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Abstract— In this letter, we study the problem of control-
ling via pinning the motion of nonlinear network systems
of any order whose dynamics are in controllable canonical
form. Different from existing works that either focus on
spontaneous synchronization, assume linear dynamics or
rely on dynamics cancellation, here we provide a construc-
tive method to prove pinning controllability towards the
desired trajectory selected by the pinner. We introduce an
algorithmic procedure that associates to any connected
topology a suitable Lyapunov function for the network
system. The approach is demonstrated on an illustrative
example.

Index Terms— Complex networks, companion form,
higher-order systems, nonlinear network systems, pinning
control.

I. INTRODUCTION

COORDINATING the behavior of coupled dynamical
systems attracted an intense research effort in the last

decades due to the wide range of applications [1], including
truck platooning [2], formation control [3], [4], and swarm
robotics [5]. Among the distributed approaches to the control
of network systems, pinning control emerged as a viable
strategy when only a handful of nodes can directly receive
the control input. The strategy prescribes that an additional
node (virtual or physical) sharing the same nodes’ dynamics,
which is called pinner or leader, injects a control signal only
to a subset of so-called pinned nodes. First introduced in the
field of partial differential equations [6], the approach was later
extended to control network of systems described by ordinary
differential equations, see e.g. [7]–[10].

In this paper, we use pinning control to steer a network
of nonlinear systems in companion form towards a desired
solution described by the pinner. Due to the relevance for
applications, the problem of controlling networks of systems
in companion form has been the focus of extensive literature,
which nevertheless mainly dealt with linear dynamics. The
research community first offered solutions to the linear second-
order consensus problem [11]–[14], to then extend the analysis
to specific classes of nonlinear systems, see e.g. [15]–[17].
More recently, the focus shifted towards higher-order systems
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[18]–[20] but, to the best of our knowledge, no paper has
dealt with the pinning control problem of nonlinear network
systems in companion form, and the only result for this kind
of networks is on spontaneous (uncontrolled) synchronization
[21]. An alternative control approach has been explored in
[22], where a neural-network based adaptive control algorithm
estimates and cancels out the individual dynamics, thus guar-
anteeing a bounded tracking error given that the vector field
describing the individual is nought at the origin.

Different from the existing literature, here we do not cancel
the individual dynamics of the nodes and employ proportional-
derivative (PD) distrubuted coupling layers to drive the higher
order nodes of the controlled network towards the pinner’s
trajectory. PI and PID coupling protocols have been employed
for spontaneous synchronization of both linear and nonlinear
network systems, see e.g. [21], [23], [24]. Here, we broaden
the approach proposed in [21] to deal with the presence of
the pinner, which is essential to achieve the control goal.
Specifically, we prove that a network system in companion
form of any order n can be pinning controlled by using a
PD controller where the derivative action is of order n − 1.
Interestingly, our method is constructive, in the sense that we
provide an algorithmic procedure that associates to each in-
dividual dynamics and network topology a suitable Lyapunov
function that proves the pinning controllability of the higher
order nonlinear network system and simultaneously provides
a set of suitable control gains. The viability of the proposed
approach is demonstrated on a testbed example.

II. MATHEMATICAL BACKGROUND

In this section, we report some fundamental properties of
graphs and matrices that will be exploited in derivation of the
paper’s results. For more details, we refer the reader to [25].

Matrix properties. Given a symmetric matrix Ξ ∈ Rρ×ρ, i.e.
Ξ = ΞT, the following result holds:

Lemma 1: [25, Theorem 4.2.2] Let Ξ ∈ Rρ×ρ be a
symmetric matrix. Then, for all y ∈ Rρ we have ξminyTy ≤
yTΞy ≤ ξmaxyTy, where ξmin and ξmax are the smallest and
largest eigenvalue of Ξ.

For any index h ∈ {1, . . . , ρ}, the h× h top left submatrix
obtained from Ξ is denoted as a leading principal submatrix
and its determinant is called a leading principal minor. Analo-
gously, the h×h bottom right submatrix is denoted as a trailing
principal submatrix and its determinant a trailing principal
minor. Here, we report the Sylvester’s criterion [25], which,
given a symmetric matrix, provides a necessary and sufficient



on its principal minors to assess positive definiteness of the
whole matrix.

Lemma 2: [25, Theorem 7.2.5] Let ξ ∈ Rρ×ρ be a
symmetric matrix. Then, Ξ is positively defined iff all its
leading (or, equivalently, trailing) principal minors, i.e., for
h = 1, . . . , ρ, are positive definite.

Graphs. A weighted graph of order N is a triple G =
(N , E ,A), where N = {1, 2, . . . , N} is the set of nodes,
E ⊆ N ×N is the set of edges, and the set A ⊂ R|E| of the
nonnegative weights associated to the edges. A graph G can
be represented by the adjacency matrix A = A(G) ∈ RN×N .
If (i, j) ∈ E , the ij-th element aij of A is equal to the
positive weight associated to (i, j), while it is zero otherwise.
For all i ∈ N , the set of out-neighbors of node i is Ni =
{j : (i, j) ∈ E}. The Laplacian matrix L = L(G) ∈ RN×N is
defined as L = ∆ − A, where ∆ = diag{κ1, . . . , κN}, with
κi =

∑N
j=1 aij being the weighted out-degree of node i. If the

graph is undirected, then L = LT, and its real eigenvalues can
be sorted in ascending order as 0 = λ(1) ≤ λ(2) ≤ · · · ≤ λ(N).
Additionally, if G is connected, λ(2) > 0. Denoting λmin(i, ε)
the smallest eigenvalue of the symmetric matrix L + εeie

T
i ,

with ei being the ith versor in RN , we can now report the
following useful lemma:

Lemma 3: [8, Equation (26)] Given a weighted undirected
connected graph G with associated Laplacian L, for any i =
1, . . . , N , ε > 0, we have

λmin(i, ε) ≥ ελ(2)/N(λ(2) + ε
)
> 0. (1)

Vector fields. Given two scalars n, d > 0, we consider a
vector field f(t, x) : R+

0 × Rρ → Rd, where t ∈ R+
0 and

x ∈ Rρ, with ρ = nd. The following definitions and lemma
hold:

Definition 1: The vector field f(t, x) is globally Lipschitz
with respect to x if, for all y, z ∈ Rρ, t ≥ 0, there exists a
constant w > 0 s.t. ‖f(t, y)−f(t, z)‖ ≤ w‖y−z‖. The scalar
w is the Lipschitz constant of f .

Definition 2: Consider that any vector v ∈ Rρ can be
written as the stack

[
vT

1 , . . . , v
T
n

]T
, with vi ∈ Rd. The vector

field f(t, x) is globally Γ weak-Lipschitz with respect to x if
there exists a positive definite symmetric matrix Γ ∈ Rd×d
and a positive scalar w s.t., for all x, y ∈ Rρ, t ≥ 0, and
i ∈ {1, . . . , n}, (xi − yi)TΓ[f(t, x) − f(t, y)] ≤ w‖x − y‖2.
The scalar w is the weak-Lipschitz constant of f .

Lemma 4: If the vector field f(t, x) is Lipschitz with con-
stant w′, then it is also weak-Lipschitz for any positive definite
matrix Γ ∈ Rd×d with weak-Lipschitz constant w = w′‖Γ‖n.

Proof: Let us consider the stack vector field Fi(t, x) ∈
Rnd defined as Fi(t, x) =

[
ϕT

1 , . . . , ϕ
T
n

]T
, where ϕj = 0d if

j 6= i and ϕi = f(t, x), with 0d ∈ Rd being a zero vector.
For all i ∈ {1, . . . , n}, noting that ‖Fi(t, x) − Fi(t, y)‖ =
‖f(t, x)− f(t, y)‖, we can write

(xi − yi)TΓ[f(t, x)− f(t, y)]

= (x− y)T(In ⊗ Γ)[Fi(t, x)− Fi(t, y)] ≤ w′‖Γ‖n‖x− y‖2.

III. PROBLEM FORMULATION

In this paper, we study the pinning synchronization problem
for a complex network of N higher-order systems in canonical
control form coupled through an undirected weighted graph
G = (N ,V,A). Specifically, each node i ∈ N corresponds to
a follower system, whose state x(i) ∈ Rnd is defined as x(i) =[
x

(i) T
1 , . . . , x

(i) T
n

]T
, where x

(i)
h =

[
x

(i),[1]
h , . . . , x

(i),[d]
h

]T
∈

Rd is the hth state component of node i. For all h = 1, . . . , n,
j = 1, . . . , d, the scalar component x(i),[j]

h ∈ R of x(i)
h ∈ Rd

represents the (h − 1)th order derivative of the component
x

(i),[j]
1 of x(i)

1 . The dynamics of the ith node can be written
in the following form:

ẋ
(i)
l = x

(i)
l+1, l = 1, . . . , n− 1,

ẋ(i)
n = f(t, x(i)) + u(i),

(2)

where u(i) =
[
u(i),[1], . . . , u(i),[d]

]T ∈ Rd is the distributed
control action at node i, and f ∈ R+

0 × Rnd → Rd.
Dynamical systems in form (2) are familiar to the control

community since they encompass the nonlinear systems that
can be written in the canonical control form and, furthermore,
arise when modeling mechanical systems in their generalized
Lagrangian coordinates.

As in traditional pinning control problems [8], the goal of
the distributed control input u(i) is to drive the trajectory of
the system towards the one described by an additional (virtual
or physical) node, the pinner, whose dynamics are the same
as those of the followers, that is,

ṗl = pl+1, l = 1, . . . , n− 1

ṗn = f(t, p),
(3)

with pl =
[
p

[1]
l , . . . , p

[d]
l

]T
∈ Rd and p =

[
pT

1 , . . . , p
T
n

]T
.

Pinning control assumes that the control input u(i) injected
at node i may only depend on the state of node i itself and
of the nodes in its neighborhood Ni. Only a (typically small)
subset P ⊂ N of the network nodes also receives information
on the state of the pinner. In a graph representation, this means
that the pinner is unidirectionally coupled to the so-called
pinned nodes in P .

Control Objective: Design an asymptotically vanishing dis-
tributed control input u(i) such that global pinning synchro-
nization of the higher order network system (2) is achieved
for all possible initial conditions. In formal terms, design u(i)

such that, for all xi(0) ∈ Rnd, i = 1, . . . , N , and p(0) ∈ Rnd,

lim
t→+∞

‖e(t)‖ = 0, (4a)

lim
t→+∞

‖u(i)(t)‖ = 0, ∀i = 1, . . . , N, (4b)

where e(t) = x(t)−p(t) is the overall network pinning error.
From the systems’ structure (2)-(3), a coupling is only

possible through the nth state component. In view of this,
to achieve our control objective we choose for each agent a
diffusive protocol where all the state derivatives are leveraged.
Denoting with lij the ijth element of the Laplacian matrix L



associated to G, the resulting protocol is

u(i) = −k̄
n∑
h=1

kh

N∑
j=1

[
lijΓx

(j)
h + gi(x

(i)
h − ph)

]
, i ∈ N , (5)

where the pinning gain gi is positive if i ∈ P , while it is
0 otherwise, k̄ is the overall coupling gain; and kh is the
control gain associated to the h-th state component. The d×d
inner linking matrix Γ = ΓT > 0, when different from the
identity, can be used to set different coupling intensities for
each scalar component [8]. For weak-Lipschitz systems, it is
chosen according to Definition 2, while for Lipschitz vector
fields it can be freely selected by the control designer as per
Lemma 4.

The rationale behind control protocol (5) is to couple
homologous state variables. For instance, when applied to
kinematic chains of several degrees of freedom described
in the position/velocity state-space, in Equation (5) we have
n = 2 (position and velocity), where x

(j)
1 represents the

position of all the joints in the mechanical system j and x(j)
2

the velocities of its joints.
Note that, when n = 1, protocol (5) reduces to the standard

diffusive pinning control protocol [7], [8]. Therefore, in this
paper we directly focus on the case n ≥ 2. The choice of the
diffusive protocol (5) implies that, when (4a) is attained, also
(4b) is achieved. Therefore, to prove global pinning controlla-
bility, it suffices to show that the error dynamics converge to
zero. Combining (2), (3) and (5), the error dynamics can be
written as

ėl = e
(i)
l+1, l = 1, . . . , n− 1,

ėn = F (t, x)− 1N ⊗ f(t, p)− k̄
N∑
h=1

kh(Ω⊗ Γ)eh,
(6)

where F (t, x) =
[
fT(t, x(1)), . . . fT(t, x(N))

]T
and Ω = L+

G, with G = diag{g1, . . . , gN} being the pinner matrix.

IV. HIGHER ORDER PINNING SYNCHRONIZATION

Here, we show that the distributed protocol (5) can be ef-
fectively used to control the network of systems in companion
form (2). Specifically, we illustrate an algorithmic procedure
that builds a quadratic Lyapunov function and identifies suit-
able values for the control gains kh, h = 1, . . . , n, to enforce
global pinning synchronization.

The Lyapunov function we consider is the following:

V (e) = eTPe/2, (7)

where P ∈ RndN×ndN is symmetric and positive definite.
Here, we provide an algorithmic procedure to select both
matrix P and a positive definite matrix Q ∈ RndN×ndN that
will be instrumental in bounding the time derivative of V .

Specifically, matrices P and Q will be obtained from a
backward recursion, which will ensure that, given a proper
selection of the control gains, all of its principal minors are
positive definite. This will in turn imply the positive definitess
of P and Q from the Sylvester’s criterion reported in Lemma
2. We start by defining

Ξ = Ω⊗ Γ, Ξ0 = 0dN ,Ξn+1 = IdN/2, Ξh = khΞ, h = 1, . . . , n,

with Ω = L + G defined as in (6). Next, we consider the
following backward recursions to define the size (q+ 1)dN ×
(q + 1)dN matrices Pn−q , Qn−q , q = n− 1, . . . , 0:

Pn−q =

[
Pϕ,n−q Pψ,n−q
PTψ,n−q Pn−q+1

]
, Qn−q =

[
Qϕ,n−q Qψ,n−q
QTψ,n−q Qn−q+1

]
,

Pn = Ξn, Qn = Ξ2
n − Ξn−1,

Pϕ,n−q = 2Ξn−qΞn−q+1, Pψ,n−q = 2Ξn−q [Ξn−q+2, . . . ,Ξn+1] ,

Qϕ,n−q = Ξ2
n−q − 2Ξn−q−1Ξn−q+1,

Qψ,n−q = −Ξn−q−1 [Ξn−q+2, . . . ,−Ξn+1] .
(8)

Given a scalar k̄ > 1, matrices P1, Q1, which are the last
step of recursion (8), can be written in block form as

P1 =

[
k̄Pϑ Pς
PT
ς Ξn

]
, Q1 =

[
k̄Qϑ Qς
QT
ς Ξ2

n − Ξn−1

]
, (9)

from which we define P and Q as

P =

[
Pϑ Pς
PT
ς Ξn

]
, Q =

[
Qϑ Qς
QT
ς Ξ2

n − Ξn−1

]
. (10)

Before showing how we can select k1, . . . , kn such that
P,Q > 0, we define a set of auxiliary matrices that are
instrumental for the proof.

Auxiliary matrices. Being Ω symmetric and positive definite,
it can be written as Ω = VΩ∆ΩV

T
Ω , where ΛQ is the diagonal

matrix of its positive eigenvalues, and VΩ is obtained by
juxtaposing column-wise its N orthonormal eigenvectors. A
similar decomposition (and notation) can be employed for
matrix Γ = ΓT > 0. From the properties of the Kronecker
product, we have that VΞ∆ΞV

T
Ξ , where VΞ = VΩ ⊗ VΓ and

∆Ξ = ∆Ω ⊗∆Γ. Denoting ξ(1), . . . , ξ(dN) the eigenvalues of
Ξ sorted in ascending order, and setting, for all i = 1, . . . , dN ,

ξ
(i)
h = khξ

(i), h = 1, . . . , n, ξ
(i)
n+1 = 1/2, ξ

(i)
0 = 0,

we recursively define matrices P (i)
n−q, Q

(i)
n−q ∈ R(q+1)×(q+1),

with q = n− 1, . . . , 0 as

P
(i)
n−q =

[
P

(i)
ϕ,n−q P

(i)
ψ,n−q

P (i)T
ψ,n−q P

(i)
n−q+1

]
, Q

(i)
n−q =

[
Q

(i)
ϕ,n−q Q

(i)
ψ,n−q

Q(i)T
ψ,n−q Q

(i)
n−q+1

]
,

P
(i)
n = ξ

(i)
n , Q

(i)
n = ξ

(i)2

n − ξ(i)n−1,

P
(i)
ϕ,n−q = 2ξ

(i)
n−qξ

(i)
n−q+1, P

(i)
ψ,n−q = 2ξ

(i)
n−q

[
ξ
(i)
n−q+2, . . . , ξ

(i)
n+1

]
,

Q
(i)
ϕ,n−q = ξ

(i)2

n−q − 2ξ
(i)
n−q−1, Q

(i)
ψ,n−q= −ξ(i)n−q−1

[
ξ
(i)
n−q+2, . . . , ξ

(i)
n+1

]
.

(11)
and the scalars

δ
(i)
n−q = δ

(i)
n−q+1 + 2ξ

(i)
n−q+2, q = 2, . . . , n− 1, δ

(i)
n−1 = 1.

Finally, by setting

A
(i)
n−1 =

[
2ξ

(i)
n−1ξ

(i)
n ξ

(i)
n−1

ξ
(i)
n−1 ξ

(i)
n

]
,
α
(i)
n−1 = min eig{A(i)

n−1},
β
(i)
n−1 = ξ

(i)2

n − ξ(i)n−1,

we can then iteratively define, for q = 2, . . . , n− 1,1 α(i)
n−q =

min eig{A(i)
n−q} and β(i)

n−q = min eig{B(i)
n−q}, with

A
(i)
n−q =

[
2ξ

(i)
n−qξ

(i)
n−q+1 δ

(i)
n−qξ

(i)
n−q

δ
(i)
n−qξ

(i)
n−q α

(i)
n−q+1

]
,

B
(i)
n−q =

[
ξ
(i)2

n−q+1 − 2ξ
(i)
n−qξ

(i)
n−q+2 − 1

2δ
(i)
n−q+1ξ

(i)
n−q

− 1
2δ

(i)
n−q+1ξ

(i)
n−q β

(i)
n−q+1

]
.



Algorithm 1 Gain K selection for P1, Q1 > 0

1: Set kn←1

2: Compute ξmin=min eig{Ξ}
3: Choose 0<kn−1<ξ

min

4: Set K={kn−1,kn}
5: Set Ξn−1←kn−1Ξ

6: for q=2,...,n−1 do
7: Compute eig{Ξn−q+1}
8: for i=1,...,dN do
9: Compute β(i)n−q+1, α(i)

n−q+1, and δ
(i)
n−q

10: Set s(i)n−q←min{r(i)n−q,1,r
(i)
n−q,2}, with

r
(i)
n−q,1=2ξ

(i)
n−q+1α

(i)
n−q+1/δ

(i)2

n−q , (12)

r
(i)
n−q,2=sup

r∈R

{
δ
(i)2

n−q+1r
2+8ξ

(i)
n−q+2β

(i)
n−q+1r−4ξ

(i)2

n−q+1β
(i)
n−q+1<0

}
.

(13)

11: Set ρ(i)n−q←
s
(i)
n−q

ξ
(i)
n−q+1

12: end for
13: Choose 0<ρ̄n−q<mini=1,...,dN ρ

(i)
n−q

14: Set kn−q←ρ̄n−qkn−q+1, K←K∪{kn−q}, and Ξn−q←kn−qΞ

15: end for

Lemma 5: If the gain set K = {k1, . . . , kn} is selected
according to Algorithm 1, then P1 > 0 and Q1 > 0.

Proof: Let el be the lth versor in Rn. The set S :=

{el ⊗ v(r)
Ω ⊗ v(s)

Γ |l = 1, . . . , n; r = 1, . . . , N ; s = 1, . . . , d}
is a RndN basis of orthogonal vectors. Indeed, for all i 6= j,

(eli ⊗ v
(ri)
Ω ⊗ v(si)

Γ )T(elj ⊗ v
(rj)

Ω ⊗ v(sj)

Γ ) =

(eli
Telj )⊗ (v

(ri)
Ω

T
v

(rj)

Ω )⊗ (v
(si)
Γ

T
v

(sj)

Γ ) = 0,

Noting that S can also be defined as S = {el ⊗ v
(w)
Ξ |l =

1, . . . , n; w = 1, . . . , dN}, any vector y ∈ RndN can be
written as y =

∑Nd
i=1 y

(i), where y(i) = c(i) ⊗ v
(i)
Ξ , with

c(i) = (c
(i)
1 , . . . , c

(i)
n )T ∈ Rn being a vector of coefficients.

Since v(i)
Ξ and v(j)

Ξ are orthogonal, for i 6= j we have that
y(j)T

P1y
(i) = 0 and y(j)T

Q1y
(i) = 0, while from definitions

(11) we have y(i)T
P1y

(i) = c(i)
T
P

(i)
1 c(i) and y(i)T

Q1y
(i) =

c(i)
T
Q

(i)
1 c(i). Therefore, the following relations hold

yTP1y =

dN∑
i=1

c(i)
T
P

(i)
1 c(i), yTQ1y =

dN∑
i=1

c(i)
T
Q

(i)
1 c(i). (14)

We show that P (i)
1 , Q

(i)
1 > 0 by induction. First, notice that

from lines 1–4 in Algorithm 1, we have that the coefficients
α

(i)
n−1, β

(i)
n−1, δ

(i)
n−1 are strictly positive. Therefore, matrix P (i)

n−1

(= A
(i)
n−1) is positive defined from Lemmas 2 and 3, since its

determinant is positive and ξ
(i)
n > 0. Also, α(i)

n−1 > 0 and
zTP

(i)
n−1z ≥ zTA

(i)
n−1z ≥ α

(i)
n−1z

Tz holds or all z ∈ R2.
Now, let us suppose that, for a given q ≥ 2,

zTP
(i)
n−q+1z ≥ z

TA
(i)
n−q+1z ≥ α

(i)
n−q+1z

Tz, ∀z ∈ Rq, (15)

1Bn−q and βn−q are defined also for q = n.

and α
(i)
n−q+1, δ

(i)
n−q > 0. Let z̄q ∈ Rq+1 be z̄q = [z1, z̄

T
q−1]T,

with z̄q−1 = [z2, . . . , zq+1]T. We have

z̄T
q P

(i)
n−q z̄q = 2ξ

(i)
n−qξ

(i)
n−q+1z

2
1 +

q∑
j=2

4ξ
(i)
n−qξ

(i)
n−q+jz1zj

+ 2ξ
(i)
n−qz1zq+1 + z̄T

q−1P
(i)
n−q+1z̄q−1.

(16)

Defining h = arg minj=2,...,q+1 z1zj , from (15) we obtain

z̄T
q P

(i)
n−q z̄q ≥ 2ξ

(i)
n−qξ

(i)
n−q+1z

2
1 + 2

[
1 +

q∑
j=2

2ξ
(i)
n−q+j

]
ξ
(i)
n−qz1zh

+ α
(i)
n−q+1z

2
h = 2ξ

(i)
n−qξ

(i)
n−q+1z

2
1

+ 2δ
(i)
n−qξ

(i)
n−qz1zh + α

(i)
n−q+1z

2
h

= [zi, zh]A
(i)
n−q[zi, zh]T.

Noting that α(i)
n−q+1 > 0, and since the condition (12) in

Algorithm 1 ensures that the determinant of A(i)
n−q is positive,

then A(i)
n−q > 0 from Lemma 2. By induction, P (i)

1 > 0.
Similar steps can be followed to show that Q1 > 0. Indeed,

from lines 1–4 of Algorithm 1, we have Q
(i)
n ∈ R1×1 =

β
(i)
n−1 = ξ

(i)2

n −ξ(i)
n−1 > 0. Let us assume, for some q ≥ 1, that

zTQ
(i)
n−q+1z ≥ βn−qz

Tz, ∀z ∈ Rq. (17)

Defining h = arg maxj=2,...,q+1 z1zj , and from (17), we
have

z̄T
q Q

(i)
n−q z̄k ≥

[
ξ
(i)2

n−q − 2ξ
(i)
n−q−1ξ

(i)
n−q+1

]
z2
1

−
[
1 +

q∑
j=2

2ξ
(i)
n−q+j

]
ξ
(i)
n−q−1z1zh + β

(i)
n−qz

2
h

=
(
ξ
(i)2

n−q − 2ξ
(i)
n−q−1ξ

(i)
n−q+1

)
z2
1 − δ

(i)
n−qz1zh + β

(i)
n−qz

2
h

= [zi, zh]B
(i)
n−q−1[zi, zh]T.

Lemma 2 yields B(i)
n−q−1 > 0 since its determinant is positive

from (13), and β
(i)
n−q > 0. As (17) holds for a given q, by

induction it holds for all q, and then Q(i)
1 > 0 for all i. As we

already proved P (i)
1 > 0, the thesis follows.

Lemma 6: Matrices P,Q in (10) are positive definite for
any k̄ > 1.

Proof: The quadratic form yTPy can be rewritten as
yTPy = yTP1y + (k̄ − 1)yT

ϑPϑyϑ and, since Pϑ is the
leading principal minor of P1, it is positive definite. Therefore
yTPy > 0.

Writing y =
[
yT
ϑ , y

T
ς

]T
, the quadratic form yTQy can

be rewritten as yTQy = yTQ1y + (k̄ − 1)yT
ϑQϑyϑ + (k̄ −

1)yT
ς Ξ2yς . Noting that y(i)T

y(i) =
(
c(i)⊗v(i)

Ξ

)T(
c(i)⊗v(i)

Ξ

)
=

c(i)
T
c(i) and y(i)T

y(j) = 0 for i 6= j, we have

yTQ1y =

dN∑
i=1

c(i)
T
Q

(i)
1 c(i) ≥

dN∑
i=1

β
(i)
0 c(i)

T
c(i)

≥ β̄
dN∑
i=1

c(i)
T
c(i) ≥ β̄yTy,

(18)

where β̄ = mini β
(i)
0 > 0. Finally, we obtain

yTQy ≥ β̄yTy + (k̄ − 1)β̃yTy, (19)



where β̃ = mini=1,...,dN

{
β̄, ξ

(i)2

n

}
> 0.

Remark 1: The reasoning followed in this section shares
similarities to the one carried out in [21] in the context of
spontaneous synchronization. However, since in [21] a dif-
ferent problem is studied, the derived Lyapunov function has
different spectral properties, and key fundamental differences
exist in its derivation. For instance, in [21] one could leverage
the properties of class LN matrices, while in our case this is
not possible due to the presence of the pinner. Additionally,
we also have to account for the presence of the inner linking
matrix Γ in the coupling protocol, required since each state
component has size d, while in [21] d = 1 (and Γ = 1).
Note that the possibility of dealing with generic d is very
useful in view of applications. For instance, when studying the
mechanics of interacting rigid bodies moving on a plane (e.g.
in platooning of unmanned ground vehicles), two coordinates
need to be considered, and therefore d = 2.

Lemma 6 showed that (7) is a valid Lyapunov function
candidate with P defined as in (10). Therefore, it can be
exploited to provide the main result of the manuscript. In the
following theorem, we i) show that the PD distributed protocol
(5) can be used to achieve global pinning controllability for
network systems in companion form of any order, and ii)
provide a feasible choice for the control and coupling gains.

Theorem 1: Let us consider a connected network of N
higher-order systems in canonical control form (2). If the set
of pinned nodes P is nonempty, and the function f(t, z) is
Γ weak-Lipschitz2, then there always exists a choice of gains
K = {k1, . . . , kn} and k̄ > 1 such that under the distributed
control law (5) the networked system achieves global pinning
synchronization (4). Furthermore, a possible choice for K is
given by the selection procedure in Algorithm 1, while k̄ can
be taken larger than max

{
1, 1

β̃

(
k̂w‖Ω‖n+d + β̃ − β̄

)}
.

Proof: Let us compute K from Algorithm 1, matrices
Ξh, h = 1, . . . , n as defined in Section IV, and P,Q as in
(10).

The derivative of the candidate Lyapunov function (7) is

V̇ (e) = eTP ė = eTPΦ(t, x) + eTPΥ(e), (20)

with Φ(t, x) =
[
0T

(n−1)dN , F
T(t, x) − 1T

N ⊗ fT(t, p)
]T

and

Υ(e) =
[
eT

2 , . . . , e
T
n ,−

(
k̄
∑N
h=1 kh(Ω⊗Γ)eh

)T]T
. Note that

eTPΦ = M(L) +M(G), (21)

where L and G are the Laplacian and pinner matrices, and
where given a matrix J ∈ RN×N , M(J) =

∑n
q=1 kqe

T
q J ⊗

Γ [F (t, x)− 1N ⊗ f(t, x)]. Since f is Γ weak-Lipschitz, we
have that

M(J) =

n∑
q=1

kq
1

2

N∑
i=

N∑
j=1

Jij(e
(i)
q − e

(j)
q )TΓ

[
f(t, x(i))− f(t, x(j))

]

≤
n∑
q=1

kq
1

2

N∑
i=

N∑
j=1

Jijw

n∑
h=1

(
e
(i)
h − e

(j)
h

)T (
e
(i)
h − e

(j)
h

)

= k̂w
n∑
h=1

eTh (J ⊗ Id)eh = k̂weT (In ⊗ J ⊗ Id) e,

2In case of pinning synchronization towards an invariant set, this hypothesis
can be replaced by requiring f(t, z) locally Lipschitz, see also [26].

for both J = L and J = G, where k̂ =
∑n
q=1 kq , thus yielding

eTPΦ ≤ k̂weT (In ⊗ Ω⊗ Id) e. (22)

We next focus on showing that

eTPΥ(e) = −eTQe. (23)

Given any q ∈ {0, . . . , n − 1}, let us call Q̄n−q ∈
R(q+1)×(q+1) the trailing principal submatrix of Q, and let
us denote Q̄Rn−q its first row (which coincides with the first
column being Q symmetric), that is,

Q̄Rn−q =
[
k̄Ξ2

n−q − 2k̄Ξn−q−1Xin−q+1,−k̄Ξn−q−1Ξn−q+2,

. . . ,−k̄Ξn−q−1Ξn,−Ξn−q−1/2
]
.

Denoting qij the element ij of Q, the sum of the bilinear
terms qije

T
i ej of eTQe corresponding to the first row and

0 20 40 60
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0
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Fig. 1. Time trace of the components x
(i),[1]
1 , i = 1, . . . , N , and

p
[1]
1 (in blue) for the network of chaotic oscillators described by (2), (3),

(24) in the presence of the control input (5).

column of Q̄n−q coincides with the sum of the terms of the
product eTPΥ(e) corresponding to row n− q of P truncated
of its first n− q − 2 elements, which can be written as

P̄Rn−q =
[
2k̄Ξn−q[Ξn−q+1,Ξn−q+1,Ξn−q+2,Ξn],Ξn−q

]
.

Indeed, we have∑
i=n−q,j=n−q,...,n
i=n−q,...,n,j=n−q

−qijeT
i ej = 2k̄eT

n−qΞn−q−1Ξn−q+1e
T
n−q

+

n∑
j=n−q+1

2k̄eT
n−qΞn−qΞjej −

n∑
j=n−q

k̄eT
n−qΞn−qΞjej

−
n∑

i=n−q+1

k̄eT
i ΞiΞn−qen−q

+

n−1∑
i=n−q+1

2k̄eT
i Ξn−q−1Ξi+1en−q + eT

nΞn−q−1en−q,

from which we obtain∑
i=n−q,j=n−q,...,n
i=n−q,...,n,j=n−q

−qijeTi ej

= 2k̄eTn−qΞn−q−1Ξn−q+1e
T
n−q − k̄eTn−qΞ2

n−qen−q

+
1

2
k̄

n−1∑
i=n−q+1

[
eTi Ξn−q−1Ξi+1en−q + eTn−qΞn−q−1Ξi+1ei

]
+

1

2
eTnΞn−q−1en−q +

1

2
eTn−qΞn−q−1en.

Iterating for all q = 0, . . . , n − 1, we obtain (23). By
combining (19) and (20) with (22) and (23), we have

V̇ (e) ≤ k̂weT (In ⊗ Ω⊗ Id) e− β̄eTe− (k̄ − 1)β̃eTe,

≤ −
[
(k̄ − 1)β̃ + β̄ − k̂w‖Ω‖n+d

]
eTe.



Setting k̄ > max
{

1, 1
β̃

(
k̂w‖Ω‖n+d + β̃ − β̄

)}
, the thesis

follows.
Remark 2: The result of Theorem 1 can be extended to the

case of nonlinear systems of the form ẋi = f(xi) + g(xi)ui
which admit a nonlinear state transformation able to recast
them in the canonical control form. If such controllability
conditions are satisfied, then Theorem 1 can be applied on the
transformed system and a coupling protocol analogous to (5)
for the transformed states can be obtained. We refer the reader
to [27, Section 6.2] for details on canonical transformations.

V. NUMERICAL VALIDATION

To illustrate the effectiveness of our approach, we select as
individual dynamics a third order chaotic oscillator, inspired
by the well-known Van der Pol second order oscillator. Specif-
ically, in equation (2), we set n = 3, d = 2, and

f [1](t, x) =− x[1]
2 + µ[1]

(
1 +

∣∣∣x[1]
2 + σx

[2]
2

∣∣∣)x[1]
3

− x[1]
1 + ν[1]

(
1 +

∣∣∣x[1]
1 + σx

[2]
1

∣∣∣)x[1]
2 ,

f [2](t, x) =− x[2]
2 + µ[2]

(
1 +

∣∣∣x[2]
2 + σx

[1]
2

∣∣∣)x[2]
3

− x[2]
1 + ν[2]

(
1 +

∣∣∣x[2]
1 + σx

[1]
1

∣∣∣)x[2]
2 ,

(24)

where we omitted the subscript (i) for brevity, and set µ[1] =
2.5, ν[1] = 8, µ[2] = 1.25, ν[2] = 4, σ = 0.1. We consider
10 oscillators (24) coupled on a randomly generated topology,
with the first two being pinned, and select Γ as the identity.
The initial conditions of the nodes are taken from a uniform
distribution in [0, 5] ([0, 10]) for the first (second) scalar
component of each of the n = 3 state components.

In our simulations, the coupling gains are selected according
to Theorem 1 as k̄K = {1.9, 44.2, 20}. Fig. 1 shows that
protocol (5) effectively steers the trajectories of the nodes
towards that of the pinner.

VI. CONCLUSIONS

In this letter, we provided a solution to the pinning control
problem for multi-dimensional higher order nonlinear systems
in companion form. For any order of the individual dynam-
ics, we provided a constructive way to demonstrate that a
distributed proportional derivative protocol can be used to
synchronize the overall network to the pinner’s trajectory.
This procedure also yields a suitable selection of the coupling
and control gains. Different from previous approaches, we
did not rely on cancellation, which would require a perfect
knowledge of the system’s dynamics, but rather preserved the
original dynamics of the agents, thus making our protocol
more suitable in the presence of disturbances acting on the
network system [28].
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