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Milica And̄elić · Maurizio Brunetti ·
Zoran Stanić
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Abstract Let LG be the Laplacian matrix of a graph G with n vertices, and
let b be a binary vector of length n. The pair (LG,b) is said to be controllable
(and we also say that G is Laplacian controllable for b) if LG has no eigen-
vector orthogonal to b. In this paper we study the Laplacian controllability of
joins, Cartesian products, tensor products and strong products of two graphs.
Besides some theoretical results, we give an iterative construction of infinite
families of controllable pairs (LG,b).
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1 Introduction

We give a very brief introduction, and then go straight to the results. For more
details on control systems and their applications, we refer to [7]. The following
equation is a standard model for the single-input linear control systems:

dx

dt
= Mx + bu. (1)
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The scalar u = u(t) is called the control input, while M is an n×n real matrix
and x,b ∈ Rn. The system (1) is called controllable if for any vector x∗ and
time t∗, there always exists a control function u(t), 0 < t < t∗, such that the
solution of (1) gives x(t∗) = x∗ irrespective of x(0).

In general, any special structure or property of the matrixM or the vector b
is not prerequisited. However, case in which M is the Laplacian matrix LG

of a graph G and b a binary vector has received a great deal of attention
(see [1,2,9]). In this case, the system (1) is controllable if and only if LG has
no eigenvector orthogonal to b. In fact, this claim holds for a wider class of
matrices [2,9]. It is also known that if LG has a non-simple eigenvalue, then LG

automatically has an associated eigenvector orthogonal to a given vector b [9].
Thus, a necessary condition for the controllability of (1) is that all eigenvalues
of LG are simple.

We say that the pair (LG,b) is controllable and also that G is Laplacian
controllable for b if the corresponding system is controllable. If LG is not
controllable for every binary vector b, then we simply say that G is Laplacian
uncontrollable.

To simplify terminology, we abbreviate the spectrum, the eigenvalues and
the eigenvectors of LG as the spectrum, the eigenvalues and the eigenvectors
of G.

We use 0 and j to denote the all-0 and the all-1 vector, and I and J for
the unit and all-1 matrix, respectively. If necessary, the length of the vector
or the size of the matrix will be indicated in the subscript. The standard
inner product of the vectors a,b is denoted by 〈a,b〉. For arbitrary graphs G1

and G2, we use G1∪G2 to denote their (disjoint) union and G1∇G2 to denote
the join of G1 and G2, i.e., the graph obtained by adding an edge between
every vertex of G1 and every vertex of G2. We use Kn and Pn to denote the
complete graph and the path with n vertices, respectively. In particular, the
trivial graph refers to K1. Some other notions and the corresponding notation
will be introduced in the following sections, upon the corresponding results.

In Sect. 2, we express the Laplacian controllability of the join G1∇G2

in terms of the Laplacian controllability of G1 and G2. We also establish
an iterative procedure which gives infinite families of Laplacian controllable
graphs and the corresponding binary vectors.

In Sect. 3 we give a sequence of results related to the Laplacian controlla-
bility of graphs that are obtained as the Cartesian product of two arbitrary
graphs or as the tensor product or the strong product of two arbitrary regular
graphs.

2 Join of two graphs

In this section we frequently use the following classical result referred to
R. Merris.
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Theorem 1 [8] Let G1 and G2 be the graphs with n1 and n2 vertices and
eigenvalues µ1, µ2, . . . , µn1 = 0 and ν1, ν2, . . . , νn2 = 0, respectively. The eigen-
values of G1∇G2 are n1 + n2, µ1 + n2, µ2 + n2, . . . , µn1−1 + n2, ν1 + n1, ν2 +
n1, . . . , νn2−1 + n1 and 0.

If x is an eigenvector of G1 orthogonal to j and associated with an eigen-
value µ, then its extension defined to be zero on each vertex of G2 is an eigen-
vector of G1∇G2 associated with µ+ n2. The eigenvalue n1 + n2 is associated
with the eigenvector whose value is −n2 on each vertex of G1 and n1 on each
vertex of G2.

We start with a simple lemma.

Lemma 1 The join G1∇G2 is Laplacian uncontrollable whenever

(i) at least one of G1, G2 is a join of two graphs or
(ii) at least one of G1, G2 has more than two components.

Proof (i): If, say G1, is a join of two graphs then its number of vertices appears
in its spectrum. But then, by Theorem 1, the number of vertices of G1∇G2 is
among its eigenvalues and has multiplicity at least 2, which leads to the result.

(ii): Similarly, if, say G1, has at least three components, then the number
of vertices of G2 is an eigenvalue of G1∇G2 of multiplicity at least 2.

We proceed with Laplacian controllability of G1∇G2.

Theorem 2 Given non-trivial graphs G1 and G2 with n1 and n2 vertices,
respectively, let Bi (for i ∈ {1, 2}) denote the set of binary vectors bi which
are non-orthogonal to any of the eigenvectors of Gi which are orthogonal to jni

.
Then (LG1∇G2

,b) is controllable if and only if all eigenvalues of G1∇G2 are
simple, b = (b1

ᵀ,b2
ᵀ)ᵀ where bi ∈ Bi, and n1〈b2, jn2〉 6= n2〈b1, jn1〉.

Proof Assume that all eigenvalues of the join are simple and that b is formed as
in the formulation of the theorem. Since the eigenvalues of G1∇G2 are simple,
we have that every its eigenvector is, up to a multiplying constant, determined
as in Theorem 1. Let x be an eigenvector associated with an eigenvalue distinct
from n1 + n2. By virtue of Theorem 1, either x is a constant vector, which
immediately gives 〈b,x〉 6= 0 (as b 6= 0) or x has the form (x1

ᵀ,0ᵀ)ᵀ or
(0ᵀ,x2

ᵀ)ᵀ, where xi is an eigenvector of Gi orthogonal to jni
(it exists since Gi

is non-trivial). It follows that 〈b,x〉 is equal to either 〈b1,x1〉 or 〈b2,x2〉,
which implies 〈b,x〉 6= 0. If x is associated with n1 + n2, then it has the form

(−n2,−n2, . . . ,−n2︸ ︷︷ ︸
n1

, n1, n1, . . . , n1︸ ︷︷ ︸
n2

)ᵀ,

which yields 〈b,x〉 = −n2〈b1, jn1〉 + n1〈b2, jn2〉, and the proof of one impli-
cation is completed.

By assuming that (LG1∇G2 ,b) is controllable, we immediately obtain that
the eigenvalues of G1∇G2 are simple. Assume now, by way of contradiction,
that b is not formed as in the theorem. If b = (b1

ᵀ,b2
ᵀ)ᵀ, where bi ∈ Bi,
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by considering the eigenvector associated with n1 + n2, we immediately ob-
tain n1〈b2, jn2〉 6= n2〈b1, jn1〉. Further, if b is a binary vector of the form
(a1

ᵀ,a2
ᵀ)ᵀ, where the length of ai is ni and, say a1 /∈ B1, then there exists

an eigenvector x1 of G1 such that 〈x1, jn1〉 = 〈x1,a1〉 = 0. By Theorem 1,
x = (x1

ᵀ,0ᵀ)ᵀ is an eigenvector of G1∇G2 which is orthogonal to b, contra-
dicting the controllability of (LG1∇G2 ,b).

The remaining situation, in which at least one of G1 or G2 is the trivial
graph, is settled in the next theorem.

Theorem 3 Let G be a graph with n vertices, and, when n ≥ 2, let B denote
the set of binary vectors that are non-orthogonal to any of the eigenvectors
of G which are orthogonal to j. We have:

(i) If G ∼= K1, then (LK1∇G,b) is controllable if and only if b ∈ {(0, 1)ᵀ, (1, 0)ᵀ};
(ii) If G � K1, then (LK1∇G,b) is controllable if and only if all eigenvalues of

K1∇G are simple and b = (∗,b′ᵀ)ᵀ where b′ ∈ B and ∗ stands for either 0
or 1.

Proof (i): This follows by direct computation.
(ii): If the eigenvalues of K1∇G are simple, then all its eigenvectors arise

from Theorem 1. Let b be formed as in the theorem, and let x be an eigenvector
of K1∇G. If x is a constant vector or has the form (−n, jᵀ)ᵀ, then 〈b,x〉 6= 0
(as b′ /∈ {0, j}). If x has the form (0,x′

ᵀ
)ᵀ (where x′ is an eigenvector of G

orthogonal to j), then 〈b,x〉 = 〈b′,x′〉 6= 0 (as b′ ∈ B). Thus, (LK1∇G,b) is
controllable.

Assume now that (LK1∇G,b) is controllable. Then all eigenvalues of K1∇G
are simple. Let further b = (∗,a′ᵀ)ᵀ, where a′ is a binary vector not belonging
to B. There is an eigenvector (0,x′

ᵀ
)ᵀ of K1∇G, such that 〈x′,a′〉 = 0. The

equality 〈b, (0,x′ᵀ)ᵀ〉 = 0 concludes the proof.

Remark 1 In the foregoing theorems, we had an assumption that ‘all eigen-
values of G1∇G2 are simple’. It is not difficult to see when this assumption is
satisfied. Namely, it holds if G1 and G2 have no repeated non-zero eigenvalues,
neither of them is a join nor has more than two components and (with the no-
tation of Theorem 1) µi+n2 6= νj +n1 holds for 1 ≤ i ≤ n1−1, 1 ≤ j ≤ n2−1.
Note also that, if G1 and G2 are connected, then the set Bi of Theorem 2 con-
sists of all binary vectors bi such that (LGi ,bi) is controllable; and similarly
for the corresponding set of Theorem 3.

Remark 2 In the statement of Theorem 2 (resp. Theorem 3) the set Bi (resp. B)
is formed by taking into account the eigenvectors ‘which are orthogonal to jni

(resp. j)’. This assumption is essential as the following example shows. Take
K1∇(K1 ∪ G), where G is connected, let b′ be a binary vector such that
(LG,b

′) is controllable, and let C denote the set of binary vectors which are
non-orthogonal to all eigenvectors of G. Clearly C ⊆ B. Then (1,0ᵀ)ᵀ is an
eigenvector associated with zero in K1 ∪ G, and so (0,b′

ᵀ
)ᵀ 6∈ C (since it is

orthogonal to (1,0ᵀ)ᵀ), but K1∇(K1∪G) is controllable for (∗, 0,b′ᵀ)ᵀ, which
can easily be concluded by using Theorem 1.
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Take a break with an example.

Example 1 Let G1
∼= K1 ∪K2 and G2

∼= P4.
First, G1 is Laplacian uncontrollable, as it has a repeated eigenvalue. Nev-

ertheless, since j, (−1/2,−1/2, 1)ᵀ and (−1, 1, 0)ᵀ make a full system of its
linearly independent eigenvectors, we obtain

B1 =


0

1
0

 ,

1
0
0

 ,

0
1
1

 ,

1
0
1

 .

Next, since all eigenvalues of G2 are simple, and the corresponding eigen-
vectors are j, (1,

√
2−1, 1−

√
2,−1)ᵀ, (−1, 1, 1−1)ᵀ and (1−

√
2, 1,−1,

√
2−1)ᵀ,

we deduce that (LG2 ,b2) is controllable if and only if b2 is a binary vector of
length 4 with exactly one or three 1’s.

Since all eigenvalues of G1∇G2 are simple, it follows that (LG1∇G2
,b) is

controllable if and only if b = (b1
ᵀ,b2

ᵀ)ᵀ, for b1 ∈ B1, and b2 is formed in
the described way. There are exactly 32 possibilities for b.

We continue with the following observations. Since j is associated with
zero in the spectrum of any graph, we conclude that (LG, j) is uncontrollable
whenever G � K1. On the other hand, it is obvious that (LG,0) is also uncon-
trollable, for any G. Therefore, the extremal cases (for the number of 1’s in b)
arise when (LG,b) is controllable and 〈b, j〉 is equal to n− 1 or 1 (n being the
number of vertices of G). Moreover, these extremal cases occur simultaneously
for the same graph, since (LG,b) is controllable if and only if (LG, j − b) is
controllable. The last follows by 〈x, j− b〉 = 〈x, j〉 − 〈x,b〉 = −〈x,b〉, for any
eigenvector x orthogonal to j; for a different proof, see [1]. The path P4 of
Example 1 is a graph for which the extremal cases are attained. In fact, they
are attained for any path Pn (n ≥ 2), as its eigenvalues are simple (see, for
example, [5]) and, by the eigenvalue equation, the first coordinate of every
eigenvector is non-zero (so, we may take b = (1,0ᵀ)ᵀ). Moreover, we have a
simple lemma.

Lemma 2 If G is a connected graph with n (n ≥ 2) vertices, such that K1∇G
admits only simple eigenvalues and b is a binary vector of length n satisfy-
ing 〈b, j〉 = 1, then (LG,b) is controllable if and only if (LK1∇G, (0,b

ᵀ)ᵀ) is
controllable.

Proof The proof follows from Lemma 1(i) and Theorem 3(ii).

Consequently K1∇Pn (n ≥ 2) attains the extremal cases.
We conclude this section by a procedure which produces infinite families

of Laplacian controllable graphs and corresponding binary vectors.

Theorem 4 Let G0 be an arbitrary non-trivial graph without repeated eigen-
values. Set

Gi = K1∇(K1 ∪Gi−1), for i ≥ 0.



6 Milica And̄elić et al.

Then, (LGi ,b) is controllable if and only if

b = (∗, ∗, . . . , ∗︸ ︷︷ ︸
2i

,b0
ᵀ)ᵀ,

where ∗ stands for either 0 or 1 and b0 is a binary vector such that (LG0 ,b0)
is controllable.

Proof If µ1, µ2, . . . , µn = 0 are the eigenvalues of G0, using Theorem 1, we get
that the eigenvalues of Gi (i ≥ 1) are

n+ 2i, n+ 2i− 1, . . . , n+ i+ 1, µ1 + i, µ2 + i, . . . , µn−1 + i, i, i− 1, . . . , 0,

and therefore they are distinct, since µi ≤ n for 1 ≤ i ≤ n.
A full system of linearly independent eigenvectors of Gi is−(n+ 2i− 1)

1
jn+2(i−1)

 ,

 0
0
x1

 ,

 0
0
x2

 , . . . ,

 0
0

xn+2(i−1)−1

 ,

 0
−(n+ 2(i− 1))

jn+2(i−1)

 ,

 1
1

jn+2(i−1)

 ,

where x1,x2, . . . ,xn+2(i−1)−1 are the eigenvectors associated with non-zero
eigenvalues of Gi−1. We proceed by induction argument.

By setting i = 1, we conclude that G1 has no eigenvector orthogonal to
(∗, ∗,b0

ᵀ)ᵀ (as b0 6= jn, since G0 � K1). Conversely, if (LG0
,a0) is uncontrol-

lable, then any binary vector of the form (∗, ∗,a0
ᵀ)ᵀ is orthogonal to at least

one of the eigenvectors of G1 formed on the basis of xk’s (1 ≤ k ≤ n− 1).
Assume that the statement holds for Gi−1 and consider Gi. Then Gi has

no eigenvector orthogonal to the vector b = (∗, ∗, . . . , ∗,b0
ᵀ)ᵀ of length n+2i,

since, by the induction hypothesis, the vector (∗, ∗, . . . , ∗,b0
ᵀ)ᵀ of length n+

2(i − 1) is not orthogonal to any of x1,x2, . . . ,xn+2(i−1)−1, jn+2(i−1). Every
vector distinct from b is eliminated as in the induction basis.

So, if there are s binary vectors that preserve Laplacian controllability
of G0, then the number of those for Gi is 22is. Other iterative constructions
(with some other graphs in the roles of K1) can be obtained in a similar way.

3 Other products

Let G1 be a graph with the vertex set {u1, u2, . . . , un1
}, eigenvalues µ1, µ2, . . . ,

µn1
= 0 and associated eigenvectors x1,x2, . . . ,xn1 , and letG2 be a graph with

the vertex set {v1, v2, . . . , vn2}, eigenvalues ν1, ν2, . . . , νn2 = 0 and associated
eigenvectors y1,y2, . . . ,yn2 . We assume that both G1 and G2 are non-trivial
and consider the Cartesian product G1 �G2, the tensor product G1×G2 and
the strong product G1 �G2.
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Table 1 Eigenvalues and associated eigenvectors of the Cartesian product, the tensor prod-
uct and the strong product of G1 and G2. For the latter two products, G1 is regular of degree
r and G2 is regular of degree s. In all cases, we have 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

graph eigenvalues eigenvectors
G1 � G2 µi + νj xi ⊗ yj

G1 ×G2 sµi + rνj − µiνj xi ⊗ yj

G1 �G2 (s+ 1)µi + (r + 1)νj − µiνj xi ⊗ yj

Recall that the set of vertices of any of these products is the Cartesian
product of the sets of vertices of G1 and G2. In G1 �G2 the vertices (ui, vj)
and (uk, vl) are adjacent if and only if ui = uk and vj ∼ vl or ui ∼ uk and
vj = vl. In G1×G2 the vertices (ui, vj) and (uk, vl) are adjacent if and only if
ui ∼ uk and vj ∼ vl. In G1 �G2 the vertices (ui, vj) and (uk, vl) are adjacent
if and only if they are adjacent in any of the previous two products.

The eigenvalues and the eigenvectors of these products are given in Table 1,
in which ⊗ denotes the standard Kronecker product; for the first product
see [4], for the latter two (with an additional assumption that G1 and G2 are
regular) see [3]. Accordingly, the eigenvectors are the same for any product
(which is unsurprising since the corresponding Laplacian matrices are obtained
as linear combinations of specified Kronecker products, see [3]).

Let further ∗ stand for any of symbols � ,× or �, and assume that in the
latter two cases, the corresponding graphs are regular. Here is a straightfor-
ward result.

Theorem 5 If c = (c1
ᵀ, c2

ᵀ, . . . , cn1
ᵀ)ᵀ is a binary vector, such that the

length of each ci is n2, then (LG1∗G2
, c) is controllable if and only if G1 ∗G2

has no repeated eigenvalues and
∑n1

i=1 xi〈y, ci〉 6= 0, for all eigenvectors x
of G1 and y of G2.

Proof The result follows by observing that 〈x⊗ y, c〉 =
∑n1

i=1 xi〈y, ci〉.

In particular, we have the following corollary.

Corollary 1 If (LG1 ,a) and (LG2 ,b) are controllable and G1 ∗G2 has no re-
peated eigenvalues, then (LG1∗G2 , c) is controllable if c = (c1

ᵀ, c2
ᵀ, . . . , cn1

ᵀ)ᵀ,
where ci = aib for a = (a1, a2, . . . , an1

)ᵀ.

Proof We compute

〈x⊗ y, c〉 = 〈x⊗ y, (a1b
ᵀ, a2b

ᵀ, . . . , an1
bᵀ)ᵀ〉

=

n1∑
i=1

xiai〈y,b〉 = 〈x,a〉〈y,b〉 6= 0,

and we are done.

Observe that if at least one of G1 or G2 has a repeated eigenvalue, then
G1 ∗G2 also have a repeated eigenvalue, so it is Laplacian uncontrollable.
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According to Table 1, orthogonality of a binary vector to the eigenvectors
of G1 ∗ G2 does not depend on ∗ ∈ {�,×,�}. Here we obtain some similar
situations. We use G to denote the complement of G, and we also recall that

the bipartite complement G of a bipartite graph G is a bipartite graph with
the same colour classes having the edge between them exactly where G does
not.

Theorem 6 Let ∗ ∈ {�,×,�}. For a graph G1 and a connected graph G2,
we have:

(i) Every eigenvector of G1 ∗G2 is an eigenvector of G1 ∗G2;
(ii) If G2 is bipartite and regular, then every eigenvector of G1 ∗ G2 is an

eigenvector of G1 ∗G2.

Proof The proofs of both claims rely on the fact that, under the given as-

sumptions, the eigenvectors of G2 are the eigenvectors of G2 (resp. G2) for (i)
(resp. for (ii)). Indeed, then the result follows by Table 1.

The mentioned fact for G2 and G2 is known from literature, and the reader
can consult [6]. Here we prove the latter one. After an appropriate vertex
permutation, the Laplacian matrix of G2 assumes the form

LG2 = sI −
(
O N
Nᵀ O

)
.

Then,

L
G2

= (n− s)I −
(

O J −N
J −Nᵀ O

)
= nI − LG2

−
(
O J
J O

)
.

If x is an eigenvector of G2, then

L
G2

x = nIx− LG2x−
(
O J
J O

)
x.

Now, for x = jn2 and x = (jn
ᵀ,−jn

ᵀ)ᵀ, we get L
G2

x = 0x and L
G2

x =

2(n − s)x, so the claim follows. If x is some of the remaining eigenvectors
(associated with an eigenvalue ν), then we have L

G2
x = (n− ν)x, and we are

done.

We now investigate the tensor product of some peculiar graphs. It follows
from definition that G1 × G2 of non-trivial graphs is connected if G1, G2 are
connected and at least one of them is non-bipartite. Otherwise, it is discon-
nected, and so Laplacian uncontrollable. The tensor product K2 ×G is called
a bipartite double of G. Clearly, it is always bipartite. We denote it by bd(G).
By Table 1, if G is regular of degree r with eigenvalues µ1, µ2, . . . , µn, then
the eigenvalues of bd(G) are µ1, µ2, . . . , µn, 2r − µ1, 2r − µ2, . . . , 2r − µn.

Theorem 7 For a regular graph G, the pair (Lbd(G), c) is controllable if and
only if bd(G) has no repeated eigenvalues and c = (c1

ᵀ, c2
ᵀ)ᵀ is a binary

vector such that c1 and c2 are equal in length and 〈c1 ± c2,x〉 6= 0, for every
eigenvector x of G.
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Proof Since (1, 1)ᵀ and (1,−1)ᵀ make a full set of linearly independent eigen-
vectors of K2, we get that (xᵀ,xᵀ)ᵀ and (xᵀ,−xᵀ)ᵀ are the eigenvectors
of bd(G), where x is an eigenvector of G. Now, we easily conclude that bd(G)
is controllable if and only if it has no repeated eigenvalues and c is formed as
in the theorem.

Observe that
Lbd(G) = rI2n + (I2 − J2)⊗AG, (2)

where AG is the standard adjacency matrix of G.
Consider now a related product. If the vertices of K2 are denoted by u1

and u2, then the extended bipartite double ebd(G) of G is obtained from its
bipartite double by inserting and edge between the vertices (u1, v) and (u2, v),
for all vertices v of G. The graph ebd(G) is connected if and only if G is
connected. If, as before, G is regular, then

Lebd(G) = (r + 1)I2n + (I2 − J2)⊗ (AG + In). (3)

Considering the latter identity, we conclude that the eigenvalues of ebd(G) are
µ1, µ2, . . . , µn, 2(r+1)−µ1, 2(r+1)−µ2, . . . , 2(r+1)−µn. Moreover, we have
the following result.

Theorem 8 If G is a regular graph, then bd(G) and ebd(G) share the same
eigenvectors.

Proof From (2) and (3), both Lbd(G) and Lebd(G) share the same eigenvectors
with (I2 − J2)⊗AG.

We conclude the section by eliminating a possibility for Laplacian control-
lable products. A graph is said to be Laplacian integral if its spectrum consists
entirely of integers.

Theorem 9 Let ∗ be a fixed element of {�,×,�} and assume that at least
one of G1, G2 is non-trivial. If G1∗G2 is a Laplacian integral product described
in Table 1, then G1 ∗G2 is Laplacian uncontrollable.

Proof If G1 ∗ G2 is Laplacian integral, then since zero is an eigenvalue of
both G1 and G2, we conclude that they are Laplacian integral, as well. Since
they cannot have repeated eigenvalues, we have that the eigenvalues of Gi are
the ni distinct numbers which belong to {0, 1, . . . , ni}. Now, it is a matter of
routine to verify that G1 ∗G2 must have a repeated eigenvalue.
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