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Abstract 

In recent years automobile manufacturers focused on an increasing 

degree of electrification of the powertrains with the aim to reduce 

pollutants and CO2 emissions. Despite more complex design processes 

and control strategies, these powertrains offer improved fuel 

exploitation compared to conventional vehicles thanks to intelligent 

energy management. A simulation study is here presented aiming at 

developing a new control strategy for a P3 parallel plug-in hybrid 

electric vehicle. The simulation model is implemented using vehicle 

modeling and simulation toolboxes in MATLAB/Simulink. The 

proposed control strategy is based on an alternative utilization of the 

electric motor and thermal engine to satisfy the vehicle power demand 

at the wheels (Efficient Thermal/Electric Skipping Strategy - ETESS). 

The choice between the two units is realized through a comparison 

between two equivalent fuel rates, one related to the thermal engine 

and the other related to the electric consumption. An adaptive function 

is introduced to develop a charge-blended control strategy. The novel 

adaptive control strategy (A-ETESS) is applied to estimate fuel 

consumption along different driving cycles. The control algorithm is 

implemented on a dedicated microcontroller unit performing a 

Processor-In-the-Loop (PIL) simulation. To demonstrate the reliability 

and effectiveness of the A-ETESS, the same adaptive function is built 

on the Equivalent Consumption Minimization Strategy (ECMS). The 

PIL results showed that the proposed strategy ensures a fuel economy 

similar to ECMS (worse of about 2% on average) and a computational 

effort reduced by 99% on average. This last feature reveals the 

potential for real-time on-vehicle applications. 

Introduction 

Electrified powertrains are one of the key technologies for vehicle 

energy saving. Combining an Internal Combustion Engine (ICE) and 

one or more high-efficiency electric machines, Hybrid Electric 

Vehicles (HEVs) have lower fuel consumption than conventional 

vehicles. However, effective Energy Management Strategies (EMSs) 

are required to coordinate the energy distribution among powertrain 

components and, at the same time, respecting their safe working 

condition. 

Zhang et al. [1] proposed to classify EMSs in two main headlines: (1) 

offline EMSs, categorized according to the information level of the 

driving conditions utilized, including global optimization based-EMSs 

and rule-based EMSs; and (2) online EMSs represented as 

instantaneous optimization-based EMSs, predictive EMSs, and 

learning-based EMSs. 

Offline EMSs are mainly divided into global optimization-based EMSs 

and rule-based EMSs. Rule-based EMSs are based on the selection of 

driving modes. They are typically used in real-time applications thanks 

to their low computational effort. [2,3,4]. Dynamic programming (DP) 

and Pontryagin Minimization Principle (PMP) are two of the most 

common offline EMSs. DP is a mathematical technique to find the 

global optimum solution in managing the energy sources in hybrid 

power trains [5,6]. Therefore, it is used as a benchmark tool for other 

EMSs [7]. It requires prior knowledge of the entire driving cycle and 

has high computational complexity. PMP is an analytical optimization 

method that transforms a global optimization problem into an 

instantaneous Hamiltonian optimization problem [8,9]. Its main 

disadvantage is the requirement of the co-state estimation [10,11]. Kim 

et al. [12] developed a methodology to calculate the optimal co-state 

when a driving cycle is given. The simulation results showed that PMP 

control can achieve near-optimal results compared to DP. The 

computational time for PMP-based control was a tenth of that for DP-

based control. 

The Equivalent Consumption Minimization Strategy (ECMS) can be 

considered a PMP extension for online implementation. It is based on 

the idea that power is distributed by minimizing the fuel consumption 

at each instant by converting the electricity consumption into the 

equivalent fuel consumption. [13,14] The control variable in EMCS is 

an Equivalent Factor (EF) that relates the electric energy consumption 

to the power requirement. Wang et al. [15] developed a real-time 

ECMS for a series-parallel hybrid electric bus. HIL simulations 

showed that the proposed Adaptive ECMS (A-ECMS) can reduce the 

fuel consumption of the hybrid bus by 12.75% and 40.57% compared 

to the hybrid electric bus with a logic-threshold control strategy and 

the conventional ICE bus, respectively. 

State of Charge (SoC) management strategies are classified according 

to how the SoC of the energy storage system varies with time. Hybrid 

Electric Vehicles (HEVs) cannot charge the battery from the grid so, 

Charge-Sustaining (CS) strategies are developed aiming to keep the 

SoC level around a predefined target. Plug-in HEVs (PHEVs) could 

have the potential for providing pure electric driving for a longer range 

(with respect to HEVs) and CS strategies are not appropriate. Charge-

Depleting (CD)/Charge-Sustaining strategies consist of a plan that 

firstly discharges the battery until a certain SoC level and then sustains 

the SoC around the above level. [16,17]. They are widely implemented 

in heuristic hybrid control modules of PHEVs [18,19]. Charge Blended 
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(CB) strategies are similar to CS strategies, but the SoC target 

decreases linearly with the driven distance [20]. CB strategies are 

compatible with PHEVs that usually start driving missions with a fully 

charged battery and aim to arrive with a lower SoC level at the end of 

the mission. It is widely recognized that, in CB mode, the ICE operates 

in its most efficient region longer, resulting in lower CO2 emissions 

[21]. Several approaches have been proposed in the literature to realize 

adaptive CB control strategies [22, 23, 24]. In [25] the authors 

developed an artificial neural network-enhanced ECMS for a PHEV. 

Results highlight a reduced energy total cost compared to a simple CD-

CS strategy for each test case, however computational time is more 

than 10 times increased. Onori et al. [26, 27] designed a causal 

controller PMP based to develop a CB strategy. The adaption law was 

tuned and implemented in a vehicle model in the form of a look-up 

table, where the optimal value of the co-state is tabulated as a function 

of total traveled distance and average driving cycle speed. Simulation 

results were compared to PMP and CD/CS mode, and they showed that 

the proposed strategy can improve fuel consumption by around 20%. 

On the other hand, PMP require higher computational effort compared 

to CD/CS approach, as shown in [25]. 

To reduce computational time typical of ECMS strategies, in previous 

work of the authors [28] a simplified control strategy was proposed, 

based on an alternative utilization of the thermal and electric unit for 

the vehicle driving (Efficient Thermal Electric Skipping Strategy – 

ETESS). At each time the choice between the power source depends 

on the comparison between the actual fuel rate in pure ICE driving and 

an equivalent fuel rate in pure electric driving. ETESS was 

demonstrated to perform in a manner similar to ECMS if applied to a 

HEV operated under charge-sustaining mode in terms of fuel 

economy, but with a very reduced computational effort [28]. 

In this work, the ETESS logic is extended to the management of a 

parallel plugin HEV. To this aim, an adaptive function is introduced, 

leading to an Adaptive ETESS strategy (named in the following as A-

ETESS). The main aim of this work is to demonstrate the feasibility of 

the above strategy to the control of PHEV under CB mode, maintaining 

fuel economy levels similar to well-assessed strategies, such as 

Adaptive-ECMS (A-ECMS), with a computational effort similar to 

rule-based strategies. To this aim, the A-ETESS is implemented in a 

vehicle simulation model built on MATLAB/Simulink and tested 

along different driving cycles. The same adaptive function is 

introduced in the A-ECMS to benchmark the proposed control strategy 

in terms of fuel economy and computational effort. To compare the 

computational time, A-ETESS and A-ECMS are executed on the same 

MicroController Unit (MCU), ST Microelectronics board NUCLEO-

H743ZI2, realizing processor-in-the-loop (PIL) tests, while the vehicle 

model is simulated on a PC-host. 

Vehicle model and simulation platform 

The investigated vehicle features a parallel P3 PHEV powertrain 

composed of a 3-cylinder spark ignition engine (ICE), an electric 

reversible machine (EM), a battery pack (BA), a DC-DC converter, a 

manual transmission (MT), and a torque coupler (TCP). The 

powertrain is schematized in Figure 1. Vehicle main characteristics are 

listed in Table 1. 

Three modes, namely pure thermal mode, pure electric mode, and 

parallel mode are available to satisfy a tractive demand at the wheels. 

In pure thermal and pure electric mode, the demanded power is entirely 

provided by the engine and motor, respectively. Concerning the 

parallel mode, the power demand is provided in a combined manner 

by the engine and the motor. 

The powertrain is schematized in a backward dynamic model of the 

PHEV under investigation, implemented in Matlab/Simulink. ICE fuel 

consumption and motor/generator efficiency are evaluated through 

speed-load lookup tables, here presented in Figure 2 and Figure 3, 

respectively. The battery module calculates the SoC of the battery 

pack, according to SoC-dependent internal resistance and open-circuit 

voltage. 

 
Figure 1. Powertrain schematic of tested PHEV. 

 
Figure 2. Engine BSFC map, g/kWh. 

 
Figure 3. Electric machine efficiency map, %. 
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Table 1. Main characteristics of the tested PHEV 

Plug-in Hybrid Electric Vehicle Features 

Vehicle 

Mass, kg 1100  

Car aero drag, m2 2.46  

Wheel diameter, m 0.366 

Axle ratio, -  3.32 

Internal Combustion Engine 

Displacement, cm3 999 

Max Power, kW 46 

Max Torque, Nm 90 

Electric Machine 

Max Power, kW 60 

Max Torque, Nm 207 

Battery 

Rated Capacity, Ah 6.5 

Gearbox 

Gear 1 Ratio, - 4.212 

Gear 2 Ratio, - 2.637 

Gear 3 Ratio, - 1.8 

Gear 4 Ratio, - 1.386 

Gear 5 Ratio, - 1 

Gear 6 Ratio, - 0.772 

 

Control strategies 

In the next paragraphs, a brief description of ECMS and ETESS 

principles, suitable for HEV operated in charge sustaining mode is 

introduced. Subsequently, those strategies are extended at managing 

the PHEV in a charge blended mode. Note that in both ECMS and 

ETESS implementations a transmission control module is adopted. 

The desired gear is selected from a vehicle speed–accelerator pedal 

position lookup table to simplify the control logic and lower the 

computational effort.  

Equivalent consumption minimization strategy 

ECMS reduces the global energy minimization problem of HEVs to a 

local one. Its cost function is formulated as follow: 

0
batt

f

P
J m s

LHV
= +     (1) 

It consists of an equivalent fuel rate, the sum of the actual fuel rate (ṁf) 

and a contribution related to the electric power, (where LHV is the fuel 

lower heating value and 𝑃𝑏𝑎𝑡𝑡 is the net electrical power as seen at the 

battery terminals), through an equivalence factor (s0). 

The equivalence factor represents the cost of the electric energy stored 

in the battery and its value for the optimal problem solution highly 

depends on vehicle characteristics and driving conditions. In the 

presented model ECMS implementation available in Powertrain 

Blockset Simulink library is taken as reference, following the 

formulation proposed by Onori et al. [27]. 

Efficient thermal electric skipping strategy 

The ETESS strategy is based on an alternative utilization of the thermal 

engine and of the electric machine to satisfy the power demanded for 

the traction. Three operating modes can be defined: pure thermal 

mode, full electric mode, parallel mode. The choice between the 

thermal engine and electric motor depends, at each time, on the 

comparison between the actual fuel rate of the thermal engine, 

operating to fully satisfy the power demand, and an equivalent fuel rate 

related to the pure electric driving of the vehicle. The main concept 

behind the equivalent electric fuel rate lies in the idea that the power 

provided by the electric motor was produced by the thermal engine in 

an undefined time while working in its minimum brake specific fuel 

consumption BSFCmin. To take into account power losses along the 

driveline, power demand is corrected by efficiencies of driveline 

components. The equivalent fuel consumption is defined as: 

, 0
dem min

f el
diff EM GB batt inv

P BSFC
m c

    


=     (2) 

where Pdem is the commanded wheel power, and diff, EM , GB , batt , 

inv , are respectively the efficiencies of the differential, electric motor, 

gearbox, battery, and inverter. c0 is a tuning constant and represents 

the fuel-equivalent consumption of pure electric driving. 

The actual fuel rate of the thermal engine depends on its operating 

point, defined by torque output and rotational speed:  

dem
f

GB diff

P BSFC
m

 


=     (3) 

Parallel mode is selected only if the thermal engine is not able to fully 

satisfy the power demand. In parallel mode, the thermal engine 

operates at its maximum load point and the electric motor delivers the 

lacking power to fulfill the demanded one. 

Given the above definitions, ETESS can be summarized by the 

inequalities reported below: 

,

,

pure thermal mode

pure electric mode

f f eq

f f eq

m m

m m

 


 

 

Battery recharging is provided only through regenerative braking. In 

summary, ETESS can be considered as a specialization of ECMS for 

which the only allowed values for the power-split are either 0 or 1. 

ETESS advantage consists of reduced computational effort. In fact, the 

engine operating point depends only on tractive power demand, and a 

discrete exploration of power split is not needed. 

Adaptive strategies 

Adaptive variants of ECMS and ETESS are here realized according to 

a CB approach. In this context, the SoC target decreases linearly with 

the driven distance, following the equation: 

( ) ( )( )
SoC SoC

SoC L SoC
L

i fin

m fintarget
m

t x t
−

=  − +  (4) 
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where SoCi and SoCfin are respectively the SoC of the battery at the 

start and the end of the driving mission, x(t) is vehicle position at time 

instant t and Lm is the total distance to be covered. It is worthwhile 

highlighting that the only information needed to evaluate the reference 

SoC are the initial state of charge of the battery (SoCi), the desired SoC 

value at the end of the mission (SoCfin), and the distance that vehicle 

must travel (that could be provided by a map service provider in real 

application on vehicle). In this paper, the ETESS, originally conceived 

to operate the powertrain in a charge sustaining mode, is extended for 

a CB strategy through the adaption of the tuning constant c0 related to 

the weight of pure electric driving cost (Eq 3). The equivalent fuel 

consumption defined in Eq. (3) is reformulated as: 

, 0
dem min

f el pen
diff EM GB batt inv

P BSFC
m k c

    


=    (5) 

where the penalization factor kpen is introduced. During the driving 

mission two scenarios are possible: 

1) The actual SoC is higher than the reference SoC*. Pure 

electric driving must be promoted lowering the cost related 

to it. 

2) The actual SoC is lower than the reference SoC*. Pure 

electric driving must be penalized raising the cost associated 

with it. 

The term kpen is distinguished for these scenarios. For this reason, two 

different functions are built depending on the difference between the 

actual SoC and the reference one SoC* and the normalized distance to 

travel (Δx=(Lm-x)/Lm). Logarithmic functions are selected to make the 

control strategy stable, and the correction of the adaptive cost is 

assumed to raise with the traveled distance and with the SoC error. For 

faster model running, the two functions are implemented in the form 

of a lookup table. Their values are shown in Figure 4 and Figure 5. 

 

Figure 4. kpen for SoC(x) < SoC*(x). 

 

Figure 5. kpen for SoC(x) > SoC*(x). 

In order to have consistent comparisons, the adaptive term is 

introduced in the ECMS, leading to the following formulation: 

0
batt

f pen

P
J m s k

LHV
= +       (6) 

Preliminary tests on 5 driving cycles, namely WLTC, HWFET, 

ARTEMIS URBAN, JC08, and a Real Driving Cycle (RDC), showed 

that the proper values of c0 and s0 are slightly dependent on the driving 

mission. In those simulations, the c0 and s0 are selected by a trial-and-

error procedure, where the monitored parameter to be minimized is the 

average difference between actual SoC and SoCtarget. As an example, 

the SoC trends for optimal (c0,opt in black), and sub-optimal values of 

c0 (0.95 in red and 1.15 in blue), and SoCtarget (green) are depicted in 

Figure 6 for WLTC. 

 
Figure 6. SoC along WLTC for: (black) c0=1.05, (blue) c0=1.15, (red) c0=0.95, 
SoC* (green). 

The cycle-dependent optimal values of c0 and s0 are then correlated to 

the travelled distance of each driving cycle, as shown in Figure 7. The 

latter also depicts appropriate fitting functions. Those functions will be 

used in the results presented in the following to assign the initial values 

of c0 and s0 whatever is the driving cycle, only as a function of the 

overall distance to be covered. 
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Figure 7. Driving cycle-tuned values of c0 and s0, and their fitting functions. 

Test cases 

A set of 10 driving cycles, listed in Table 2, have been selected for the 

comparison of A-ETESS and A-ECMS, with the aim of exploring their 

behavior under various scenarios, highly different in terms of 

maximum and mean speeds and accelerations, and distance to be 

covered. 

An initial battery SoC of 80% and a final SoC of 30% have been 

specified, in compliance with typical plug-in hybrid operations. 

To reinforce the validity of the comparisons, a Real Driving Emission-

compliant cycle (RDE) and a Real Driving cycle, whose data have 

been collected from a GPS, have been considered (cycles # 9 and #10 

in Table 2, respectively, plotted in Figure 8 e Figure 9). 

 
Figure 8. Real Driving Cycle: speed (black); altitude (green). 

 
Figure 9. RDE Cycle: speed, (black); altitude, (green). 

Fuel consumption correction related to battery 

discharge 

In order to take into account the energy consumption related to battery 

discharge, typical of PHEV operations, a correction of the cumulated 

fuel consumed at the end of the driving mission has to be introduced. 

To this aim, the electrical energy globally used is converted into an 

equivalent mass of fuel on the basis of the following hypothesis. The 

energy taken from the battery (ΔEbatt) is assumed to have been 

produced by the engine operating at its average efficiency point (𝜂̅). 

The correction of the fuel mass (Δmeq) can hence be represented as 

follow: 

batt
eq

E
m

LHV 


 =


     (7) 

The total fuel consumed (𝑚𝑡𝑜𝑡) to cover the driving mission is 

expressed as: 

tot ICE eqm m m= +      (8) 

where mICE is the actual mass of fuel consumed by the ICE. The total 

fuel consumed, normalized by the travelled distance along the driving 

mission, will be adopted in the following section as an indicator of 

vehicle fuel economy. 

Table 2. Tested driving cycles. 

TC Cycle Lm Vmean amax Vmax 

 units km km/h m/s2 km/h 

1 WLTC 23.00 46.5 1.75 131.3 

2 FTP75 17.77 25.9 1.48 91.2 

3 HWFET 16.49 77.6 1.43 96.4 

4 LA92 15.80 39.6 3.08 108.1 

5 ARTEMIS URBAN 4.87 17.7 2.86 57.7 

6 ARTEMIS RURAL 17.27 57.5 2.36 111.5 

7 ARTEMIS HIGH 130 28.74 96.9 1.92 131.8 

8 JC08 8.171 24.4 1.69 81.6 

9 RDC 59.02 39.8 3.33 89.9 

10 RDE 78.85 50.7 5.04 128.8 

  

ftp://ftp75/
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Figure 10. WLTC, (a) Target speed. ETESS/ECMS comparisons of battery SoC 

(b) and kpen (c). 

 
Figure 11. WLTC, ETESS/ECMS comparisons of EM power (a), ICE power 

(b), and cumulated consumed fuel (c). 

Results 

For sake of brevity results for test cases 1, 5, 8, 10, (representative for 

a high-speed cycle, low-medium speed cycles, and a RDE-compliant 

cycle) are discussed in detail below. 

Starting the discussion from test case 1, both A-ECMS and A-ETESS 

prove to follow the SoC target profile and almost reach the desired SoC 

at the end of the mission (Figure 10-b). The adaptive term properly 

reflects the error between the instantaneous SoC and the instantaneous 

target SoC (Figure 10-c). 

However, ETESS results present more skip between engine ON/OFF, 

resulting possibly in worse drivability in a real vehicle application 

(Table 3). Maximum and mean vehicle acceleration rates, and ICE skip 

number, reported in Table 3, are considered as indicators of vehicle 

drivability. 

During the high-speed portion of the cycle, between 1400 and 1800s, 

the EM supports the ICE, which delivers its maximum torque to fulfill 

the power demand at the wheels both in A-ECMS and A-ETESS. This 

is also evidenced by similar SoC trends (Figure 11-b). Globally, the 

considered strategies behave in a very similar manner, leading to 

analogous levels of consumed fuel (Figure 11-c). 

 
Figure 12. RDE, (a) Target speed. ETESS/ECMS comparisons of battery SoC 

(b) and kpen (c). 

 
Figure 13. RDE, ETESS/ECMS comparisons of EM power (a), ICE power (b), 

and cumulated consumed fuel (c). 

In Figure 12, the instantaneous trends of SoC (Figure 12-b), and the 

adaptive term (Figure 12-c) along the RDE-compliant cycle are 

depicted (test case #10 of Table 2). Moreover, the comparisons of ICE 

and EM powers and consumed fuel are reported in Figure 13. Soc ends 

and EM powers highlight significant differences in electrical energy 

usage between the two strategies due to the possibility of A-ECMS 

exploring intermediate power split. During the low-speed part of the 

cycle, A-ETESS prefers pure thermal mode more frequently than A-

ECMS. In the portion of the cycle between 4400 and 5400s, A-ECMS 

can recharge the battery keeping ICE mainly on its maximum torque 

working point. In A-ETESS, instead, battery recharge during traction 

is not possible and the ICE only delivers the power needed for traction. 

Consequently, when the EM is forced to fulfill power demand in 

parallel mode, this leads to a quite deep battery discharge, reaching a 

16% SoC at the end of the cycle. Despite those limitations of A-

ETESS, the cumulated fuel consumed is lower than the A-ECMS 

counterpart. On the other hand, a substantially greater electric energy 

consumption emerges overall. Those results globally compensate each 

other, leading, as shown in the following, to similar fuel economies. It 

is worthwhile mentioning that an enhanced gear shifting strategy and 

a more powerful ICE could significantly improve A-ETESS behavior. 
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Figure 14. JC08, (a) Target speed. ETESS/ECMS comparisons of battery SoC 

(b) and kpen (c). 

 
Figure 15. JC08, ETESS/ECMS comparisons of EM power (a), ICE power (b), 

and cumulated consumed fuel (c). 

To show the capability of the A-ETESS to deal with slow and short 

driving cycles, in Figure 14 and Figure 15, comparisons with A-ECMS 

along the JC08 cycle are depicted (test case #8 of Table 2). The 

adaptive term is always next to the unit (Figure 14-c) and the trends of 

the SoC are quite close to the target (Figure 14-b). The final consumed 

fuels, applying A-ECMS and A-ETESS, are similar but the first 

involves a greater battery discharge at the cycle end, leading to a worse 

fuel economy. As better detailed in the following, this is due to some 

issues in the management of ICE when this is operated with a null-

load. 

Table 3. Engine ON/OFF number and maximum and mean value of vehicle 

acceleration derivative for test cases 1,5,8,10. 

TC Strategy Engine 

ON/OFF, - 𝑚𝑎𝑥 (
𝑑𝑎

𝑑𝑡
) ,

𝑚

𝑠3  𝑚𝑒𝑎𝑛 (|
𝑑𝑎

𝑑𝑡
|) ,

𝑚

𝑠3 

1 

 

A-ETESS 238 1.253 0.145 

A-ECMS 156 1.329 0.133 

5 
A-ETESS 120 2.151 0.331 

A-ECMS 152 2.132 0.332 

8 
A-ETESS 170 1.008 0.150 

A-ECMS 135 1.354 0.137 

10 
A-ETESS 1324 2.363 0.200 

A-ECMS 856 2.385 0.195 

 

 
Figure 16. Artemis Urban, (a) Target speed. ETESS/ECMS comparisons of 

battery SoC (b) and kpen (c). 

 
Figure 17. Artemis Urban, ETESS/ECMS comparisons of EM power (a), ICE 

power (b), and cumulated consumed fuel (c). 

Detailed results for Artemis Urban Cycle (test case #8 of Table 2) are 

depicted in Figure 16 and Figure 17. A-ETESS and A-ECMS 

differently manage ICE and EM as highlighted in Figure 17-a and 

Figure 17-b, respectively. In the case of A-ETESS, the EM delivers a 

greater power when the ICE is operated load-less (null torque request) 

and the torque converter continues transmitting power (negative) to the 

driveline. In those circumstances, the battery quickly discharges as 

shown in Figure 16-b. The ICE works less frequently, even if at higher 

loads, and hence with higher efficiencies. The overall fuels consumed 

at the cycle end of A-ETESS and A-ECMS are similar (Figure 17-c), 

but a lower final SoC level is reached in the first case. This, as shown 

in the following, will determine a remarkable worsening of fuel 

economy in the comparison between A-ETESS and A-ECMS. 

In the future development of this activity, the adoption of detailed 

clutch control, combined with the removal of the torque converter, is 

expected to speed-up the ICE engagement / disengagement, and to 

nullify the dissipations related to ICE load-less operations. This is 

expected to align fuel economy performance of A-ETESS with respect 

to A-ECMS one. 

A global synthetic comparison between the results of the two strategies 

is realized through the bar charts in Figure 18. They represent the total 

fuel consumed per kilometer, for A-ETESS and A-ECMS, and over 

each couple of bars is shown the percentage difference, evaluated as: 

100
A ECMS A ETESS
tot tot

tot A ECMS
tot

m m
m

m

− −

−

−
 =     (9) 
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Figure 18. Comparison between A-ETESS and A-ECMS of kilometric total 

consumed fuel and percent difference in the test cases of Table 2. 

As it can be observed, the average total fuel consumed difference 

between A-ETESS and A-ECMS is below 2% and in most cases of 

about 1% or lower. Greater differences emerge only for test cases # 5 

and #8, for the issues related to load-less ICE operations above 

mentioned. From the viewpoint of vehicle drivability, no relevant 

difference emerges between A-ETESS and A-ECMS, as evidenced by 

maximum and averaged values of vehicle acceleration derivative 

reported in Table 3. As expected, A-ETESS involves a greater number 

of engine ON/OFF than A-ECMS in most of the test cases of Table 3, 

even if for case # 5 the opposite situation verified. The consequences 

of such circumstance of course would require some verification in a 

real on-vehicle application, especially in terms of thermal management 

and effectiveness of aftertreatment devices of the ICE. 

PIL Test 

In this section PIL tests’ results are presented. The execution of A-

ETESS and A-ECMS are tested on the NUCLEO-H743 [29]. It is a 

high-performance board for optimized control, equipped with an ARM 

Cortex-M7 running up to 480 MHz, 424 Core-Mark / 1027 DMIPS 

executing from Flash memory. The objective of the PIL test is to 

evaluate the execution time and computational effort of the C-Code 

generated for running on the NUCLEO-H743. The PIL testing 

procedure is based on asynchronous serial communication between the 

NUCLEO board and PC-Host. To this aim, Simulink Coder for 

STMicroelectronics NUCLEO board is used. At the end of the 

simulation in PIL mode, Simulink generates the code execution 

profiling report. Results are similar for each test case in Table 2, so for 

sake of brevity, only WLTC results are reported in Table 4. The latter 

shows that A-ETESS is two orders of magnitude faster than A-ECMS, 

with a maximum CPU Utilization of 0.015% in the place of 22.95%. 

For both strategies, the average execution time is lower than the typical 

cycle time of a CAN message for an updated engine torque request (10 

ms), but A-ETESS reduced computational effort confirm the 

possibility to run multiple control strategy on the same micro-

controller optimizing its utilization. 

Table 4. PIL testing results for WLTC 

Task A-ETESS A-ECMS Difference, % 

Maximum CPU 

Utilization, % 
0.015 22.95 -99.93 

Average CPU 

Utilization, % 
0.005 14.31 -99.96 

Maximum Execution 

Time, ms 
0.030 2.29 -98.68 

Average Execution 

Time, ms 
0.011 1.43 -99.22 

Conclusions 

This paper describes the extension of a simplified control strategy, 

named A-ETESS, for plug-in hybrid electric vehicles. It is developed 

for different driving cycles in a vehicle model built in Matlab/Simulink 

environment. A-ETESS is a charge-blended control strategy in which 

desired SoC target decrease linearly with the driven distance. The 

fundamental concept of the ETESS, based on an alternative utilization 

of the thermal and electric unit to fulfill the power demand of the 

vehicle, is extended through the implementation of an adaptive term. 

It is based on logarithmic functions, selected to make the strategy 

stable, and it is implemented in the form of a two-dimensional look-up 

table. To benchmark the proposed control strategy in terms of fuel 

consumption and computational effort, the same adaptive function is 

introduced in the ECMS (A-ECMS). 

In a preliminary stage, the proper value of c0 and s0, respectively the 

weight of electric energy cost in ETESS and the equivalence factor in 

ECMS, are selected to minimize the average difference between actual 

SoC and SoCtarget for 5 driving cycles, namely WLTC, HWFET, 

ARTEMIS URBAN, JC08, RDC. With appropriate fitting functions, 

c0 and s0 optimal values are then correlated to the travelled distance to 

generalize the approach to any driving cycle. The fitting function is 

used to assign the initial value of c0 and s0, whatever is the driving 

cycle. The results of the test cases point out that the average total fuel 

consumption difference between A-ETESS and A-ECMS is below 2%. 

To verify the possibility of A-ETESS to be implemented in a real-time 

vehicle application, and to compare the computational time, A-ETESS 

and A-ECMS are executed on the NUCLEO-H743, realizing PIL tests, 

while the vehicle model is simulated on a PC-host. PIL results 

confirmed that A-ETESS is two orders of magnitude faster than A-

ECMS and its average execution time is lower than the typical cycle 

time of a CAN message for an updated engine torque request. At the 

expense of slightly worse fuel consumption, the proposed strategy 

greatly reduces computational costs. 

As a future development of this work, the proposed methodology for 

the estimation of c0 will be refined to improve A-ETESS performance 

when it is implemented for a connected and autonomous vehicle. 

Vehicle connectivity can provide information to train neural networks 

which can cooperate with the proposed strategy. A detailed clutch 

model to disengage ICE, in the case of load-less operations, and an 

enhanced gear shifting strategy will be introduced, as well. 
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Acronyms 

A-ECMS Adaptive - ECMS 

BA Battery pack 

BSFC Brake Specific Fuel Consumption 

CB Charge Blended 

CD Charge Depleting 

CS Charge Sustaining 

DP Dynamic Programming 

ECMS Equivalent Consumption Minimization Strategy 

EM Electric motor 

EM Electric machine 
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EMS Energy Management Strategy 

ETESS Efficient Thermal / Electric Skipping Strategy 

FC Fuel consumption 

HEV Hybrid electric vehicle 

HIL Hardware in the Loop 

ICE Internal Combustion Engine 

LHV Lower Heating Value 

MT Manual Transmission 

PHEV Plug-in HEV 

PIL Processor in the Loop 

PMP Pontryagin Minimum Principle 

RDC Real Driving Cycle 

RDE Real driving Emission 

SoC State of charge 

Symbols 

m mass 

𝜟𝑬𝒃𝒂𝒕𝒕 Battery energy variation 

 𝒎̇𝒇 Fuel mass rate 

𝒔𝟎 Equivalence factor 

 𝒌𝒑𝒆𝒏 Adaptive term 

𝑷𝒃𝒂𝒕𝒕 Battery Power 

Greeks 

η Efficiency 

Subscripts 

a Acceleration 

batt  Battery 

dem Demanded 

diff Differential 

eq Equivalent 

f Adaptive - ECMS 

fin Final 

GB Gear-box 

i Initial 

inv Inverter 

m Mission 

max Maximum 

min Minimum 

tot Total 

v Velocity 

Superscripts 

* Target 

- Mean Value 

 


