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Quantum nanodevices are fundamental systems in quantum thermodynamics that have been the subject of
profound interest in recent years. Among these, quantum batteries play a very important role. In this paper we
lay down a theory of random quantum batteries and provide a systematic way of computing the average work
and work fluctuations in such devices by investigating their typical behavior. We show that the performance of
random quantum batteries exhibits typicality and depends only on the spectral properties of the time evolving
operator, the initial state, and the measuring Hamiltonian. At given revival times a random quantum battery
features a quantum advantage over classical random batteries. Our method is particularly apt to be used both
for exactly solvable models like the Jaynes-Cummings model or in perturbation theory, e.g., systems subject to
harmonic perturbations. We also study the setting of quantum adiabatic random batteries.
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I. INTRODUCTION

Quantum batteries [1–8] are a fundamental concept in
quantum thermodynamics [9–17], and they have attracted
interest as part of research in nanodevices that can operate at
the quantum level [18–20]. Tools and insights from quantum
information theory have provided a natural bedrock for the
description of quantum nanodevices and quantum batteries
from the point of view of resource and information theory
[7,21–29].

In a closed quantum system, a battery can be modeled
by a time-dependent Hamiltonian H (t ) evolving from an
initial H0 to a final H1. The system is initialized in a state
ρ and, given that the entropy of the battery is constant under
unitary evolution, the work extracted is given by the difference
between the initial and final energies as measured in H0 [2].

In this paper, we lay down the theory of random quantum
batteries (RQB). The randomness lies in the initial state ρ,
the Hamitonian defining the units of the energy H0, and
the time-evolution operator Ut . We are concerned with the
average work extractable by (or storable in) such a device and
its fluctuations.

The main results of this paper are as follows: (i) proving a
typicality result for the extracted work in a large class of time-
dependent quantum systems. We show that—as the dimension
n of the Hilbert space becomes large—the extracted work
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is almost always given by the difference in energy between
the initial state and the completely mixed state, amplified
by a quantum efficiency factor 1 + Q/n2 that depends solely
on the distribution of the eigenvalues of the exponential of
the time-dependent perturbation operator K . For Q = 0, this
result can be obtained by a classical system at infinite tem-
perature. A random quantum battery can do it with limited
energy resources. A nonvanishing Q is a contribution that is
purely quantum and depends on the constructive interference
between different eigenvalues of K . The second main result
is (ii) to provide a general method to study the average
extractable work and its fluctuations in perturbation theory,
which is essential to obtain results for physically relevant
systems beside few exactly solvable models. We study as an
example the Jaynes-Cummings model with a harmonic per-
turbation. Finally (iii), we study the case of adiabatic random
quantum batteries, that is, batteries that operate slowly, so that
there is no inversion of the populations of the energy levels.
We show that also adiabatic random quantum batteries feature
typicality in the large Hilbert space dimension n limit.

There is a large interest in typical properties in batteries
due to the effect of disorder and the environment. In Ref. [30]
a model of quantum battery based on a spin chain is studied
where randomness is introduced as disorder in the couplings
of the Hamiltonian H0. In Ref. [31] the disorder is introduced
in the interaction Hamiltonian which is chosen to be in
the many-body localized phase. In Refs. [32,33], the work
statistics in the scenario of a random quantum quench are
computed, and it is shown that the knowledge of the work
statistics in this setting yields information on the Loschmidt
echo dynamics. The importance of work fluctuations in quan-
tum thermodynamics in a different setting than ours was also
studied in Ref. [34].
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II. SETUP

In this section, we are studying the typical behavior of
random batteries when the interaction Hamiltonian is a ran-
dom operator. The importance of this approach lies in the
fact that typicality is a powerful argument to establish general
features in quantum thermodynamics. As an example, typi-
cality of entanglement in Hilbert space can be used to explain
thermalization in a closed quantum system [35]. On the other
hand, this approach is useful to argue about the robustness of
a model of quantum battery.

We model the quantum battery in the following way. Start
with a finite-dimensional Hilbert space H = Cn and time-
dependent Hamiltonians H (t ) ∈ B(H), that is, a bounded
Hermitian operator on H. The initial state of the system
will be denoted by ρ and its time evolution by ρt = Utρ ≡
UtρU †

t , where the unitary evolution operator is given by the
time-ordered product Ut = T exp[−i

∫ t
0 H (s)ds]. We model

the Hamiltonian in two ways. In the first scenario we consider
the time dependence as a perturbation of a time-independent
Hamiltonian H0, that is, HG(t ) = H0 + VG(t ). The subscript G
indicates the randomness of the perturbation which we take to
be VG(t ) = G†V (t )G, where G is a unitary representation of
the unitary group on Cn. In the second scenario we consider
the time evolution generated by adiabatic evolution induced
by a Hamiltonian HG(t ), where the Gt is a family of unitary
operators that rotates the projectors onto the subspaces of
a given energy. The discussion of the adiabatic scenario is
deferred to Sec. IV C.

In both settings, we can similarly model randomness in the
initial state ρ or Hamiltonian H0 also by random rotations
ρG = GρG† and HG = G†H0G. Loosely speaking, we will
refer to the spectra of the initial state, of the measuring
Hamiltonian H0, and of the evolution operator

K = T exp

[
−i

∫ t

0
V (s)ds

]
(1)

collectively as the battery spectrum. Notice that all these
randomizations preserve the battery spectrum. This is a crucial
point in this paper, as we are interested in ensembles of
quantum batteries with a given spectrum. Randomizing also
over the spectrum will yield, as we shall see, trivial results.

In our setting the system is closed and evolves unitarily
and the entropy of the battery does not change. Thus the work
extracted from the quantum battery is given by

W (t ) = Tr [(ρ − ρt )H0] (2)

(or ergotropy [1,36]).
As mentioned before, this approach is different from the

type of disorder in the couplings considered in the literature
[30–33], as for us disorder is a random rotation G that man-
tains the spectrum of the eigenvalues of the perturbation VG(t )
(the interaction).

A simple example which clarifies how our disorder affects
the extracted work W is the following single spin case inspired
by nuclear magnetic resonance (NMR). We consider a Hamil-
tonian of the form H0 = σ̂x + Hint, where Hint = g�σ · �B(t )
and �B(t ) = (bx(t ), by(t ), bz(t )) is the external magnetic field
and �σ the Pauli matrices. The spectrum of the interaction is

effectively dependent only on the norm of the external field �B,
which can, however, be directed in all directions. We focus
on an average which keeps the spectrum of the interaction
constant but rotates its basis. A two-level system example is
the Jaynes-Cummings model of optics, on which we focus our
attention in a random electromagnetic background. Precise
experiments in these systems exist and thus provide a good
background for testing the typical behavior of (random) quan-
tum batteries [37,38].

The Hamiltonian H0 defines the energy measurement, that
is, the amount of energy stored in the battery. If we had access
to any possible random Hamiltonian H (t ), then we would
expect that the average state ρt after the evolution should
be the completely mixed state, in which case the average
work extracted would be 〈W 〉 = E0 − Tr H0/n. This work
is positive (that is, the battery has discharged) if the initial
energy was larger than the energy in the completely mixed
state or it has charged if the initial state was populating the
lower levels of H0. Notice that this setting we have arbitrary
Hamiltonians H (t ) that can access arbitrary high energies
as measured by H0. Instead, we ask how much work can
be extracted if we have limited energetic resources, that is,
when the spectra of H0 and V (t ) are fixed. This motivates our
setting in terms of rotations of the time-dependent part of the
Hamiltonians as HG(t ) = H0 + VG(t ).

In the following, we are interested in the average work
obtained by averaging over initial states ρ, the measurement
of energy Hamiltonian H0, and the time-dependent Hamilto-
nian HG(t ). The averages are performed according to the Haar
measure on Cn. The fluctuations of work are defined through
the same Haar averaging as �W 2 = 〈(W − 〈W 〉)2〉. In the
following, the symbol 〈X 〉 will represent the Haar average
〈X 〉 = ∫

dUG†
U XGU , where GU is the suitable representation

of the unitary group. We use standard techniques for the Haar
averaging (see, e.g., Refs. [39–41]) to compute the average
and variances according to the Haar measure.

A. Work and quantumness

A quick calculation shows that W (t ) = Tr {U †
t H0

[ρ,Ut ]} = Tr {ρ[Ut ,U †
t H0]} = Tr {Ut [U

†
t H0, ρ]}. These exp-

ressions imply that the extractable work depends on the lack
of commutativity between the initial state ρ, the evolution
operator Ut , and the Hamiltonian H0. Moreover, they show
that the coherence of the initial state in the eigenbasis of
the evolution operator is necessary to have nonvanishing
extractable work from a quantum battery [42–50]. In
particular, if the initial state is a steady state for the unitary
evolution, the work is identically zero and so are work
fluctuations. It is interesting that coherence in two different
bases plays a role, which calls for a multibasis definition of
coherence from the resource theoretic point of view. In the
following, we will see that this lack of commutativity takes the
form of out-of-time-order correlators (OTOC), which is a hint
to the connection between performance of quantum batteries
and quantum chaos [32]. Notice that these expressions are
also valid in the interaction picture UI = exp(iH0t )Ut =
T exp[−i

∫ t
0 VG(s)ds] = GT exp[−i

∫ t
0 V (s)ds]G† ≡ GKG†,

an expression that will become useful later. Bounds on the
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stored and extracted energy have been obtained recently in
Ref. [51], also in terms of the quantum Fisher information for
the power Pt = d

dt W .
As we remarked above, with no limit on energetic re-

sources one can bring the system on average in the completely
mixed state. A quantum channel that just dephases the system
and mixes up the populations can achieve the same final
result. The same result can be obtained by a classical system
working at infinite temperature. Consequently, we are also
interested in whether quantum coherence plays a specific role
in outperforming the mixed-state case. As we shall see, partial
revivals due to the build-up of quantum coherence provide a
quantum advantage.

III. AVERAGE WORK AND FLUCTUATIONS IN RQBs

In this section, we show how the average work and its
fluctuations behave in quantum random batteries when we
randomize over the initial states ρ, the measuring Hamilto-
nian H0, or the interaction V (t ). In all cases, this average
is obtained by rotating these operators by a random unitary
operator and by taking the Haar average.

Let us start by computing the average work obtained by a
generic quantum evolution and averaging over all the initial
states. It should not be surprising that the average extracted
work amounts to zero. Indeed, we have

〈W 〉ρ = Tr [〈ρ〉(H0 − U †H0U )] = 1

n
1lTr δH0 = 0, (3)

where we defined the traceless operator δH0 ≡
[H0 − U †H0U ] and have used that the Haar-average state in
the Hilbert space is 〈ρ〉 = 1/n 1l. However, the fluctuations are
not trivial [34]. Details of the calculation are in Appendix A 1.
We obtain

�W 2
ρ = 2

nTr ρ2 − 1

n(n2 − 1)

[
Tr H2

0 − Tr (H0U
†
t H0Ut )

]
. (4)

It is remarkable that the maximum of the fluctuations are
reached for a pure state, whereas they decrease with the purity
of the initial state and are identically zero if the system is
initialized in the completely mixed state. Similarly, fluctua-
tions in the work are smaller the larger the fluctuations in the
eigenvalues of H0. Notice that the time-dependent part has the
form of a (two-point) out-of-time-ordered correlator (OTOC)
[52,53].

What happens instead if we choose randomly the measur-
ing Hamiltonian H0? As we said above, we model this family
of Hamiltonians as HG = G†H0G. This is a sensible definition
as it gives us results that still depend on the spectrum of the
Hamiltonian. Again, it should not surprise that the average
work is zero, since

〈W 〉H0 = Tr [(ρ − ρt )〈H0〉] = Tr H0

n
Tr (ρ − ρt ) = 0 (5)

as the average of every operator in the trivial representation
is proportional to the identity, and ρ − ρt is traceless. Some
tedious calculations in Appendix A 2 show that the work
fluctuations are given by

�W 2
H0

= 〈W 2〉H0 = 2n

n2 − 1
�H2

0 Tr (ρ2 − ρρt ), (6)

where �H2
0 = 1

n Tr H2
0 − 1

n2 (Tr H0)2 are the fluctuations of the
eigenvalues of H0, namely the fluctuations of H0 in the com-
pletely mixed state. Again, the time-dependent part Tr (ρρt )
has the form of an OTOC. The connection between OTO
correlators and Loschmidt echo has recently been investigated
in Ref. [27]. In terms of the 2-norm fidelity F2(ρ, σ ) =
Tr (ρσ )/ max[Tr ρ2, Tr σ 2] and the Loschmidt echo Lt =
F2(ρρt ), we have

�W 2
H0

= 2n

n2 − 1
�H2

0 Tr ρ2[1 − Lt ]. (7)

Notice that as Lt is typically scaling as n−2 [54], the average
fluctuations are determined only by the fluctuations in H0 and
the purity of the initial state. However, at specific, revival
times, there is a spike in fluctuations. Moreover, if we consider
the average work over a large time T , then the average
Loschmidt echo becomes the purity of the the completely
dephased state in the basis of the Hamiltonian, ρ̄, and the
above expression reads

�W 2
T = 2n

n2 − 1
�H2

0 Tr ρ2(1 − Tr ρ̄2), (8)

where the time average over a time T is defined as f
T ≡

T −1
∫ T

0 f (t )dt . We see that large fluctuations can be achieved
if there are not only large fluctuations in the energy gaps of
the Hamiltonian H0 but also if the initial state is pure enough
or if the time evolution is nontrivial. If the initial state is very
mixed or the time evolution does not feature an exponentially
decaying Loschmidt echo, then work fluctuations will be
negligible regardless of H0.

At this point, we are ready to tackle our main goal, that is,
to compute the work and its fluctuations in a quantum battery
modeled by HG(t ) = H0 + VG(t ). In this setup, one has perfect
control on the measuring Hamiltonian, but the controlled
quantum evolution is very noisy, as VG(t ) = G†V (t )G. How-
ever, one has retained control on the spectrum of the driving
Hamiltonian, which is an experimentally realistic situation.
In the interaction picture, and by defining C ≡ Tr [UIρU †

I H0],
we see that work is given by

W (t ) = Tr [ρH0] − Tr [ρt H0] ≡ E0 − Tr [ρt H0]

= E0 − Tr [UIρU †
I H0] ≡ E0 − C. (9)

We can write the above expression as

W (t ) = E0 − Tr [UIρ ⊗ U †
I H0T (2)], (10)

= E0 − Tr [(ρ ⊗ H0)(UI ⊗ U †
I )T (2)]. (11)

Now recall that the interaction picture operator UI depends on
the random rotations G as GKG†. The average work 〈W (t )〉V

over the noise G can then be computed (see Appendix A 1 for
details) to give

〈W (t )〉V =
[

E0 − Tr H0

n

][
n

n + 1
+ Qt

n2 − 1

]
(12)

with

Qt = −2
∑
j �=k

cos(θ j − θk ), (13)
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where λk = exp(iθk ) are the eigenvalues of the evolution op-
erator K = T exp[−i

∫ t
0 V (s)ds]. The time dependence of the

work is thus contained in the function Qt . For large dimension
n, the average work reads

〈W (t )〉V =
(

E0 − Tr H0

n

)(
1 + Qt

n2

)
= Tr [(ρ − 1l/n)H0](1 + Qt/n2). (14)

At this point, averaging over the initial state ρ would give
zero, while averaging over the Hamiltonian H0 gives an ex-
ponentially small work ∼n−1.

Let us comment on the meaning of the result [Eq. (12)].
We are starting with an initial state ρ and evolving with a
random evolution generated by V (t ). So far we have averaged
over rotations of the time-dependent perturbation VG(t ). Such
rotations keep the eigenvalues of VG unchanged so that all the
results are a function of spectral quantities like Qt . One could
expect that if the evolution were completely random, then
one would end up with the completely mixed state, and then
the work extracted would have to be W = (E0 − Tr H0/n).
However, we have fixed the spectrum of V (t ) in the random-
ization, so it is remarkable that one can achieve the infinite
temperature result.

Moreover, in the average work 〈W (t )〉V there is an ampli-
fying quantum correction (1 + Qt/n2). These corrections are
quantum in nature because they correspond to the constructive
interference that builds up in Qt = −2

∑
j �=k cos(θ j − θk ).

One expects that without a specific structure in the θ ’s, the
factor Q/n2 would rapidly decay to zero. This means that on
average (and typically) one can achieve in this setting the same
result that would be attained with random arbitrary resources.
However, we can do better than that. First, if fluctuations are
not a concern, then it is possible for nanosystems with small
n to have large Qt . We are going to give an example in the
following, using an optical cavity. Moreover, it is possible to
design devices with a spectrum such that, for specific values
of t , the term Qt is of order one, which can be exploited as
quantum advantage in the construction of a battery. In the next
section, we show how, in a specific example, revivals in Qt

allow the battery to outperform the infinite temperature (and
classical) behavior.

The question of what happens in the large-n case is very in-
teresting. In the optical cavity application shown in Sec. IV A,
the quantum amplifying factor is washed out as n−2. We
think that this would happen for most models. In this sense,
this is a sign of the loss of quantumness as the dimension
of the Hilbert space grows. One wonders, though, whether
for some specific model the amplifying factor Qt/n2 might
not disappear in the large-n limit. Finding such a realistic
model would be of enormous practical interest. Conversely,
proving that no model can feature this advantage as n goes
to infinity would be a very interesting result in quantum
thermodynamics.

As mentioned, one expects that for a random matrix its
spectrum should yield a vanishing Qt . A natural question to
ask then is what the typical behavior of this quantity is when
these eigenvalues are taken randomly, according to a circulant
unitary matrices (CUE) distribution (see, e.g., Ref. [32]). Let
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FIG. 1. Average of Q over 1000 samples for random matri-
ces in the circulant unitary ensembles of dimensions n = 10, n =
100, 500, 1000. The peak of the distribution converges to zero for
larger values of n.

us define rk = λk+1/λk . We prove in Appendix B 5 that

Q = 1

2

n∑
k=1

n∑
j=k+1

⎛
⎝ n∏

i= j+1

ri +
n∏

i= j+1

r−1
i

⎞
⎠. (15)

The behavior of Q, evaluated numerically, is depicted in
Fig. 1. We see that for large n the peak of the distribution
moves toward zero. That is, averaging over the spectra does
not give any amplification Qt .

How typical is the behavior of a random quantum battery
in the large-n limit? If there is typicality, an optimal strategy
for random quantum batteries would consist in fixing the
optimal spectrum of K and then knowing that the other details
of the evolution will not matter in the large-n limit. To this
end, we need to compute the fluctuations which is far more
challenging because they involve the fourth tensor power of
the unitary representation. We find that

�W 2
V = 〈C2〉 − 〈C〉2, (16)

and a lengthy calculation yields

〈C2〉 =
∑

i

λiTr [�i(ρ ⊗ H0)⊗2] (17)

with λi = (Tr �)−1Tr (�iK⊗2 ⊗ K†⊗2), where �’s are the
projectors on the irreps of Sk , and the index i runs over
the five irreducible representations of S4. The details of the
calculation are given in Appendix B 1. Let us show that these
fluctuations scale like n−2. First, the expectation values in the
above equation can be bound as

|Tr [�i(ρ ⊗ H0)⊗2]| � |Tr [(ρ ⊗ H0)⊗2]| = (Tr ρ)2(Tr H0)2

= (Tr H0)2 = O(n2). (18)

Putting together all the terms, we find in Appendix B 2 that
the fluctuations are upper bounded by

�W 2
V � O(n−4)M(n)O(n2),

where M(n) is an upper bound to the terms of the form
|∑mnop ei(θm+θp−θn−θo)|. If one chooses spectral properties for
K such that M(n) = O(1), then the fluctuations scale like

023095-4



RANDOM QUANTUM BATTERIES PHYSICAL REVIEW RESEARCH 2, 023095 (2020)

n−2 and thus a many-body quantum battery would show
exponentially small fluctuations. Moreover, this is the typical
case. Indeed, by averaging over CUE to compute M(n), we
see in Fig. 1 that this quantity is concentrated near zero for
large n. More in-depth numerical evidence is provided in
Appendix B 2, where we analyze numerically every single
term which contributes to the fluctuations, showing that in-
deed every single term converges to zero for large n’s.

This represents the first main result of this paper: random
quantum batteries show typicality in allowing a work extrac-
tion given by the difference in energy between initial state and
completely mixed state, amplified (or attenued) by the form
factor (1 + Qt/n2). By thus choosing a suitable V0, one can
obtain with probability almost one the desired behavior for
work extraction in the sense of the Haar measure on GV0G†.

IV. APPLICATIONS

A. Jaynes-Cummings model

The specific behavior of Qt determines whether the quan-
tum advantage in a random battery is washed out in the large-n
limit. We now apply these findings in the case of an exactly
solvable model and study the behavior of Qt . We consider a
two-level system in an optical trap described by the Jaynes-
Cummings model [55]. In the rotating-wave approximation
only two adjacent modes at time (n, n + 1) of the electromag-
netic field couple with the two-level system (details provided
Appendix B 3). For this calculation, we assume that the atom
couples with a finite set of modes of electromagnetic field,
which we truncate at a number n = 2R, where R is a truncation
of the number of modes of the electric field. At the end of the
calculation we will send R → ∞.

The Hamiltonian reads

H = ω(t )a†a + 
(t )

2
σz + g(t )(aσ+ + a†σ−)

≡ H0 + V (t ), (19)

where we define �(t ) = 
(t ) − ω(t ), and we assume g(t ) =
g0eMt .

For this model, we find the eigenvalues exp(iθk ) exactly
and use them to evaluate Eq. (13). Following the calculation

in Appendix B 3, we get θk − θm = g2
0(k − m)( eMt −eMt0

M2 )
2 ≡

(k − m)αt , where M is a constant defined as �(t )
�(t ′ ) = g(t )

g(t ′ ) =
eM(t−t ′ ). We then obtain the average work Eq. (12), where, as
seen above, the function Q(αt ) is a sum of trigonometric func-
tions whose complete expression is given in Appendix B 3,
Eq. (B51). We note that when Qt > 0, effectively the system
extracts more work than the classical counterpark. In this
sense, Fig. 2(a) shows that there can be a quantum advantage
in a specific model.

In Fig. 2 we plot the time evolution of the extracted work
from the random Jaynes-Cummings battery averaged over V .
As we can see, for most times the quantum efficiency gets
washed out. For small n, at specific revival times given by
inverting Eq. (B51), the value of Qt becomes of order one,
thus providing a nonvanishing quantum efficiency. This is at
the price of performing much worse at different times. One
can design a quantum battery by an array of many random
nanobatteries of small n and evolve to the revival time where

(a)

(b)

FIG. 2. Average work extraction for a random quantum battery
made by an optical trap described by the Jaynes-Cummings model.
(a) The function Q(α) as function of α for n = 2, 10, 20. The
maximum value of this function is 0.5. As the size increases, revivals
become more peaked. (b) Work for the Jaynes-Cummings model as
a function of time for ρ = 0.5 for n = 2, 10, 20 and Tr(H0) = 90 ∗ n
and E0 = 100. The baseline represents the work extracted by a
battery that brings the system in the completely mixed state.

the work extracted goes above that corresponding to the max-
imally mixed state [3,56,57]. The fact that nonvanishing Qt is
obtained as revivals in Eq. (13) is a sign that this amplification
comes from the constructive interference coming from the
complex eigenvalues of K and therefore of its quantum nature.
On the other hand, for large n, the system almost always
behaves like in the limit of the battery that completely mixes
the state, though one has obtained this performance with
limited, realistic resources that do not require to bring the
system at infinite temperature.

B. Time-dependent perturbation theory

In the case of the Jaynes-Cummings model we could solve
for the time evolution exactly, finding expressions for the aver-
age work and its fluctuations via perturbation theory. We make
use of the Dyson series for the evolution operator in the in-
teraction picture, namely UI (t ) = T

∑∞
n=0

(−i)n

n! [
∫ t

0 dt ′VI (t ′)]n.
We consider perturbations up to the second order in the Dyson
series, and at this point we can average over G. Define the
operator A = ∫ t

t0
V0(t ′)dt ′. Again we need the fluctuations of
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FIG. 3. Average work from Eq. (B74) for n = 3, 10, 20, 100 and
ω = 0.5, against the baseline work E0 − Tr(H0 )

n , with Tr(H0) = 90n
and E0 = 100.

A in the completely mixed state, namely n2�A2 = n Tr A2 −
(Tr A)2.

Averaging over G requires a lengthy calculation (see Ap-
pendix B 4) yielding

〈W (t )〉V = n2�A2

n2 − 1

[
E0 − Tr (H0)

n

]
. (20)

The second term is the difference between the initial energy
and the energy in the completely mixed state.

As an example consider the case of an exactly solvable
Hamiltonian H0 subject to the harmonic perturbation V (t ) =
V̂0eiωt + V̂ †

0 e−iωt . Let λk be the eigenvalues of V̂0. Averaging
over V results in

〈W (t )〉V = 2 f 2(t, ω)

(n2 − 1)

⎧⎨
⎩∑

k,k′
Re
(
λkei t+t0

2 ω
)
Re
(
λk′ei t+t0

2 ω
)

− 2n
∑

k

Re
[
λ2

keiω(t0+t )
]+ 2n

∑
k

σk

}
, (21)

where we have defined f (t, ω) = 2sin( t−t0
2 ω)/ω and λ’s are

the eigenvalues of V̂ . As one can see, the average work
decreases with n. We plot 〈W (t )〉V in Fig. 3. In this model it is
easy to find the revival times at which the quantum efficiency
is maintained also for larger values of n. One can indeed show
(see Appendix B 4) that the work performed by a random
harmonic perturbation of the form 2V̂ cos(ωt ) has always a
single maximum at tk = (2k + 1)π

ω
on average.

C. Adiabatic quantum batteries

Now let us consider the case of a quantum battery perform-
ing an adiabatic evolution connecting the two Hamiltonians
H0 and H1 and the two respective equilibrium states ρ0, ρ1,
e.g., two eigenstates or Gibbs states for H0, H1 (but also
thermal or more general mixed equilibrium states). Adiabatic
evolution as a method to perform quantum computation [58]
or quantum control has been long an important tool in quan-
tum information processing, see, e.g., Ref. [59]. Adiabatic
evolution to perform work extraction was studied in Ref. [60].

A model for an adiabatic quantum battery based on a three-
level system was studied in Ref. [61]. In this section, we
deal with general adiabatic quantum batteries in which the
adiabatic drive is rotated in a random direction as a function
of time.

In general, two Hamiltonians are adiabatically connectible
if and only if they belong to the same connected com-
ponent of the set of isodegenerate Hamiltonians [62]. By
denoting Hα = ∑R

i=1 εi
α�i

α (α = 0, 1) the spectral resolution
of H0 and H1, and ordering their eigenvalues in ascend-
ing order, i.e., ε1

α < · · · < εR
α , we define the vectors Dα :=

(tr�1
α, . . . ,�R

α ) ≡ (d1
α . . . dR

α ), with
∑

k dk
α = n. The Hamilto-

nians H0 and H1 belong to the same connected component of
the set of isodegenerate Hamiltonians iff D0 = D1. So, speak-
ing of adiabatically connected Hamiltonians, we can drop the
index α. Let us now introduce the functions εi : [0, 1] �→ IR
such that εi(0) = εi

0, and εi(1) = εi
1 ((i = 1, . . . , R) obeying

the no-crossing condition εi+1(t ) > εi(t ) (i = 1, . . . , R − 1).
A continuous family of Hamiltonians connecting H0, H1 has
then the form H (t ) = ∑R

i=1 εi(t )Ut�
i
0U

†
t , where the contin-

uous unitary family {Ut }1
t=0 is such that U0 = 1 and U1 = U .

The work extracted after the adiabatic evolution thus reads

W = Tr (ρ0H0) − Tr (ρ1H0)

=
R∑

i=1

Tr
[
pi
(
�i

0 − �i
1

)
H0
]

=
R∑

i, j=1

piε
j
0Tr

[(
�i

0 − �i
1

)
�

j
0

]
, (22)

because the populations in the ith subspace are conserved by
the adiabatic evolution. We now have �i

α�
j
β = δi j if α = β,

but otherwise they are not necessarily orthogonal. We see that
the work depends on the choice of U as

WU =
∑

i j

piε
j
0

[
Tr
(
�i

0�
j
0

)− Tr
(
�i

0�
j
1

)]
=
∑

i j

piε
j
0

[
diδi j − Tr

(
�i

0U�
j
0U

†)]. (23)

We can now perform the average over the unitary transforma-
tion U . We easily obtain

〈W 〉ad =
∑

i j

piε
j
0

[
diδi j − Tr

(
�i

0
d jI

n

)]

=
∑

i j

piε
j
0

(
diδi j − did j

n

)
, (24)

= E0 −
∑

i j

piε
j
0

did j

n
. (25)

To understand the role of the degeneracies, let us consider
the case of a nondegenerate Hamiltonian, so that di = 1 for
all i. We obtain 〈W 〉ad = E0 − Tr H0/n, which again is the
difference between the initial energy and the energy of the
completely mixed state and thus the quantum efficiency is
washed out (see Ref. [63]). More generally, as we show in
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Appendix B 6, we find an upper bound on the adiabatic work
given by

〈W 〉ad � E0(1 + c) − Tr (H0)

n
, (26)

c =
∑

i d2
i − n

n
, (27)

so that potentially random adiabatic quantum batteries could
give an advantage over classical devices as well (even at
infinite temperature), as c � 0.

Let us now look at the fluctuations �W 2
ad . The calculation

involves averaging the square of the work and thus the order
two tensored representation of the unitary group. This is also a
lengthy calculation, whose details are given in Appendix B 6.
We obtain

�W 2
ad =

∑
i, j,k,l

piε
j
0 pkε

l
0

[
did jdkdl

n2 − 1
− didkdlδl j

n(n2 − 1)

− d jdkdlδki

n(n2 − 1)
+ dkdlδkiδl j

n2 − 1
− did jdkdl

n2

]
. (28)

For n � 1, the terms of order 1/n3 go to zero faster than 1/n2,
and we obtain

�W 2
ad =︸︷︷︸

n�1

1

n2

∑
i, j,k,l

piε
j
0 pkε

l
0(dkdlδkiδl j )

= Tr(H0ρ0)2

n2
= E2

0

n2
, (29)

which shows that random adiabatic quantum batteries feature
typicality. Fluctuations during adiabatic driving were studied
in a different context also in Ref. [64].

V. CONCLUSIONS AND OUTLOOK

In this paper we provided a notion of quantum random
batteries by means of Haar averaging initial states, energy
measurement Hamiltonian, and the time-dependent driving of
the quantum battery. This method allows to study large classes
of systems, including not-exactly solvable systems or adia-
batic quantum batteries. The average work and fluctuations
are systematically studied; we find that quantum batteries
exhibit typical behavior in the large-n limit given the spectral
properties of the driving system. On average, the work ex-
tracted is found to be typically equal to the difference between
the energy of the initial state and that of the completely mixed
state, amplified by a quantum efficiency factor (1 + Qt/n2)
that only depends on the spectrum of the driving Hamiltonian.
Quantum efficiency is not washed out at specific revival times
for small systems. Our method allows for the computation of
Qt in perturbation theory, therefore allowing for the treatment
of realistic systems. We have also treated the case of random
adiabatic quantum batteries, finding that amplification is lost
for a nondegenerate Hamiltonian.

In perspective, our results put forward several questions
that we would like to investigate in the immediate future.
We have shown that for small systems there are revival times
in which quantum coherence builds up and gives a quantum
advantage. Typically, this is not the case for large n. However,
it is an open problem whether there are random quantum

batteries whose spectral properties allow for the build-up of
coherence that outperforms the classical case. Conversely,
showing the impossibility of such quantum amplification for
large n would be an important result in quantum thermody-
namics. This is a problem which we plan to explore in the
near future in a realistic model. A second question relating
to the effect of quantum coherence also arises. As we have
seen, the extracted work can be related to the coherence of
the initial state in two different bases or of the operator Ut

in two different bases. This suggests that there is a non-
trivial interplay between coherence and work that involves
more than one basis [65]. Also, the lack of commutativity
between the initial state and the evolution operator or the
measuring Hamiltonian and the evolution operator take the
form of out-of-time-order correlators (OTOC). It would then
be interesting to explore the connection among fast decays of
these quantities, chaos, scrambling, and work statistics. One
very intriguing insight comes from the fact that the narrowing
of fluctuations does shrink the quantum efficiency but at spe-
cific revival times. These revival times correspond to spectral
properties of the time evolution operator and one would be
interested in understanding the connection between quantum
efficiency of random quantum batteries and the integrability
or chaotic behavior of the Hamiltonian. Using tools from local
Haar averaging [40], we can explore whether the efficiency in
a battery with a microscopic local drive is influenced by quan-
tum chaos or integrability. The optimization of the path in a
adiabatic quantum algorithm is related to the brachistochrone
or geodesics in the space of the ground-state manifold [66].
It would be very interesting to see whether optimal paths
correspond to bounds given by quantum thermodynamics.
Finally, it would be important to generalize these results to
the case of open quantum systems.
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APPENDIX A

1. Calculation of �W 2
ρ

Since W = 0 and W 2 = TrW · TrW = Tr (W ⊗ W ), we
see that �W 2 = 〈W 2〉 = 〈Tr (ρδH0)⊗2〉 = Tr [〈ρ⊗2〉δH⊗2].
The average on the tensored representation G⊗2ρ⊗2G†⊗2 is
also well known [40,41] and is the linear combination on
the irreps of S2 given by 〈ρ⊗2〉 = ∑

± λ±�± with λ± =
Tr (�±ρ⊗2)/Tr �± and �± = (1l⊗2 + T (2) )/2, where T (2) ) is
the order two permutation (“swap”) operator on H⊗2. Thus
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we obtain

�W 2
ρ =

∑
±

λ±Tr (�±δH⊗2)

= [(λ+ + λ−)Tr δH⊗2 + (λ+ − λ−)Tr (T (2)δH⊗2)]

2

= (λ+ + λ−)(Tr δH )2 + 1
2 (λ+ − λ−)Tr δH2

2
. (A1)

We saw above that Tr δH = 0 and finally we obtain

�W 2
ρ = nTr ρ2 − 1

n(n2 − 1)
Tr δH2 = 2

nTr ρ2 − 1

n(n2 − 1)
Tr H2

0 , (A2)

which is the result we present in the paper.

2. Work fluctuations averaging on H0

Let us define R = ρ − ρt . We consider the fluctuations on
the work via the averaging on the operator H0. We have

�W 2
H0

= 〈W 2〉 = Tr

[
R⊗2

∑
±

λ±�±

]

= 1

2

∑
±

λ±Tr[R⊗2 ± T (2)R⊗2]

= 1

2

∑
±

λ±[(TrR)2 ± TrR2]

= 1

2
(λ+ − λ−)TrR2,

where now the coefficients of the projectors are λ± =
Tr (�±H⊗2

0 )/Tr �±. Direct calculation gives, defining a ≡
(Tr H0)2 and b ≡ Tr H2

0 ,

1

2
(λ+ − λ−) = 1

n(n + 1)
(a + b) − 1

n(n − 1)
(a − b), (A3)

=
[

1

n(n + 1)
− 1

n(n − 1)

]
a

+
[

1

n(n + 1)
− 1

n(n − 1)

]
b, (A4)

= 2

n(n2 − 1)
(nb − a). (A5)

The work fluctuations can thus be written as

�W 2
H0

= 2

n(n2 − 1)

[
nTr H2

0 − (Tr H0)2
]
Tr R2.

Now consider the fluctuations �H2
0 of the eigenvalues of

the Hamiltonian H0, namely the fluctuations of H0 in the
completely mixed state 1l/n. We have

�H2
0 = 1

n
Tr H2

0 − 1

n2
(Tr H0)2, (A6)

we then obtain

�W 2
H0

= 2

n(n2 − 1)
n2�H2

0 Tr R2,

and thus, finally,

�W 2
H0

= 〈W 2〉H0 = Tr

[
(ρ − ρt )

⊗2
∑
±

λ±�±

]

= 2n

n2 − 1
�H2

0 Tr (ρ2 − ρρt ), (A7)

which is the result we report in the paper.

3. Traces of K

A direct calculation of the coefficients yields

λ+ = Tr (K ⊗ K†�+)

Tr �+
= 2

n(n + 1)

Tr KTr K† + Tr KK†

2

λ− = Tr (U0 ⊗ U †
0 �−)

Tr �−
= 2

n(n − 1)

Tr KTr K† − Tr KK†

2
.

Moreover, we use that

λ+�+ + λ−�− = λ+ + λ−
2

I + λ+ − λ−
2

T . (A8)

We now see that, defining

a = Tr KTr K† =
∣∣∣∣∣∑

i

eiθi

∣∣∣∣∣
2

= 2
∑
j �=k

cos(θ j − θk ) + n

b = Tr KK† = n (A9)

and thus

λ+ = 1

n

a + b

n + 1
, λ− = 1

n

a − b

n − 1
, (A10)

and using the relationships

1

2n

[
a + b

(n + 1)
+ a − b

(n − 1)

]
= an − b

n3 − n

1

2n

[
a + b

(n + 1)
− a − b

(n − 1)

]
= bn − a

n3 − n
, (A11)

we get

λ+ + λ−
2

= n
[
2
∑

j �=k cos(θ j − θk ) + n
]− n

n3 − n

= 2
∑

j �=k cos(θ j − θk ) + n − 1

n2 − 1

λ+ − λ−
2

= n2 − [
2
∑

j �=k cos(θ j − θk ) + n
]

n(n2 − 1)
. (A12)

4. Calculation of 〈W (t )〉V and �W 2
V

The work extracted W (t ) reads

W (t ) = Tr [ωH0] = Tr [ρH0] − Tr [ρt H0] ≡ E0 − Tr [ρt H0]

= E0 − Tr [UIρU †
I H0] ≡ E0 − C. (A13)

We can write the above expression as

W (t ) = E0 − Tr [UIρ ⊗ U †
I H0T (2)], (A14)

= E0 − Tr [(ρ ⊗ H0)(UI ⊗ U †
I )T (2)]. (A15)
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The average work over the noise G can then be computed as

〈W (t )〉V = E0 − Tr[(ρ ⊗ H0)〈(UI ⊗ U †
I )〉T (2)]

= E0 − Tr[(ρ ⊗ H0)〈(GKG† ⊗ GK†G†)〉T (2)]

= E0 − Tr[(ρ ⊗ H0)〈G⊗2(K ⊗ K†)G†⊗2〉T (2)].

(A16)

The unitary operator K = T exp[−i
∫ t

0 V (s)ds] will be diago-
nalized in the form K = ∑

k exp(iθk )|k〉〈k|.
Using the usual technique, we find 〈G⊗2(K ⊗ K†)G†⊗2〉 =∑
± λ±�±, where now λ± = Tr (�±K ⊗ K†)/Tr �±. Notice

that in this setup, already the average work involves the
average over the tensored representation of the unitary group.
We obtain

〈W (t )〉V

= E0 − Tr

[(
λ+ + λ−

2
I + λ+ − λ−

2
T

)
T (2)(ρ0 ⊗ H0)

]

= E0 − Tr

[(
λ+ + λ−

2
T (2) + λ+ − λ−

2
I

)
(ρ0 ⊗ H0)

]

= E0

(
1 − λ+ + λ−

2

)
− λ+ − λ−

2
Tr (ρ0)Tr (H0)

= E0

[
1 − 2

∑
j �=k cos(θ j − θk ) + n − 1

n2 − 1

]

− n2 − [
2
∑

j �=k cos(θ j − θk ) + n
]

n2 − 1

Tr (H0)

n
. (A17)

We finally obtain

〈W (t )〉V =
[

E0 − Tr H0

n

][
n

n + 1
+ Q

n2 − 1

]
, (A18)

where in the above equation, exp(iθk ) are the eigenvalues
of the evolution operator K = T exp[−i

∫ t
0 V (s)ds]. All the

time dependence of the is thus contained in the function
Q(θ j − θk ).

The fluctuations are more challenging because they involve
the fourth tensor power of the unitary representation. Let us
set out to find them. We see that

�W 2
V = 〈C2〉 − 〈C〉2, (A19)

where C ≡ Tr [UIρU †
I H0]. The relevant object to compute is

then

〈C2〉 = Tr
[〈(UIρU †

I )⊗2〉H⊗2
0

]
, (A20)

= Tr
[〈(GKG†ρGK†G)⊗2〉H⊗2

0

]
, (A21)

= Tr [〈G⊗4(K ⊗ K†)⊗2G†⊗4〉(ρ ⊗ H0)⊗2]. (A22)

This time, the average reads

〈G⊗4(K ⊗ K†)⊗2G†⊗4〉 =
∑

i

λi�i (A23)

with λi = (Tr �)−1Tr (�iK⊗2 ⊗ K†⊗2). Now the �i are the
projectors onto the irreps of S4. There are five irreducible
irreps of S4. In the next subsection we show an explicit

TABLE I. The character table of S4.

e (12) (123) (1234) (12)(34)

trivial 1 1 1 1 1
sgn 1 −1 1 −1 1
st 3 1 0 −1 −1
st ⊗ sgn 3 −1 0 1 −1
2D 2 0 −1 0 2
size 1 6 8 6 3

expression of these projectors. A lengthy calculation yields

〈C2〉 =
∑

i

λiTr [�i(ρ ⊗ H0)⊗2] (A24)

= Tr[�(tr)(ρ ⊗ H0)⊗2]

Tr[�(tr)]
+ Tr[�(sig)(ρ ⊗ H0)⊗2]

Tr[�(sig)(ρ ⊗ H0)⊗2]

+ Tr[�(st)(ρ ⊗ H0)⊗2]

Tr[�(st)]
+ Tr[�(st⊗sgn)(ρ ⊗ H0)⊗2]

Tr[�(st⊗sgn)]

+ Tr[�(2D)(ρ ⊗ H0)⊗2]

Tr[�(2D)]
. (A25)

5. Irreps of S4

Let us first recall the character table of S4 in Table I. The
last row of Table I gives the size of each conjugacy class
in S4. Given a permutation σ ∈ S4, we denote by S(σ ) the
representation of S : S4 �→ GL(H⊗4) given by

S(σ ) =
∑
i jkl

|σ (i jkl )〉〈i jkl|. (A26)

By the Schur-Weyl duality the projectors onto its irreps are

�(r) = χ (r)(e)

|S4|
∑
σ∈S4

χ (r)(σ )S(σ ), (A27)

where χ (r) is the character of the (r) irrep of S4 and χ (e) is the
dimension of the irrep in S4.

The five projectors are given by:

�(tr) = 1

24

∑
S4

S(σ )

�(sig) = 1

24

[∑
σeven

S(σev) −
∑
σodd

S(σodd )

]

�(st) = 3

24
{31 + [S(12) + · · · ] − [S(1234) + · · · ]

− [S(12)(34) + · · · ]}

�(st⊗sgn) = 3

24
{31 − [S(12) + · · · ] + [S(1234) + · · · ]

− [S(12)(34) + · · · ]}

�(2D) = 2

24
{21 − [S(123) + · · · ] + 2[S(12)(34) + · · · ]}.

In the above, the symbol + · · · denotes a sum over all the
members of the conjugacy class. As is well known, the five
conjugacy classes of S4 are given by their cycle structure of
Table II.
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TABLE II. The conjugacy classes of S4 which we use for the
projectors.

e (..) (..)(..) (...) (....)

e (12) (12)(34) (123) (1234)
(13) (13)(24) (132) (1342)
(14) (14)(23) (124) (1423)
(23) (142) (1243)
(24) (134) (1432)
(34) (143) (1324)

(234)
(243)

APPENDIX B: WORK FLUCTUATIONS VIA IRREPS OF S4

1. Main definitions and projectors

Before we begin the calculation, we start with
a few definitions which will be useful in the
following:

K =
∑

k

eiθk |k〉〈k|,

〈C2〉 = Tr
[〈(UIρU †

I )⊗2〉H⊗2
0

]
= Tr

[〈(GkG†ρG†K†G)⊗2〉H⊗2
0

]
,

= Tr[〈G⊗4(K ⊗ K†)⊗2G†⊗4〉
× (ρ ⊗ H0)⊗2)],〈

G⊗4(K ⊗ K†)⊗2G†⊗4
〉 = ∑

i

λi�i,

λi = (Tr�i )
−1Tr

[
�iK

†2 ⊗ K†⊗2],
(ρ ⊗ H0)⊗2 =

∑
abcde f

ρabεcρdeε f |acdf 〉〈bce f |,

〈C2〉 =
∑

i

λiTr [�i(ρ ⊗ H0)2].

We then start with the construction of the projectors in a basis,
which we take as the computational basis:

S(1234) + · · · ∝
∑
i jkl

|li jk〉〈i jkl| + |kil j〉〈i jkl| + |lki j〉〈i jkl| + | jlik〉〈i jkl| + |kl ji〉〈i jkl| + | jkli〉〈i jkl|

S(123) + · · · ∝
∑
i jkl

|ki jl〉〈i jkl| + | jkil〉〈i jkl| + |il jk〉〈i jkl| + |ikl j〉〈i jkl| + |l jik〉〈i jkl| + |k jli〉〈i jkl| + |lik j〉〈i jkl|

+ | jlki〉〈i jkl|, (B1)

S(1) ∝
∑
i jkl

|i jkl〉〈i jkl|, (B2)

S(12) + · · · ∝
∑
i jkl

| jikl〉〈i jkl| + |k jil〉〈i jkl| + |l jki〉〈i jkl| + |ik jl〉〈i jkl| + |ilk j〉〈i jkl| + |i jlk〉〈i jkl|, (B3)

S(12)(34) + · · · ∝
∑
i jkl

| jilk〉〈i jkl| + |kli j〉〈i jkl| + |lk ji〉〈i jkl|. (B4)

Since we are interested only in the scaling with n of the fluctuations, we focus on the structure of the traces and not on the
proportionality constants. Using the definitions above, the projectors can then be written explicitly in the computational basis.
At this point, we can start the evaluation of the traces. First we note that (ρ ⊗ H0)2 = ∑

abcde f ρabεcρdeε f |acdf 〉〈bce f |. We then
have for Tr[�(ρ ⊗ H0)⊗2]:

Tr[�(tr)(ρ ⊗ H0)⊗2] ∝
∑

[ρaaεcρddε f + ρadεaρdeε f + ρacεdρdaε f + ρaaε f ρdcεd + ρaaεdρdf εc + ρa f εcρdaεd

+ ρadεcρdf εa + ρa f εaρddεc + ρacε f ρddεa + ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa

+ρadεaρdf εc + ρa f εdρdaεc + ρacε f ρdaεd + ρadε f ρdaεa + ρacεdρdf εa + ρacεaρddε f

+ ρa f εaρdcεd + ρadεeρdaε f + ρa f εcρddεa + ρaaεdρdcε f + ρaaε f ρddεc + ρaaεcρdf εd ],

Tr[�(sig)(ρ ⊗ H0)⊗2] ∝
∑

[ρaaεcρddε f + (ρadεaρdeε f + ρacεdρdaε f + ρaaε f ρdcεd + ρaaεdρdf εc + ρa f εcρdaεd

+ ρadεcρdf εa + ρa f εaρddεc + ρacε f ρddεa + ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa)

− (ρa f εaρdcεd + ρadεaρdf εc + ρa f εdρdaεc + ρacε f ρdaεd + ρadε f ρdaεa + ρacεdρdf εa

+ ρacεaρddε f + ρadεeρdaε f + ρa f εcρddεa) + ρaaεdρdcε f + ρaaε f ρddεc + ρaaεcρdf εd ], (B5)

Tr[�(st)(ρ ⊗ H0)⊗2] ∝
∑

[(ρacεaρddε f + ρadεcρdaε f + ρa f εcρddεa + ρaaεdρdcε f + ρaaε f ρddεc + ρaaεcρdf εd )

− (ρa f εaρdcεd + ρadεaρdcεd + ρa f εdρdaεc + ρacε f ρdaεd + ρadε f ρdaεa + ρacεdρdf εa)

− (ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa)], (B6)
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Tr[�(st⊗sgn)(ρ ⊗ H0)⊗2] ∝
∑

[−(ρacεaρddε f + ρadεcρdaε f + ρa f εcρddεa + ρaaεdρdcε f + ρaaε f ρddεc + ρaaεcρdf εd )

+ (ρa f εaρdcεd + ρadεaρdcεd + ρa f εdρdaεc + ρacε f ρdaεd + ρadε f ρdaεa + ρacεdρdf εa)

− (ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa)], (B7)

Tr[�(2D)(ρ ⊗ H0)⊗2] ∝
∑

[−(ρadεaρdcε f + ρacεdρdaε f + ρaaε f ρdcεd + ρaaεdρdf εc + ρa f εcρdaεd + ρa f εaρddεc

+ ρacε f ρddεa) + 2(ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa)].

We can now evaluate the trace over the operator K ⊗ K† with the projectors, Tr[�K⊗2 ⊗ K†⊗2]’s. We have the following
results:

Tr[�(tr)K⊗2 ⊗ K†⊗2] ∝
∑
mnop

4ei(θm+θp−θn−θo) + ei(θm+θo−θm−θn ) + ei(θo+θp−θm−θn ) + 4ei(θp+θn−θm−θo) + ei(θn+θo−θp−θn )

+ 4ei(θm+θn−θo−θp), (B8)

Tr[�(sig)K⊗2 ⊗ K†⊗2] = 0, (B9)

Tr[�(st)K⊗2 ⊗ K†⊗2] ∝
∑
mnop

[ei(θm+θn−θo−θp) − ei(θo+θp−θm−θn )], (B10)

Tr[�(st⊗sgn)K⊗2 ⊗ K†⊗2] ∝ −
∑
mnop

ei(θo+θp−θm−θn ), (B11)

Tr[�(2D)K⊗2 ⊗ K†⊗2] ∝
∑
mnop

{ei(θn+θo−θm−θp) + ei(θn+θm−θp−θo) + 2ei(θ0+θp−θm−θn ) + 2ei(θp+θo−θn−θm )

− [ei(θm+θp−θn−θo) + ei(θm+θo−θp−θn ) + ei(θo+θn−θp−θm ) + ei(θp+θm−θo−θn ) + ei(θn+θp−θo−θm )]}. (B12)

We now consider the traces of the projectors alone, Tr[�]’s. It is not hard to see that for large values of n, we have

Tr[�(tr)] ∝ n4, (B13)

Tr[�(sig)] ∝ n4, (B14)

Tr[�(st)] ∝ n4, (B15)

Tr[�(st⊗sgn)] ∝ n4, (B16)

Tr[�(2D)] ∝ n4. (B17)

At this point we can calculate the average fluctuations, which can be written as

F = F�(tr) + F�(sig) + F�(st) + F�(st⊗sgn) + F�(2D) , (B18)

F�(tr) ∝ 1

n4

[∑
mnop

4ei(θm+θp−θn−θo) + 4ei(θm+θo−θm−θn ) + 4ei(θo+θp−θm−θn ) (B19)

+ 4ei(θp+θn−θm−θo) + 4ei(θn+θo−θp−θn ) + 4ei(θm+θn−θo−θp)

]
, (B20)

·
∑

[ρaaεcρddε f + ρadεaρdeε f + ρacεdρdaε f + ρaaε f ρdcεd + ρaaεdρdf εc + ρa f εcρdaεd + ρadεcρdf εa

+ ρa f εaρddεc + ρacε f ρddεa + ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa + ρa f εaρdcεd + ρadεaρdf εc

+ ρa f εdρdaεc + ρacε f ρdaεd + ρadε f ρdaεa + ρacεdρdf εa + ρacεaρddε f + ρadεeρdaε f + ρa f εcρddεa

+ ρaaεdρdcε f + ρaaε f ρddεc + ρaaεcρdf εd ],

F�(sig) = 0, (B21)

F�(st) ∝ 1

n4

[∑
mnop

4ei(θm+θn−θo−θp) − 4ei(θo+θp−θm−θn )

]
(B22)
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{
3Tr[(ρ ⊗ H0)⊗2] −

∑
[(ρacεaρddε f + ρadεcρdaε f + ρa f εcρddεa + ρaaεdρdcε f + ρaaε f ρddεc + ρaaεcρdf εd )

− (ρa f εaρdcεd + ρadεaρdcεd + ρa f εdρdaεc + ρacε f ρdaεd + ρadε f ρdaεa + ρacεdρdf εa)

− (ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa)]

}
, (B23)

F�(st⊗sgn) ∝ 1

n4

[∑
mnop

ei(θo+θp−θm−θn )

]
·
{

3

24
3Tr[(ρ ⊗ H0)⊗2] +

[∑
−(ρacεaρddε f + ρadεcρdaε f + ρa f εcρddεa

+ρaaεdρdcε f + ρaaε f ρddεc + ρaaεcρdf εd ) + (ρa f εaρdcεd + ρadεaρdcεd + ρa f εdρdaεc + ρacε f ρdaεd

+ρadε f ρdaεa + ρacεdρdf εa) − (ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa)

]}
, (B24)

F�(2D) ∝ 1

n4

∑
mnop

[ei(θn+θo−θm−θp) − (ei(θm+θp−θn−θo) + ei(θm+θo−θp−θn ) + ei(θo+θn−θp−θm )

+ ei(θp+θm−θo−θn ) + ei(θn+θp−θo−θm ) ) + 2ei(θn+θm−θp−θo) + 2ei(θ0+θp−θm−θn ) + 2ei(θp+θo−θn−θm )]

·
{

2Tr[(ρ ⊗ H0)⊗2] +
∑

−(ρadεaρdcε f + ρacεdρdaε f

+ ρaaε f ρdcεd + ρaaεdρdf εc + ρa f εcρdaεd + ρa f εaρddεc

+ ρacε f ρddεa) + 2(ρacεaρdf εd + ρadε f ρdaεc + ρa f εdρdcεa)
}
.

2. Concentration bound

Let us now consider an upper bound for the nonzero
fluctuation terms based on general grounds and on the von
Neumann inequality [67]. Let A and B be Hermitean matrices
with eigenvalues values of ai � ai−1’s and bi � bi−1. Then,
we have

|Tr(AB)| �
n∑

i=1

aibi. (B25)

Let us now assume that A is a projector with k nonzero
eigenvalues. Then the inequality implies that

|Tr(�B)| �
n∑

j=n−k

b j, (B26)

where bn · · · bn−k are the highest k’s eigenvalues values of B.
We thus need to focus on the singular values of (ρ ⊗ H )⊗2.
The eigenvalues of ρ ⊗ H , are ei j = piε j , and the eigenvalues
(ρ ⊗ H )⊗2 are ei jkl = piε j pkεl . Since pi � 1 in the most
general case, ei jkl is upper bounded by ε2

max. We thus have
that a conservative upper bound is given by

|Tr(�(ρ ⊗ H )⊗2)| � k2ε2
max, (B27)

where k is the dimension of the nonzero subspace of the
projector operator. Since each term of the trace is divided
by the dimension of the projector operator and we have four
nonzero terms, we have

F � 4ε2
max (B28)

in the most general case. However, the bound pi � 1 is very
loose. If pi � γ

n , then we have

F � 4γ 2 ε2
max

n2
(B29)

and thus there is concentration. For instance, we have con-
centration if we have that ρ is a mixed sate. A stronger
bound can be done by using the expressions we derived. We
see from the bound above that this is not enough to prove
concentration. However, the concentration can be proven if
the take advantage of the structure of the fluctuations in terms
of the density matrix.

We now provide an alternative proof of the same statement.
From the previous subsection, we see that the work fluctua-
tions F can be upper bounded as

F � Cn−4M(n)kn2, (B30)

where C is a O(1) constant counting the number of all the
terms in F , M(n) is an upper bound over al the terms of the
type |∑mnop ei(θo+θp−θm−θn )|, and kn2 is the upper bound to
the terms containing the ρ, H0:

|Tr [�x(ρ ⊗ H0)⊗2]| � |Tr [(ρ ⊗ H0)⊗2]|
= (Tr ρ)2(Tr H0)2

= (Tr H0)2 � kn2, (B31)

which is true because the projector operators are positive.
Putting things together, we obtain

F � C′M(n)n−2 (B32)

with a new constant C′. The fluctuations are thus ruled by
M(n). One can design quantum batteries with large fluctu-
ations. However, on average these fluctuations go to zero.
Indeed, it should not be surprising that the sum over (the sum
of) random phases goes to zero. For random unitaries we need
to use the ensemble of CUE. Numerical evaluation (see in
Fig. 4) shows that M(n) is concentrated around zero for large
dimension n.
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(a)

(b)

(c)

FIG. 4. Frequency distribution of the average 〈e
∑4

j=1 ±iθ j 〉 for
CUE over M = 1000 samples. We see that the distribution is strongly
peaked around the value of 〈K2〉 = 0, for the three terms with three
possible signatures in the exponent for (a)–(c), which is what is
necessary for the proof of our concentration at least in the case of
CUE. The last peak is just a binning artifact.

3. Jaynes-Cummings model

As seen in Eq. (12), the average work depends only on the
value of the eigenvalues of the unitary evolution operator K .
Let us consider the case of an optical cavity interacting with a
two-state system. The optical cavity with the two-state system
(an atom) span(|g〉, |e〉) can be described within the rotating-
wave approximation using the Jaynes-Cumming Hamiltonian:

H = ωa†a + 


2
σz + g(t )(aσ+ + a†σ−) ≡ H0 + V (t ).

(B33)

It is immediate to see that [H, a+a + σz] = 0. Specifically, we
focus on the interaction picture, in which HI = RHR†, where
(in the rotating frame) we have R = e−iωt (a†a+ σz

2 ), and one has
a Hamiltonian described by HI = RHR†, with

HI = 
 − ω

2
σz + g(t )(a†σ− + σ+a). (B34)

We define � = 
 − ω. The operators a and a† act on the
electromagnetic field, while σ ’s act on the two-level system.
We have

σ+ = |e〉〈g|, σ− = |g〉〈e|. (B35)

We now consider a wave function of the form

|ψ (t )〉 =
R∑

n=0

Cn(t )|n〉 ⊗ |e〉 + Dn(t )|n + 1〉 ⊗ |g〉, (B36)

where we will send R → ∞ at the end of the calculation. The
time evolution of this system is given by the Schroedinger
equation (in the interaction picture), which is of the form:

i∂t |ψ (t )〉 = HI |ψ (t )〉, (B37)

which is not hard to see that it can be written as

i∂t

[
Cn(t )
Dn(t )

]
= V

[
Cn(t )
Dn(t )

]

=
(

�
2

√
n + 1g√

n + 1g −�
2

)[
Cn(t )
Dn(t )

]
, (B38)

whose solution is given by

|ψn(t )〉 = T e−i
∫ t V (t ′ )dt ′ |ψn(0)〉. (B39)

We note that V (t ′)V (t ) �= V (t )V (t ′) in the case of a time-
dependent interaction Hamiltonian. In fact, we see that on
the nth subspace of the wave function, given the definition
W (�, g) = �g′ − g�′ of the Wronskian of the functions �

and g, we have

[Vr (t ′),Vr (t )] =
[

0 W (�, g)
√

r + 1
W (�, g)

√
r + 1 0

]
,

(B40)

from which we observe that we can have a time-dependent and
commuting (at all times) Hamiltonian if we have the condition

�g′ = g�′, (B41)

which can be satisfied if

�(t )

�(t ′)
= g(t )

g(t ′)
= eM(t−t ′ ) (B42)

for a constant M. In this case, the time ordering can be
removed and we can write∫ t

t0

Vr (t ′)dt ′ =
(

�
2

√
r + 1g√

r + 1g −�
2

)
eMt − eMt0

M
. (B43)

The Stone operator in this case can also be written explic-
itly on each subspace. It can be shown that in each rth
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subspaces

e−i
∫ t

t0
Vr (t ′ )dt ′ = I

∞∑
k=0

(−1)kβr (t )2k

(2k)!
− i

σ̂x

βr (t )

∞∑
k=0

(−1)k βr (t )2k+1

(2k + 1)!
(B44)

and where

βr (t ) =
[
�2

0

4
+ g2(r + 1)

](
eMt − eMt0

M

)2

. (B45)

Thus, the Stone operator which describes the time evolution on the rth subspace is given by

e−i
∫ t

t0
Vr (t ′ )dt ′ =

{
cos[βr (t )] − i�

2βr (t ) sin[βr (t )] −i g
√

r+1
βr (t ) sin[βr (t )]

−i g
√

r+1
βr (t ) sin[βr (t )] cos[βr (t )] + i�

2βr (t ) sin[βr (t )]

}
. (B46)

We now focus on the eigenvalues of the matrix above, which must be of the form eiθk . For a matrix of the type(
a − id −ic
−ic a + id

)
, (B47)

the eigenvalues are known exactly and are of the form λ± = a ± i
√

c2 + d2. It is immediate to see that the eigenvalues are
complex and have norm 1. The phases are given by ±θk ≡ ±βk (t ). We thus find that

θk − θm = g2
0(k − m)

(
eMt − eMt0

M2

)2

(B48)

which is what we need for the evaluation for the work in the main text. We can now plug this result into Eq. (12), which reads

〈W (t )〉V = E0

[
1 − 2

∑
j �=k cos(θ j − θk ) + 1 − n

n2 − 1

]
− n2 − (2

∑
j �=k cos(θ j − θk ) + n)

n2 − 1

Tr(H0)

n
,

where here n = 2R, and R is the number of modes of the electric field. Let us call α = g2
0( eMt −eMt0

M2 )
2
. We thus need to calculate∑

j �=k cos[α( j − k)]. Thankfully, this sum is known and is given by

Q̃(α) ≡
n∑

i=1

n∑
j=i+1

cos[α(i − j)]

= 1

4

{
cos

(
α − π

2

)
csc

(
α

2

)
− sin

(
α − π

2

)
cot

(
α

2

)
csc

(
α

2

)
− csc

(
α

2

)

× cos

[
1

2
(α − 2αn − π )

]
+ cot

(
α

2

)
csc

(
α

2

)
sin

[
1

2
(α − 2αn − π )

]
− 2n

}
, (B49)

from which we obtain:

〈W (t )〉V = E0

[
1 − 4Q̃(αt ) + 1 − n

n2 − 1

]
− n2 − [4Q̃(αt ) + n]

n2 − 1

Tr (H0)

n
= W0 − Q̃(αt )W1, (B50)

with

W0 = E0

(
1 + 1

n + 1

)
− Tr (H0)

n + 1

W1 = 4

n2 − 1

[
Tr (H0)

n
− E0

]
. (B51)

We thus see that the time dependence of the work enters only in Q̃[α(t )].
In order to calculate the times at which the revivals occur, we write Q̃(α) in terms of α(t ) = 2πz(t ). We thus have a simpler

formula:

Q̃[r(t )] = 1
4 csc2[πz(t )]{n cos[2πz(t )] − cos[2πnz(t )] − n + 1}. (B52)

It is not hard to see that revivals occur for zk = k with k ∈ N and thus for αk a multiple of 2π . We now have that

αk = g2
0

(
eMtk − eMt0

M2

)2

= 2πk (B53)
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for k ∈ N, from which we get the revival times

tk =
log

( g0et0M+√
2πM

√
k

g0

)
M

(B54)

as a function of M and g0.

4. Time-dependent perturbation theory

In the case of the Jaynes-Cummings model we could solve for the time evolution exactly. This is rarely the case and we must
resort to perturbation theory in most cases. Consider to start the definition of the work:

W = Tr (ρ0H0) − Tr (UIρ0U
†
I H0), (B55)

where we consider a Dyson expansion. In this case, the solution is given by the Dyson time ordering

UI (t ) = T
∞∑

k=0

(−i)k

k!

[ ∫ t

0
dt ′VI (t ′)

]k

. (B56)

We are interested in the case in which we need to resort to perturbation theory to evaluate the unitary operator above. To the
second order, we have

U2 = G†
[
I − i

∫ t

t0

V0(t ′)dt ′ − 1

2

∫ t

t0

∫ t

t0

: V0(t ′)V0(t ′′) : dt ′dt ′′
]

G + O(t3),

U †
2 = G†

{
I + i

∫ t

t0

V †
0 (t ′)dt ′ − 1

2

∫ t

t0

∫ t

t0

[: V0(t ′)V0(t ′′) :]†dt ′dt ′′
}

G + O(t3). (B57)

In what follows, we can assume that V †
0 = V0. Given the expressions above, we have now to evaluate the average of

W = Tr (ρ0H0) − Tr (G†U2Gρ0G†U †
2 GH0) (B58)

using the average of the unitary matrix G:

〈(G† ⊗ G†)(U2 ⊗ U †
2 )(G ⊗ G)〉G = λ+�+ + λ−�−, (B59)

with

λ+ = Tr [(U2 ⊗ U †
2 )�+]

Tr (�+)
= 2

n(n + 1)

Tr (U2)Tr (U †
2 ) + Tr (U2U

†
2 )

2

λ− = Tr [(U2 ⊗ U †
2 )�−]

Tr (�−)
= 2

n(n − 1)

Tr (U2)Tr (U †
2 ) − Tr (U2U

†
2 )

2
.

Note that Tr(U2U
†
2 ) = Tr(U †

2 U2) = n + O(t3). We can use at this point the Eqs. (A12) again. After a rapid calculation we see
that (up to corrections of order t3), we have

λ± = n2 ± n − nTr (A2) − Tr (A)2

n2 ± n
(B60)

and thus
λ+ + λ−

2
= n2 − 1 + Tr(A)2 − nTr(A2)

n2 − 1
λ+ − λ−

2
= −Tr(A)2 − nTr(A2)

n(n2 − n)
, (B61)

where A = ∫ t
t0

V0(t ′)dt ′, where we used the fact that inside the traces one has Tr {∫ t
t0

∫ t
t0

[: V0(t ′)V0(t ′′) :]†dt ′dt ′′} = Tr [
∫ t

t0

∫ t
t0

:
V0(t ′)V0(t ′′) : dt ′dt ′′]. We can now write

〈W 〉G = Tr (ρ0H0)

[
1 − λ+ + λ−

2

]
− λ+ − λ−

2
Tr (H0)Tr (ρ0)

= Tr (ρ0H0)

{
1 − [Tr (A)2 − nTr (A2) + n2 − 1]

n2 − 1

}
+ Tr (A)2 − nTr (A2)

n2 − 1

Tr (H0)

n
.

= Tr (A)2 − nTr (A2)

n2 − 1

Tr (H0)

n
− Tr (ρ0H0)

[Tr (A)2 − nTr (A2)]

n2 − 1

= Tr (A)2 − nTr (A2)

n2 − 1

[
Tr (H0)

n
− Tr (ρ0H0)

]
= 〈�A2〉G〈E〉G. (B62)
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As it could be seen from the beginning, we see again explicitly
that the average work is the product of two terms, the first is
adimensional and due to the perturbation,

〈�A2〉G = Tr (A)2 − nTr (A2)

n2 − 1
(B63)

and the second term has the dimensions of energy and due to
the density matrix only:

〈E〉G =
[

Tr (H0)

n
− Tr (ρ0H0)

]
. (B64)

This shows that no work can extracted if the density matrix is
the one of a completely mixed state.

a. Example: Harmonic perturbations

Let us now consider the example of an n-level system. At
time t = 0, the system is described by the eigenvalue equation

Ĥ0ψm = Emψm, (B65)

and thus the wave function as a function of time can be written
as

ψ (t ) =
∑

m

cme−iEmtψm. (B66)

We consider now a harmonic perturbation of the form:

Ĥ1(t ) = V̂ eiωt + V̂ †e−iωt , (B67)

where V̂ is a generic operator and V̂ † its Hermitean conjugate.
Then, according to the formulas we have derived, the

average work, if we consider random rotations with respect
to G of Ĥ1(t ) → G†Ĥ1(t )G, depends on

A =
∫ t

t0

dt ′(V̂ eiωt ′ + V̂ †e−iωt ′
)iV̂

(eit0ω − eitω )

ω

− iV̂ † (e−it0ω − e−itω )

ω

A2 = −V̂ 2 (eit0ω − eitω )2

ω2
− (V̂ †)2 (e−it0ω − e−itω )2

ω2

+ (V̂ V̂ † + V̂ †V̂ )
(e−it0ω − e−itω )(eit0ω − eitω )

ω2
. (B68)

We now use:

(e−it0ω − e−itω ) = −2ie−i t+t0
2 ω sin

(
t − t0

2
ω

)

(eit0ω − eitω ) = 2iei t+t0
2 ω sin

(
t − t0

2
ω

)

and thus, if we define f (t, ω) = 2
sin( t−t0

2 ω)
ω

, then we have

A = − f (t, ω)
(
V̂ ei t+t0

2 ω + V̂ †e−i t+t0
2 ω

)
A2 = [V̂ 2ei(t+t0 )ω + (V̂ †)2e−i(t+t0 )ω − ({V,V †})] f 2(t, ω),

where {V,V †} = VV † + V †V . At this point we are ready to
perform the traces. First, we have that

Tr (A) = −[Tr (V̂ )ei t+t0
2 ω + Tr (V̂ †)e−i t+t0

2 ω
]

f (t, ω). (B69)

Let λk be the complex eigenvalues of V̂ and σk the singular
values. Then, we have

Tr (A) = −[Tr (V̂ )ei t+t0
2 ω + Tr (V̂ †)e−i t+t0

2 ω
]

f (t, ω)

= −2
∑

k

Re
(
λkei t+t0

2 ω
)

f (t, ω), (B70)

meanwhile

Tr (A2) = −2

{∑
k

Re
[
λ2

keiω(t0+t )
]−

∑
k

σk

}
f 2(t, ω).

(B71)
And thus the A-dependent part of the average work is given
by

〈�A2〉G = 2 f 2(t, ω)

(n2 − 1)

⎧⎨
⎩∑

k,k′
Re
(
λkei t+t0

2 ω
)
Re
(
λk′ei t+t0

2 ω
)

− 2n
∑

k

Re
[
λ2

keiω(t0+t )
]+ 2n

∑
k

σk

}
, (B72)

which is the expression for the performed work due to a
harmonic perturbation. What we see is that the overall work
is proportional to product of two functions, where one is the

square of function f (t, ω) = 2
sin( t−t0

2 ω)
ω

and a factor which
depends on the eigenvalues of the operator V̂ . The function
f is periodic with period 2π

ω
and has a maximum for tk =

(4k + 1)π
ω

+ t0. If V̂ is self-adjoint, σk = λ2
k , and we have in

the parenthesis the function∑
k,k′

λkλk′ cos2

(
t + t0

2
ω

)
+ 2n

∑
k

λ2
k

[
1−cos2

(
t + t0

2
ω

)]
,

(B73)
which can be rewritten as

2n
∑

k

λ2
k + cos2

(
t + t0

2
ω

)∑
k �=k′

λkλk′ . (B74)

If we introduce the constants a0, b0, c0, then the work is thus
a function of the form:

a0 sin2(x − x0)[c0 + d0 cos2(x + x0)], (B75)

which is periodic. For t � t0, the function above has two
minima if c0 < d0 and only one for c0 > d0. However, it is
not hard to see that c0 > d0 is always true if

Tr(A2) − Tr(A)2

2n + 1
� 0 (B76)
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is always true ∀A. However, the identity above follows imme-
diately from the fact that

Tr(aA + bI )2 � 0 (B77)

is true for arbitrary a, b ∈ R, and it follows from the choice
a = n, b = c±Tr(A) with

c± = −1 ±
√

1 − n

2n + 1
. (B78)

Thus, the work performed by a (random) harmonic perturba-
tion of the form 2V̂ cos(ωt ) has always a single maximum
at tk = (2k + 1)π

ω
on average. This can be interpreted as the

fact that there are specific moments at which we stop our
process to have performed the maximum amount of work on
the battery.

5. Random spacing for CUE ensemble

Consider the following problem. Given the function

Q =
n∑

i=1

n∑
j=i+1

cos(θi − θ j ) (B79)

with λ j = eiθ j , we ask what is the approximate value of Q for
a random matrix in the CUE. First, we note that we can write

Q =
n∑

k=1

n∑
j=k+1

cos(−i log λk − log λ j )

=
n∑

k=1

n∑
j=k+1

cosh

[
log

(
λk

λ j

)]

=
n∑

k=1

n∑
j=k+1

cosh

[
log

(
λk

λ j

)]
= 1

2

n∑
k=1

n∑
j=k+1

(
λk

λ j
+ λ j

λk

)
.

Let us define rk = λk+1

λk
. We then see that we can write

λk+t

λk
=

t−1∏
j=0

rk+ j (B80)

and thus

Q = 1

2

n∑
k=1

n∑
j=k+1

⎛
⎝ n∏

i= j+1

ri +
n∏

i= j+1

r−1
i

⎞
⎠ (B81)

the average of Q, evaluated numerically, is provided in Fig. 1.
We see that for large values of n the peak of the distribution
moves toward zero.

6. Adiabatic quantum batteries

Here we give the details for the calculation of work fluc-
tuations �W 2

ad for the adiabatic batteries. We first recall the

calculation of the average. Let us start from the following
protocol. The Hamiltonian, for α = 0, 1, is written for an
adiabatic transformation as

Hα =
R∑

i=1

εi
α�i

α. (B82)

Consider εi(t ) : [0, 1] → R, with εi(0) = εi
0, εi(1) = εi

1. It
can be shown that the evolution of the projector operators can
be written as

�i
α (t ) = Ut�

i
α (0)U †

t . (B83)

Thus, the time evolution of the Hamiltonian for an adiabatic
system can be written as

H (t ) =
R∑

i=1

εi(t )Ut�
i
0U

†
t , (B84)

where the while the density matrix as ρ(t ) = ∑
i piUt�

i
0U

†
t .

It is important that the vector dα
i ≡ (Tr(� j

α ) does not change
with time and thus can simply call di these quantities; mean-
while, n is the dimension of the Hilbert space.

Because these relationships are in a way independent from
the intermediate states, we simply write these expressions for
t = 0 and t = 1 without loss of generality. The work as

W = Tr(ρ0H0) − Tr(ρ1H0)

=
R∑

i=1

Tr
[
pi
(
�i

0 − �i
1

)
H0
]

=
R∑

i, j=1

piε
j
0Tr

[(
�i

0 − �i
1

)
�

j
0

]
. (B85)

We now have �i
α�

j
β = δi j if α = β, but otherwise they are

not necessarily orthogonal. Let us write the work as

W =
∑
i, j

piε
j
0

[
Tr
(
�i

0�
j
0

)− Tr
(
�i

0�
j
1

)]
=
∑
i, j

piε
j
0

[
diδi j − Tr

(
�i

0G�
j
0G†)]. (B86)

We can now perform the average over the unitary transforma-
tion U . We obtain

W =
∑
i, j

piε
j
0

[
diδi j − Tr

(
�i

0
d jI

n

)]

=
∑
i, j

piε
j
0

(
diδi j − did j

n

)
. (B87)

Since we will need it for the calculation of the fluctuations,
we note that

W
2 =

∑
i, j,k,l

piε
j
0 pkε

l
0

(
didkδi jδkl + did jdkdl

n2
− did jdkδkl + dl dkdiδi j

n

)
. (B88)
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Let us now calculate the fluctuations. The square of the work reads

W 2 =
∑

i, j,k,l

piε
j
0 pkε

l
0

[
diδi j − Tr

(
�i

0G�
j
0G†)][dkδkl − Tr

(
�k

0G�l
0G†)]

=
∑

i, j,k,l

piε
j
0 pkε

l
0

[
didkδi jδkl − diδi jTr

(
�k

0G�l
0G†)− dkδklTr

(
�i

0G�
j
0G†)+ Tr

(
�k

0G�l
0G†)Tr

(
�i

0G�
j
0G†)]

=
∑

i, j,k,l

piε
j
0 pkε

l
0

{
didkδi jδkl − diδi jTr

(
�k

0G�l
0G†)−dkδklTr

(
�i

0G�
j
0G†)+Tr

[(
�k

0 ⊗ �i
0

)
(G ⊗ G)

(
�l

0 ⊗ �
j
0

)
(G† ⊗ G†)

]}
.

We can now perform the averages. We obtain

〈W 2〉ad =
∑

i, j,k,l

piε
j
0 pkε

l
0

[
didkδi jδkl −

(
diδi j

dkdl

n
+ dkδkl

did j

n

)
+ Tr

[(
�k

0 ⊗ �i
0

)(
λ+�+ + λi�−

)]]

= W̄ 2 +
∑

i, j,k,l

piε
j
0 pkε

l
0

(
Tr
(
�k

0 ⊗ �i
0

)
(λ+�+ + λi�−) − did jdkdl

n2

)
, (B89)

where

λ± = Tr
(
�l

0 ⊗ �
j
0

)
�±

Tr �±
= dl d j ± dlδl j

n(n ± 1)
. (B90)

Let us focus on

Tr
[(

�k
0 ⊗ �i

0

)
(λ+�+ + λi�−)

] = Tr

[(
�k

0 ⊗ �i
0

)(λ+ + λ−
2

I + λ+ − λ−
2

T

)]
= λ+ + λ−

2
dkdi + λ+ − λ−

2
dkδki. (B91)

aWe note that

λ+ + λ−
2

= 1

2

[
dld j + dlδl j

n(n + 1)
+ dld j − dlδl j

n(n − 1)

]
= dl (d d j − δl j )

n(n2 − 1)

λ+ − λ−
2

= 1

2

d jdl + dlδl j

n(n + 1)
− d jdl − dlδl j

(n − 1)n
= dl (dδl j − d j )

n(n2 − 1)
(B92)

from which we obtain:

Tr
[(

�k
0 ⊗ �i

0

)(
λ+�+ + λi�−

)] = dkdl

[
di(d d j − δl j )

n(n2 − 1)
+ δki(d δl j − d j )

n (n2 − 1)

]

= did jdkdl

n2 − 1
− didkdlδl j

n(n2 − 1)
− d jdkdlδki

n(n2 − 1)
+ dkdlδkiδl j

n2 − 1
. (B93)

We use the result on W̄ 2, and thus

W 2 − W
2 =

∑
i, j,k,l

piε
j
0 pkε

l
0

[
did jdkdl

n2 − 1
− didkdlδl j

n(n2 − 1)
− d jdkdlδki

n(n2 − 1)
+ dkdlδkiδl j

n2 − 1
− did jdkdl

n2

]
. (B94)

For the dimension of the Hilbert space n � 1, the terms of order 1/n3 go to zero faster than 1/n2, and we obtain

W 2 − W
2 =︸︷︷︸

n�1

1

n2

∑
i, j,k,l

piε
j
0 pkε

l
0(dkdlδkiδl j ) = Tr(H0ρ0)2

n2
= E2

0

n2
, (B95)

which exhibits concentration.
Let us now look at bounds on the adiabatic work compared to the mean work for arbitrary random evolutions. We consider

〈W 〉ad = E0 −
∑

i j

piε
j
0

n
did j, (B96)

〈W 〉 = E0 − Tr H0

n
= E0 −

∑
i j

piε
j
0

n
. (B97)

It is easy to see that

〈W 〉ad − 〈W 〉 = Tr(AB), (B98)
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where Ai j = did j − 1 and B = piε j

n . We now know that for A non-negative and B arbitrary, we have

Tr(AB) � σmax(B)Tr(A) = σmax(B)

(∑
i

d2
i − n

)
, (B99)

where σmax(B) is the spectral norm of the matrix B [63]. The matrix B = piε j

n has only two eigenvalues since it is rank one, which
are 0 and 1

n

∑
i piε

i
0. Thus the spectral norm is σmax(B) = max(0, 1

n

∑
i piε

i
0). We thus find that the maximum gain that one can

has from degeneracy is

〈W 〉ad − 〈W 〉 � Tr(ρH0)

∑
i d2

i − n

n
, (B100)

from which we obtain

〈W 〉ad � E0(1 + c) − Tr (H0)

n
, (B101)

with c =
∑

i d2
i −n

n .
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