiðtÞ ð15Þ

Ĉi t þ 1ð Þ ¼ ~Ci tð Þ þ τ Îi tð Þ ð16Þ

Q̂i t þ 1ð Þ ¼ ~Qi tð Þ þ αÎi tð Þ � ηQ ~Qi tð Þ � κH ~Qi tð Þ þ κQ ~Hi tð Þ ð17Þ

Ĥi t þ 1ð Þ ¼ ~Hi tð Þ þ ψÎi tð Þ � ηH ~Hi tð Þ þ κH ~Qi tð Þ � κQ ~Hi tð Þ � ζ ~Hi tð Þ ð18Þ

R̂O
i t þ 1ð Þ ¼ ~RO

i tð Þ þ ηQ ~Qi tð Þ þ ηH ~Hi tð Þ ð19Þ

D̂i t þ 1ð Þ ¼ ~Di tð Þ þ ζ ~Hi tð Þ ð20Þ
where measured quantities are denoted by a tilde and estimated state variables by a
hat and τ:= α+ ψ. Here, Ci ¼ Qi þ Hi þ Di þ RO

i represents the total number of
cases detected in region i as daily announced by the Protezione Civile.

We notice that, exploiting the available data, the predictor can be split into two
parts so that two different algorithms can then be used to estimate the parameters
of each part. An ad hoc identification algorithm estimates the parameters of Eqs.
(14)–(16) and automatically detects the breakpoints where notable parameter
changes occur, while an ordinary least squares method is then used to identify the
parameters of Eqs. (17)–(20), as described in detail in Supplementary Notes. Note
that, as the actual number of infected is not known9,29, we include the number of
infected at the beginning of each time window as a parameter to be estimated by
the algorithm used for the nonlinear part.

The results of the identification process also show the presence of a statistically
significant correlation (p-value equal to 0.071) between the value of the mortality
rate, parameter ζi in model (1)–(6), and the saturation of the regional health system

Table 2 Comparison of each of the simulated scenarios.

Simulation Total cases Total deaths Maximum
hospitalized

Days over
hospital’s
capacity (nation)

Regions over
hospital’s
capacity

Economic cost
[M€]

All regions but Lombardy
are locked down (Fig. 2)

10,550,000 ± 146,084 1,196,063 ± 97,122 137,640 ± 10,249 75.8 ± 2.7 3 503,355 ± 0

Intermittent regional
measures (Fig. 3a, b)

1,986,601 ± 76,184 173,637 ± 3911 2801 ± 170 0 ± 0 0 509,142 ± 6606

Intermittent national
measure (Fig. 3c, S4)

2,162,539 ± 194,929 205,261 ± 10,854 4481 ± 277 0 ± 0 3 562,373 ± 12,809

Intermittent regional
measures with increased
testing (Fig. 4)

1,590,459 ± 69,118 128,644 ± 2690 2057 ± 102 0 ± 0 0 366,514 ± 12,258

Metrics to evaluate the impact over 1 year of each of the simulated scenarios are reported showing the effectiveness of the intermittent regional measures shown in Figs. 3 and 4 in avoiding any
saturation of the regional health systems while mitigating the impact of the epidemic. We report the average values ±1 standard deviation calculated over 10,000 repetitions of each simulation, where the
parameter values are sampled using a Latin Hypercube technique centred at the nominal parameter values reported in Supplementary Table 4.
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represented by the ratio between the number of hospitalized in that region (Hi) and
the total number of available hospital beds in intensive care (TH

i )
(See Supplementary Notes and Supplementary Fig. 14 for further details and
function estimation).

Validation is carried out by using the parameterized model to capture the
available data for each window showing a mean squared error less than 10% over
the entire dataset. The parameters identified in each window can also be used to

provide model predictions of future trends of the epidemic disease as discussed
in Supplementary Notes.

Cost estimation. We estimate the cost of each regional lockdown as the sum of the
costs for social care and the loss of added value. The costs for social care in each
region were computed as the costs for layoff support (“cassa integrazione in
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Fig. 4 Intermittent regional measures with increased COVID-19 testing capacity. a Each of the 20 panels shows in a double scale plot the evolution in
the region named above the panel of the fraction in the population of infected (blue), quarantined (magenta) and hospitalized requiring ICUs (red)
averaged over 10,000 simulations with parameters sampled using a Latin Hypercube technique (see Methods) around their nominal values set as those
estimated in the last time window for each region as reported in Supplementary Table 4. Shaded bands correspond to twice the standard deviation. Dashed
red lines represent the fraction of the population that can be treated in ICU (TH

i =Ni). Regions adopt lockdown measures in the time windows shaded in red
while relax them in those shaded in green. During a regional lockdown, fluxes in/out of the region are set to their minimum level. Regional COVID-19
testing capacities are assumed to be increased by a factor 2.5 (see Methods) with respect to their current values. b National evolution of the fraction of
infected (blue), quarantined (magenta) and hospitalized requiring ICUs (red) obtained by summing those in each of the 20 regions adopting intermittent
regional measures. All plots are shown with a double scale. The scale on the left vertical axis (in red) applies to the hospitalized requiring ICU and the ICU
beds capacity threshold, while the right vertical axis (in black) applies to the infected and quarantined subjects.
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deroga”), estimated by multiplying the number of requests23 by 65% of the average
regional monthly income24, together with the non-repayable-loan of 600 € given to
self-employed workers by the Italian Government during the national lockdown25.
The loss of added value per day was taken from the values estimated by SVIMEZ
(the Italian Association for the development of Industry in the South) in Table 3 of
their online report26. We then compute the daily costs of the lockdown and use it
to estimate the total costs of each of the simulated scenarios.

Data fitting and sensitivity analysis. All computational analyses and the fitting of
data were performed using MATLAB and its optimization toolbox. To account for
the inherent uncertainty associated to the COVID-19 epidemic, and hence to
provide a better validation of the proposed intermittent strategies, each result
reported in the manuscript is the output of 10,000 numerical simulations, where we
varied the values of the model parameters using the Latin Hypercube sampling
method30. Specifically, the regional parameters αi;ψi; κ

Q
i ; κ

H
i ; η

Q
i ; η

H
i together with

the estimated initial conditions at May 3, 2020 If ;i were varied considering a
maximum variation of ±20% from their nominal values (indicated in Supple-
mentary Table 4). Our results show that the strategies we propose are robust to
large parameter variations confirming, as is typical in control theory, their viability
to control and mitigate the disease. Note that the model describing the epidemic
spread is highly nonlinear and therefore potentially sensitive to parameter per-
turbations. In particular for some regions the nominal value of the basic repro-
duction number R0 is such that a parametric variation of 20% explores parameter
sets where it becomes greater than 1, leading to dynamics that changes significantly
across different simulations.

Implementation and design of national and regional feedback intervention
strategies. We model the implementation of regional social distancing strategies
by capturing their effects as a variation of the social distancing parameters, ρi in
(7)–(8), in each region. Specifically, we assume each region adopts the following
feedback control rule with hysteresis:

● ρi is set and kept equal to ρ
i
as long as the saturation of the regional health

system, computed as the ratio between the number of the hospitalized
requiring care in ICU (estimated as 0.1Hi) over the number of available ICU
beds in the region, is above 20%, i.e., ρi ¼ ρ

i
; if 0:1Hi

TH
i

≥ 0:20
● ρi is set and kept equal to �ρi as long as the saturation of the regional health

system is below 10%, i.e., ρi ¼ �ρi; if
0:1Hi

TH
i

≤ 0:10

In our simulations, ρ
i
is set equal to the minimum estimated value in that region

during the national lockdown (see Supplementary Table 4) and �ρi increased as a
worst case to minð1; 3ρ

i
Þ so as to simulate the effect of relaxing the lockdown

measures in each region. (The case where �ρi is set to a lower value equal to 1.5ρ
i
is

shown for the sake of comparison in Supplementary Figs. 5 and 6.)
Also, when a region is in lockdown, we assume all fluxes in and out of that

region are reduced by 70% of their original values to better simulate the actual
reduction in people’s movement observed during the lockdown in Italy (for further
details see Supplementary Information). Such a reduction level was estimated
qualitatively by considering the publicly available mobility data from Google
(Google mobility data (https://www.google.com/covid19/mobility/)).

National lockdown measures are modelled by setting all ρi simultaneously to ρ
i

in all regions and reducing all fluxes by 70% while national reopening of all regions
by setting all ρi simultaneously to �ρi and restoring inter-regional flows to their
prelockdown level.

To model the increase in the COVID-19 testing capacity of each region the
parameter αi in region i is multiplied by a factor 2.5, which corresponds to the
average increase in the number of tests carried out nationally since the COVID-19
outbreak first started.

Numerical simulations. All simulations were carried out in MATLAB with a
discretization step of 1 day to match the available data sampling interval. Initial
conditions for regional compartments were set as follows. Quarantined, Hospita-
lized, Deceased and Recovered are initially set to the datapoints available for May 3,
2020. The number of infected is set to the value If estimated by our procedure for
that date; Susceptibles are initialized to the resident population from which the
other compartments are removed.

Further details are given in Supplementary Notes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information files or from the corresponding
author on reasonable request. The source data for all figures in the main text and
Supplementary Information are provided as a Source Data file at https://github.com/
diBernardoGroup/Network-model-of-the-COVID-19.

Code availability
The code to run all simulations and the model is available at https://github.com/
diBernardoGroup/Network-model-of-the-COVID-19.
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