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A B S T R A C T   

Mud flows represent one of the major causes of natural hazards in mountain regions. Similarly to debris flows, 
they consist of a hyper-concentrated mixture of water and sediments flowing down a slope and may cause serious 
damages to people and structures. The present paper investigates the force produced by a dam-break wave of 
mud impacting against a rigid wall. A power-law shear-thinning model is used to describe the rheology of the 
hyper-concentrated mixture. A one-dimensional shallow water model is adopted and a second-order Finite 
Volume scheme is employed to numerically solve the governing equations. The results indicate that depending 
on the fluid rheological parameters and on the bottom slope, there exists a minimum value of the wall distance 
above which the peak force does not exceed the asymptotic value of the hydrostatic final condition. For two 
different values of the channel slope, the dimensionless value of this lower bound is individuated for several 
values of the power-law exponent and of a dimensionless Basal Drag coefficient. An estimation of the maximum 
peak force for wall distance smaller than the minimum value is also provided.   

1. Introduction 

Mud flows are among the major forms of natural hazards in many 
areas all over the world and they may be extreme events in some con
ditions. Similarly to debris flows, they involve a water–sediment mixture 
moving under the effect gravity under proper geomorphological con
ditions, usually triggered by either short heavy rainfalls or long periods 
of rain. These flows are often distinguished based on the quantity and 
the characteristics of the solid fraction (Takahashi, 2018) and generally 
mud-flows correspond to highly-concentrated mixtures of water and fine 
sediments, in which volumetric solid concentration varies from 6 to 60 
% (Ng and Mei, 1994; O’Brien, 2003; Widjaja and Hsien-Heng Lee, 
2013). 

Along with debris and mud flows, lava flows, characterized by a mass 
of volcanic material flowing over natural slopes due to the gravity, may 
also be regarded as dangerous and sudden events (Harris, 2015). 

Debris, mud and lava flows can also be related to quite high hazard 
due to the impossibility to predict the triggering event well in advance, 
and the possible presence of civil structures along the path of propaga
tion (Iverson, 2003; Jenkins et al., 2017). Thus, the modelling of prop
agation of such flows and their interaction with structures is particularly 
relevant for risk management. It is of utmost importance to evaluate the 

forces acting on buildings and on structure in order to design different 
kinds of countermeasures, such as protective flexible and rigid barriers 
(Mizuyama, 2008; Ng et al., 2017; Scifoni et al., 2010). Both experi
ments and numerical simulations have been widely used for evaluating 
the impact dynamics of debris/mud/lava flows against rigid walls. 

Considering dry granular and debris flows, many experimental 
research addressed the impact through field (e.g. Hu et al., 2011; Marchi 
et al., 2002) and laboratory (e.g. Armanini and Scotton, 1993; Cui et al., 
2015) investigations. Small-scale laboratory experiments (Choi et al., 
2015; Ng et al., 2021; Scheidl et al., 2013) permitted the systematic 
study of the complex flow-structure interaction under controlled con
ditions. These investigations allowed to define the peak value of the 
impact force and different simplified theoretical continuum-based ap
proaches have been used to deduce semi-empirical formulas (e.g. 
Armanini, 2009; Armanini and Scotton, 1993; Bugnion et al., 2012; 
Vagnon and Segalini, 2016) based on different consideration and 
hypothesis. 

The impact of a mud-flow against an obstacle has been experimen
tally analyzed by (Tiberghien et al., 2007). The fluid was a Carbopol 
solution with yield stress, and the dynamics of the impact has been 
deeply analyzed through the measure of the local velocities and of the 
pressure distribution on the obstacle. 
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Besides experimental investigations, numerical simulations based on 
appropriate flow models are nowadays commonly used to analyze the 
interaction of sediment-laden flows with obstacles. 

For simulating debris/mud flows, both two-phase and one-phase 
models have been employed (Ancey, 2007; Coussot 2017a). The 
former approach, accounting for the mass and momentum equations for 
both the solid and fluid components, can independently reproduce the 
solid and fluid phase velocities (e.g., Di Cristo et al., 2016; Greco et al., 
2012; Pudasaini, 2012) and has also been used to simulate the fluid 
structure interaction (e.g. Chiou et al., 2005; Di Cristo et al., 2020; Kattel 
et al., 2018). The one-phase models conversely consider the mixture as a 
homogeneous continuum with a non-Newtonian rheology either with a 
yield stress, such as Bingham (e.g. Imran et al., 2001; Liu and Mei, 1989; 
Liu and Mei 1989, Imran et al. 2001) and Herschel–Bulkley (e.g., 
Chanson et al., 2006; Coussot, 1994; Di Cristo et al., 2013; Huang and 
García, 1998; Maciel et al., 2017) models, or without it, i.e. the power- 
law model (e.g. Hwang et al., 1994; Ng and Mei, 1994). An extensive 
discussion concerning the role played by the yield stress may be found in 
Balmforth et al. (2014) and Coussot (2017b). Power-law rheological 
models are adequate to describe slurry matrices remaining essentially 
liquefied through the flow (Iverson, 2014), and they therefore may be 
used to reproduce the behavior of landslides (Carotenuto et al., 2015) 
and flows of natural estuarine muds (Bai and Tian, 2011; Zhang et al., 
2010). 

Simple one-phase models, despite the complexity due to degassing 
and cooling processes, can be usefully applied also to lava flows. Even if 
in some cases (high temperature and few gas) the lava can be efficiently 
modelled as either a Newtonian (e.g. Takagi and Huppert, 2010; Tal
larico and Dragoni, 1999) or homogeneous non-Newtonian fluid. For 
example a Bingham rheology (Castruccio et al., 2013; Kelfoun and 
Vargas, 2016) can be adopted in the presence of bubbles and/or crystals 
and, depending on the amount of degassing that has occurred, both 
Herschel–Bulkley and power-law model (Tallarico et al., 2011; Balm
forth and Craster, 2000; Conroy and Lev, 2021; Filippucci et al., 2010; 
Soule and Cashman, 2005) may be used to describe the fluid behaviour. 

For these reasons, the one-phase model has been extensively used to 
investigate the interaction of both debris/mud (Ionescu, 2013; Rick
enmann et al., 2006) and lava (Chirico et al., 2009; Fujita et al., 2009; 
Scifoni et al., 2010) waves with obstacles. However, to estimate the 
pressure/force caused by the impact of a wave against obstacles, one- 
phase models with yield stress have been mainly considered (Laigle 
et al., 2007; Tang et al., 2022; Wang et al., 2020; Zanuttigh and Lam
berti, 2006) than the power-law model. The impact of a yield-less mud 
wave against obstacles has been numerically studied by Iervolino et al. 
(2017) and Greco et al. (2019). Both studies considered specific values 
of the rheological parameters, i.e. consistency , μn, and power-law 
exponent, n, in order to represent the rheology of the catastrophic 
landslides occurred in 1999 in Cervinara (Italy) (Carotenuto et al., 
2015). 

Among the different proposals, the choice of the most suitable way to 
predict the impact force, and in particular its peak value, caused by a 
shear-thinning flow representative of a mud or a lava wave is still an 
open question. The present paper numerically analyzes the impact of a 
wave of shear-thinning power-law fluids against a rigid wall, system
atically varying both the rheological parameters and flow conditions. 
Inspired by the fair accuracy of the depth-integrated schematization 
(Fent et al., 2018) in the estimation of the impact forces on rigid 
structures due to water (Aureli et al., 2015; Hien and Van Chien, 2021) 
and debris (Sarno et al., 2013; Zanuttigh and Lamberti, 2006) waves, the 
shallow-water model proposed by (Ng and Mei, 1994), valid when the 
length scale normal to the bottom is very small compared to longitudinal 
and transverse ones, has been herein considered. In details, this study 
analyzes the temporal history of the force, to evaluate its dependence on 
the values of the rheological parameters of the fluid (consistency, den
sity and rheological index) and on the distance from the wall. The effect 
of the bed slope is also investigated. The results furnish useful indication 

for the evaluation of the peak force in different conditions. 
The article is organized as follows. In Section 2 both the investigated 

problem and the governing equations are briefly described, while Sec
tion 3 reports the adopted numerical scheme and the performed tests. In 
Section 3 the results are presented and discussed; the conclusions are 
summarized in section 4. 

2. Problem description and governing equations. 

This study analyses the impact against a rigid wall of a mud-flow 
running over a steep slope, adopting the simple and idealized geomet
rical setting sketched in Fig. 1. A mass of mud, represented as an 
incompressible homogeneous shear-thinning power-law fluid, is 
instantaneously released and flows along a slope inclined of angle θ with 
respect the horizontal plane. 

In the initial configuration the mud mass occupies a triangular 
wedge, with the depth h̃ described by the following function: 

h̃(x̃, 0) =
{

h̃o + x̃tanθ − L̃u < x̃ < 0
0 x̃ > 0  

with x̃ the streamwise coordinate along the plane, ̃t the time and h̃
(
x̃, t̃
)

the flow depth. The abscissa x̃ = 0 corresponds to the downstream side 
of the triangle, L̃u = h̃ocot(θ) is the length of the wedge for the given 
slope angle. A rigid wall, perpendicular to the bottom, is encountered 
downstream at distance L̃d from the triangle side. 

Considering a gradually-varied flow where spatial variations occur 
over scales larger than flow depth, a depth-averaged scheme is adopted. 
Flow resistance by the sidewalls is neglected with respect to that by the 
bottom. Considering the analogy with open channel clear-water flows, 
this simplification may be assumed whenever the width of the flow 
exceeds the depth by ten times or more (Chow, 2009). 

Additionally, the surface tension is ignored and the mud rheology is 
decribed by the power-law model. The resulting flow model is repre
sented by the following dimensional mass and momentum conservation 
equations (Di Cristo et al., 2014; Ng and Mei, 1994): 

∂h̃
∂̃t

+
∂q̃
∂x̃

= 0 (1)  

∂q̃
∂̃t

+ βn
∂
∂x̃

(
q̃2

h̃

)

+ gcosθ
∂
∂x̃

h̃
2

2
= gh̃sinθ −

τ̃b

ρ (2)  

where q̃ is the flow rate (for unit of width), g and ρ the gravity and the 
fluid density, respectively. βn and τ̃b are the momentum correction factor 
and the bottom stress, respectively. Assuming laminar regime, the ex
pressions of the momentum correction factor and of the bottom stress 
are: 

βn = 2
2n + 1
3n + 2

> 1 (3)  

τ̃b = μn

(
2n + 1

n
ũ
h̃

)n

(4)  

respectively. In Eq. (3) and (4) ũ = q̃/h̃ denotes the depth-averaged 
velocity; μn and n the consistency and the rheological index of the 
power-law fluid, respectively. The rheological index is smaller than one 
for shear-thinning fluids, while values larger than one pertains to shear- 
thickening ones. In the following, only shear-thinning fluids are 
considered. It is expected that the flow dynamics and the resulting 
impact force both depend on the geometry of the considered case, i.e. 
the inclination angle θ, the initial depth at the downstream side h̃o and 
the wall distance ̃Ld, as well as on the rheological properties of the fluid, 
namely the density ρ, the consistency μn and the rheological index n. 
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The problem is made dimensionless using L̃R = h̃o and T̃R =

̅̅̅̅̅

h̃o

√

/g 
as length and time scales, respectively. Denoting with h and q = uh the 
dimensionless flow depth and flow rate, Eqs. (1)-(2) are rewritten in 
dimensionless form as: 

∂h
∂t

+
∂q
∂x

= 0 (5)  

∂q
∂t

+
∂
∂x

(

βn
q2

h

)

+ cosθ
∂
∂x

(
h2

2

)

= hsinθ − Bd
qn

h2n (6) 

in which Bd, hereafter named Basal Drag coefficient, is expressed as: 

Bd =
μn

ρ

(
2n + 1

n

)n ̅̅̅̅̅̅̅̅̅
gn− 2

h̃
n+2
o

√

(7) 

Accounting for the length and time scales definitions, and the cor

responding velocity scale, i.e. ŨR =

̅̅̅̅̅̅̅

gh̃o

√

, the Basal Drag coefficient can 
be expressed in terms of the reservoir Reynolds number Re (Chanson, 
2008; Taha et al., 2018), written for a power-law fluid, as follows: 

Bd =

(
2n + 1

n

)n 1
Re

with Re =
ρŨ

2− n
R L̃

n
R

μn

(8) 

In a dam-break problem Re is the counterpart of the local Reynolds 
number (Ng and Mei, 1994). 

In uniform condition, the flow may be assumed laminar provided 
that the local Reynolds number does not exceed the critical value (Ng 
and Mei 1994): 

Rec = 0.125
(

1 + 3n
2n

)n

[2100+ 875(1 − n) ] (9) 

Assuming the validity in unsteady conditions of the bound (9) in 
terms of the reservoir Reynolds number, the flow may be considered 
laminar whenever the Basal Drag coefficient overwhelms the critical 
value: 

Bd,c =

(
2n + 1

n

)n 1
Rec

(10) 

In addition to the values of n and Bd, the maximum value of impact 
force against the wall depends on the considered geometry, character
ized by the inclination angle θ and the wall distance Ld. 

3. Numerical method and performed tests 

3.1. Numerical method 

The non-linear hyperbolic system (5)-(6) has been numerically 
solved with a Finite Volume scheme which is second-order accurate in 
space and Total Variation Diminishing (TVD), and first-order accurate in 
time. In what follows the numerical scheme is briefly described. 

Denoting the vector of the unknowns with w = [h, q]T , the governing 
Eqs. (5) and (6) are rewritten in following compact form: 

∂w
∂t

+
∂f(w)

∂x
= s(w) (11)  

in which the expressions of flux and source vectors, f and s, directly 
follow from (5) and (6). Indicating with w the average value of w in the 
finite volume of dimension Δx, with f * the numerical approximation of 
the flux f at the interface between two volumes and s* the volume- 
averaged value of the source term, the semi-discretized version of Eq. 
(11) is: 

∂w
∂t

+
1

Δx

(
f *

i+1/2 − f *
i− 1/2

)
= ​ s∗ (12) 

Following the Harten-Lax-Van Leer (HLL) scheme (Harten et al., 
1983) and denoting with wL (resp. wR) the w values on the left (resp. 
right) side of the interface, the following expression of numerical 
approximation of the flux has been considered: 

f * =
λRf(wL) − λLf(wR) + λRλL(wR − wL)

λR − λL (13) 

Where: 

λR = max
R,L

(λ+, 0)λL = min
R,L

(λ− , 0) (14) 

λ± being the slopes of the two characteristic lines of the system (11) 
and (12): 

λ± = βn
q
h
±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

βn(βn − 1)
q2

h2 + hcosθ
√

(15) 

To guarantee the second-order spatial accuracy of the scheme, a 
piecewise linear reconstruction at the interfaces is performed to evaluate 
wL and wR. Moreover, the non-linear minmod limiter (LeVeque, 2011) 
has been applied to preserve the solution monotonicity. Finally, the time 
discretization has been carried out through the first-order Euler method. 
The solid wall boundary condition at the end of the channel has been 

Fig. 1. Problem setup.  
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implemented through the ghost cells technique (LeVeque, 2011). 
The above numerical method possesses the typical simplicity, 

robustness, and built-in conservation properties of the Riemann solvers, 
which has led to many successful applications in shallow flow simula
tions involving highly discontinuous flows, transcritical flows, shock 
waves and moving wet–dry fronts. Among the approximate Riemann 
solvers, the adopted HLL scheme is often preferred in one-dimensional 
simulations since it does not require an iterative scheme, it is positive 
definite and generally computationally more efficient than other 
schemes. Additional details about the numerical scheme and the 
boundary conditions may be found in (Campomaggiore et al., 2016) and 
(Iervolino et al., 2017). 

3.2. Validation of the numerical model reproducing an experimental dam 
break test 

To demonstrate the capabilities of the considered flow model to 
simulate shallow flows of shear-thinning fluids, one of the dam-break 
experiments carried out by (Balmforth et al., 2007) has been repro
duced. The experiment consists in the sudden release of a slump (2.2 cm 
height) of aqueous suspension of Xanthan gum with concentration order 
of 1 % in a 0.1 m wide, 0.6 m deep channel. The rheology of the 
considered shear-thinning fluid may be reasonably described by n =

0.27, μn = 6Pa • sn, ρ = 1000kg • m− 3. The fluid is kept at rest by a dam 
at x = 0.4m, which is rapidly lifted at t = 0s. The experiment has been 
simulated by considering Δx = 0.005 and Δt = 0.004. Fig. 2 compares 
the experimental measurements and the numerical reproduction of the 
downstream front position of the wave, denoted as xf . The comparison 
shows that the computational model is able to reasonably reproduce the 
experimental results both in the near-field (t ~ 0.2 ÷ 1 s), where inertia 
plays a prominent role, and in the long-term one (t ~ 100 s), in which the 
fluid spreading is largely dominated by the bottom shear stress. For t <
0.2 s the agreement is less satisfactory, but, as noted by (Saramito et al., 
2013), this short-term regime could be affected by the dam lifting more 
than by the flow inertia. 

3.3. Performed tests of dam-break wave with impact 

The numerical simulations of dam-break waves with impact (Fig. 1) 
have been carried out adopting spatial discretization step Δx = 0.038 
and a temporal time step Δt = 0.001. Sensitivity to the discretization has 
been checked by halving the Δx and Δt under constant CFL, obtaining 
differences on the estimated peak force smaller than 1 %. 

The performed tests investigate the influence on the dynamics and on 

the peak value of the impact force F (for unit width) due to the Basal 
Drag coefficient Bd, to the power-law exponent n and to the wall distance 
Ld for two values of the inclination angles, namely θ = 10◦ (Lu = 5.67) 
and θ = 20◦ (Lu = 2.75). With the aim of representing fluids with shear- 
thinning attitude, the power-law exponent has been varied between 0.2 
and 0.9. Under these conditions, Basal Drag coefficient values of typical 
mud and lava flows range between 10-3 and 10-1. 

While the lower values of the above range of the Basal Drag coeffi
cient may be encountered in both mud and lava flows, the higher ones 
may represent typical lava flows. This is exemplified in Table 1, where 
the Basal drag coefficient values for one mud and two different lava 
flows are reported. The considered mud (Case 1) is characterized by the 
following rheological parameters: n = 0.14, ρ = 1440Kg • m− 3, μn =

104.1Pa • sn (Zhang et al., 2010). The other cases represent lava fluids 
with following rheology: Case 2 has n = 0.763, ρ = 2780Kg • m− 3, μn =

51.88Pa • sn (Weed et al., 1986); Case 3 is characterized by n = 0.9, ρ =
2650Kg • m− 3, μn = 1000Pa • sn, (Filippucci et al., 2010). For these 
three fluids Table 1 reports the Bd values assuming an initial flow depth 
h̃o = 1.8m and the critical Basal Drag values, Bd,c (Eq.10), required to 
guarantee the occurrence of laminar condition. Results shown in Table 1 
confirm that the flow can be safely considered laminar in all the herein 
studied cases. 

Independently on the initial conditions and the governing parame
ters, the flow asymptotically in time approaches a quiescent condition 
with horizontal free surface. In this condition the impact force (for unit 
width) assumes the hydrostatic dimensionless valueFas = 1/2, which is 
used in what follows to normalize the instantaneous values of the impact 
force, F̂ = F/Fas 

4. Results and discussion 

4.1. Impact dynamics 

To assess the role of the Basal Drag coefficient Bd in the impact dy
namics, Fig. 3 compares the time evolution of the normalised impact 
force F̂ for two different Bd values, namely Bd = 10− 3 and Bd = 10− 2, for 
a fluid with n = 0.5 and for a wall distance Ld = 15. The comparison is 
provided for θ = 20◦ in Fig. 3a and for θ = 10◦ in Fig. 3b. 

Regardless of Bd and slope values, the force rapidly increases after 
the impact. For a given slope, the wave impact against the rigid wall 
occurs earlier for the smaller value of Bd. Soon after the front of the wave 
touches the obstacle, F̂ reaches a peak. Fig. 3a shows that at the lowest 
Bd value F̂ significantly grows over the asymptotic value, while in the 
Bd = 10− 2 case the Fas value is never overcome but only asymptotically 
reached. Moreover, for Bd = 10− 3, the peak is followed by a damped 
oscillatory trend, while in the Bd = 10− 2 case F̂ decreases after the peak 
and then it monotonically approaches the asymptotic value. Such a 
strong dependence of the force behaviour on the Bd coefficient essen
tially reflects the relative importance of the inertial and gravitational 
forces, along with the pressure gradient induced by the free surface, with 
respect to bottom resistance. Indeed, a smaller Basal Drag coefficient 
value corresponds to a reduced relevance of the bottom resistance, i.e., 
the second term at the r.h.s. of Eq.(6). This induces smaller momentum 
losses at the bottom and therefore higher values of the front velocity (vf ) 
and consequently of the peak force. 

For the θ = 10◦ case, Fig. 3b shows a similar temporal evolution of 

Fig. 2. Comparison between numerical (solid line) and experimental (symbols) 
of the downstream front position of the wave. 

Table 1 
Basal drag coefficient.   

Bd Bd,c 

Case 1: (Zhang et al., 2010) 6.3⋅10-3 3.1⋅10-3 

Case 2: (Weed et al., 1986) 5.0⋅10-3 4.8⋅10-3 

Case 3: (Filippucci et al., 2010) 1.3⋅10-1 5.3⋅10-3  
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the force, thus confirming the strong dependence of the front propaga
tion velocity and of the peak force on the Basal Drag coefficient. Both 
front velocity propagation and peak force values in the θ = 10◦ case are 
smaller than the corresponding ones in the θ = 20◦ case. 

The dependence of the impact force upon the power-law exponent 
can be inferred through the results presented in Fig. 4. 

For fixed values of both Basal Drag coefficient (Bd = 10− 2) and the 
wall distance (Ld = 15), Fig. 4a and b report the time history of the 
normalized impact force F̂ for two different n values, namely n = 0.2 and 
n = 0.9, for the slope angles θ = 20◦ and θ = 10◦, respectively. Inde
pendently of the θ value, the reduction of the power-law exponent n 
induces an increase of the front velocity propagation (i.e. a reduction of 
wave impact time) and an increase of the force peak value. 

The observed influence of the rheological index on the impact force 
behaviour (Fig. 4) can be explained considering that the power-law 
exponent plays a twofold role in the momentum conservation equa
tion (Eq.6). Indeed, the power-law exponent influences both the bottom 
resistance, i.e. the second term at the r.h.s. of Eq. (6), and the convective 
inertia, i.e. the second term at the l.h.s. of Eq.6, through the momentum 
correction factor βn (Eq.3). Since the front velocity (vf ) decreases with 
the bottom resistance and increases with the convective inertia, Hogg 
and Pritchard (2004) have shown that vf can either increase with n 
(since the bottom resistance decreases with n) or decrease (since the 
convective inertia decreases for increasing n). Then, for sufficiently 
small Bd values the effect of the convective inertia prevails over the one 
due to the bottom resistance. Present results for Bd = 10− 2 agree with 

this theoretical interpretation, showing a reduction of the front propa
gation velocity with n. However, it is expected that higher Bd values 
could correspond to an opposite dependence of the front velocity with 
respect to the rheological exponent n. Fig. 5 reports the time evolution of 
the normalised impact force F̂ for Bd = 0.05 and three n values, for a 
wall distance Ld equals to 15. 

Fig. 3. Time evolution of the normalised impact force F̂ for two different Bd values, namely Bd = 10− 3 and Bd = 10− 2 (a) θ = 20◦; (b) θ = 10◦(n = 0.5, Ld = 15).

Fig. 4. Time evolution of the normalized impact force F̂ for two different n values, namely n = 0.2 and n = 0.9, (a) θ = 20◦; (b) θ = 10◦ (Bd = 10− 2; Ld = 15).  

Fig. 5. Time evolution of the normalised impact force F̂ for Bd = 0.05 for three 
different n values, namely n = 0.2, n = 0.5 and.n = 0.9( Ld = 15, θ = 20◦). 
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In this case, the increase of the Basal Drag coefficient is sufficient to 
revert the dependence of vf , and therefore of force F̂, on n. As a result, 
the impact time is in this condition a decreasing function of the power- 
law exponent, witnessing that the effect of the bottom resistance prevails 
over the convective inertia. 

Fig. 6 investigates the dependence of the impact force on the wall 
distance Ld. Considering Bd = 10− 2 and n = 0.5, Fig. 6a and b report the 
time history of the normalized impact force F̂ for Ld = 5 and Ld = 20, 
and considering again the two values of the slope for the tests θ = 20◦

and θ = 10◦. Independently of the θ value, Fig. 6 indicates that an in
crease of the wall distance reduces the maximum value of the impact 
force. Such a result is consistent with the increase of the momentum loss 
due to the bottom resistance forces with the distance travelled by the 
wave before the impact. As a result, depending on the wall distance the 
peak force may overwhelm or not the asymptotic hydrostatic value. 

To further analyse the dependence of the impact force F̂ from the 
wall distance, Fig. 7 depicts the behaviour of the maximum force F̂peak as 
a function of Ld for three different n values, Bd = 10− 3 and θ = 20◦. 
Regardless the n value, Fig. 7 reveals a non-monotone behaviour of the 
peak force F̂peak with Ld, since F̂peak first increases, reaches a maximum 
and then decreases with Ld. This behaviour can be interpreted in the 
following way: while the gravity acts as a driving force increasing the 
momentum of the flow at the impact a short wall distance may not be 
sufficient to allow the resistance forces to produce an appreciable mo
mentum loss. As the distance travelled by the wave increases, this trend 
reverts since the resistance prevails on the gravity and the peak force 
reduces with Ld. For sufficiently large Ld values, the resisting effect is so 
neat that the F̂peak reduces to 1, implying that the peak force is attained 
in the asymptotic hydrostatic condition. 

4.2. Evaluation of the peak force 

Previous results, taken collectively, indicate that, for a fixed value of 
the channel slope θ, the wave dynamics strongly depends on the (Bd, n,
Ld) triplet. Consequently, the peak of the force against the obstacle may 
overwhelm the asymptotic value, i.e.: F̂peak > 1, or not. In particular, 
Figs. 4 and 7 suggests that for a fixed slope a given pair (Bd,n), for wall 
distance longer than a minimum value, Ld,min, the condition F̂peak = 1 is 
verified. For example, from Fig. 7 for n = 0.5 the minimum distance 
above which F̂peak = 1 is 80. 

Such a limiting value has been evaluated based on the results of 
numerous numerical simulations, for four values of the Basal Drag co
efficient, i.e. Bd = 10− 3,2.5 • 10− 3,5.0 • 10− 3,10− 2, and for values of the 
power-law exponent in the range 0.2 ≤ n ≤ 0.9. The results are 

summarized in Fig. 8 for θ = 20◦ (Fig. 8a) and θ = 10◦ (Fig. 8b). Indeed, 
for a fixed value of Bd, in the portion of the (n, Ld) plane bounded on the 
left by the corresponding curve, the peak value of the force against the 
obstacle coincides with the asymptotic value, i.e.: F̂peak = 1.

With reference to the largest considered slope value θ = 20◦, Fig. 8a 
shows that, keeping fixed the Basal Drag coefficient, an increase of the 
power-law exponent n leads to smaller values of Ld,min. Similar conclu
sions are drawn keeping fixed n and increasing Bd. Both results are 
consistent with the reduction of the front velocity due to an increase 
either of Bd (for a fixed value of n , see Fig. 3a) or of n (for a fixed value of 
Bd, see Fig. 4a). This trend is confirmed also in the θ = 10◦ case (Fig. 8b). 
For a fixed value of the (Bd, n) pair, the Ld,min value in the θ = 10◦ case is 
smaller than in the θ = 20◦ one. 

Fig. 8 furnishes the lower bound of the wall distance Ld,min above 
which the force peak does not exceed its asymptotic value. Therefore, if 
only the maximum value of force against the obstacle is of interest, the 
asymptotic value Fas = 1/2 represents a safe assumption provided that 
the dimensionless wall distance exceeds Ld,min. Coherently with the re
sults of Fig. 5, Fig. 8 shows that for a sufficiently high Basal Drag coef
ficient, i.e. Bd > 10− 2, the asymptotic value may be safely assumed, 
independently of the wall distance. 

On the other hand, whenever the Basal Drag coefficient is smaller 
than 10-2 and the wall distance is smaller than Ld,min, the peak force 
exceeds the asymptotic value, and a detailed numerical simulation is 
required for its evaluation. To provide a comprehensive picture of the 

Fig. 6. Time evolution of the normalized impact force F̂ for two different Ldvalues, namely Ld = 5 and Ld = 20. (a) ; (b) θ = 10◦(Bd = 10− 2; n = 5).  

Fig. 7. Normalized peak force F̂ peak as fuction of Ld for three different n values, 
namely n = 0.2, n = 0.5 and.n = 0.9(Bd = 10− 3, θ = 20◦). 
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behaviour of the peak force value in these conditions, Figs. 9 and 10 
report, forLd⩽ Ld,min, the isolines of F̂peak in the (Ld, n) plane for θ = 20◦

and θ = 10◦ , respectively, and considering four different Basal Drag 
values, i.e. Bd = 10− 3,2.5 • 10− 3,5.0 • 10− 3. For a fixed value of F̂peak =

F̂
*
peak, i.e. for a given curve reported in Figs. 9 and 10, the (Bd, n) pairs 

inside the region bounded on the right and/or on the top by the curve 

exhibit F̂peak ≥ F̂
*
peak. 

For practical applications, Figs. 9 and 10 allow to quickly estimate 

Fig. 8. Limit wall distance for different n and Bd values. (a) θ = 20◦; (b) θ = 10◦.

Fig. 9. Isocontours of F̂peak for θ = 20◦ in the (Ld, n) with spacing equal to 0.2. (a)Bd = 10− 3; (b) Bd = 2.510− 3; (c) Bd = 510− 3; (d)Bd = 10− 2.
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for different fluids the amount by which the peak force exceeds the 
asymptotic value as function of the wall distance. The most demanding 
condition in the perspective of wall design occurs for Bd = 10− 3, for 

which Fig. 10a shows that F̂
*
peak varies in the range 1.0–2.5. In a specific 

set of conditions, i.e. for fluid characterized by small value of the power- 
law exponent, (n ≤ 0.3) and for wall distance smaller than the values 
represented by the 2.0 curve, the peak force exceeds twice the asymp
totic hydrostatic value. To pinpoint these most critical conditions for 
fluids with different rheological properties, Table 2 reports the 
maximum peak impact force for a given fluid rheology, F̂max =

max
Ld

(
F̂peak

)
, and the corresponding wall distance Ld,max . The maximum 

value of the peak force strongly reduces with the Basal Drag coefficient. 
For example, for n = 0.2 and Bd = 10− 3 the maximum peak force equals 
2.45, whereas this value reduces to 2.11, 1.73 and 1.40 for Bd =

2.5 • 10− 3, Bd = 5 • 10− 3, and Bd = 10− 2, respectively. 
Fig. 10 shows that the above described behaviour does not change for 

the milder considered slope (θ = 10◦), although the force peak values are 
smaller than in the previous case. For example, even for Bd = 10− 3, 
Fig. 10a indicates that for n = 0.3 the peak value does not double the 
asymptotic value. Table 3 is the counterpart of Table 2 for the θ = 10◦

Fig. 10. Isocontours of F̂ peak for θ = 10◦ in the (Ld, n) plane with spacing equal to 0.2. (a)Bd = 10− 3; (b) Bd = 2.510− 3; (c) Bd = 510− 3; (d) Bd = 10− 2.  

Table 2 
Maximum peak impact force and the corresponding wall distance for θ = 20◦.   

Bd = 10− 3 Bd = 2.5⋅10− 3 Bd = 5⋅10− 3 Bd = 10− 2 

n Ld,max F̂max Ld,max F̂max Ld,max F̂max Ld,max F̂max  

0.2 65  2.45 40  2.11 25  1.73 10  1.40  
0.3 40  2.18 20  1.85 10  1.54 5  1.31  
0.4 30  1.98 15  1.65 10  1.44 5  1.26  
0.5 20  1.80 10  1.55 5  1.37 5  1.21  
0.6 20  1.70 10  1.48 5  1.33 5  1.15  
0.7 10  1.60 5  1.41 5  1.29 5  1.10  
0.8 10  1.55 5  1.38 5  1.25 5  1.04  
0.9 10  1.48 5  1.35 5  1.20 5  0.98  

Table 3 
Maximum peak impact force and the corresponding wall distance for θ = 20◦.   

Bd = 10− 3 Bd = 2.5⋅10− 3 Bd = 5⋅10− 3 Bd = 10− 2 

n Ld,max F̂max Ld,max F̂max Ld,max F̂max Ld,max F̂max  

0.2 85  2.17 40  1.71 20  1.40 5  1.16  
0.3 55  1.89 25  1.54 10  1.32 5  1.14  
0.4 40  1.71 15  1.45 10  1.27 5  1.12  
0.5 25  1.6 15  1.38 5  1.23 5  1.10  
0.6 20  1.53 10  1.34 5  1.21 5  1.07  
0.7 15  1.47 10  1.3 5  1.19 5  1.05  
0.8 60  1.42 5  1.26 5  1.17 5  1.03  
0.9 10  1.39 5  1.25 5  1.15 5  1.00  
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case. The maximum peak force F̂max equals 2.17 for n = 0.2 and Bd =

10− 3. This extreme value reduces increasing n and Bd, values, consis
tently with the results shown by Figs. 3b and 4b. 

The contour plots of Figs. 9a, b, 10a and b show that, for certain 
values of n, increasing Ld the peak force firstly grows, then reaches a 
maximum and finally decreases. This behaviour is coherent with the 
results shown in Fig. 7, due to the combined effect of the flow acceler
ation and momentum losses. 

In conclusion, the presented results suggest that the fluid rheology 
has a strong influence on the dynamic of the impact, as indicated by the 
different behaviour of the temporal evolution of the force observed for 
value of the Basal Drag smaller or larger than 10− 2. Moreover, in the 
condition Bd ≤ 10− 2, the asymptotic hydrostatic value may be exceeded 
depending on the rheological index value and the wall distance. In 
particular, the rheological index strongly influences the peak force, 
which grows as n decreases. As far as the wall distance is concerned, it is 
possible to individuate a limit value, above which the maximum impact 
force corresponds to the final hydrostatic condition. 

Whenever the sidewalls flow resistance cannot be neglected with 
respect to the bottom one, it may be conjectured that the application of 
present results would lead to a conservative estimation in terms of F̂peak 

and therefore in terms of Ld,min. 

5. Conclusions 

The present paper investigates the impact force against a rigid wall 
due to dam-break wave of a shear-thinning power-law fluid. A one- 
dimensional shallow water model is used, and a second-order Finite 
Volume scheme is employed to numerically solve the governing equa
tions. Several numerical tests have been performed to investigate the 
influence on the dynamics and on the peak value of the impact force of 
the rheological characters of the fluids and of the problem geometry. In 
the performed tests the model parameters, Basal Drag coefficient Bd and 
power-law exponent n have been varied in realistic ranges for mud and 
lava flows and several dimensionless wall distance Ld have been 
considered for two values of the inclination angles, namely θ = 10◦ and θ 
= 20◦. 

The results show that, for fixed values of the channel slope θ, the (Bd,

n, Ld) values strongly influence the wave dynamics and two different 
behaviours of the temporal evolution have been found. Indeed, or the 
force sharply increases, and the peak value overwhelms the final hy
drostatic value, or the force grows smoothly in time asymptotically 
approaching the hydrostatic value. For a fixed value of the power-law 
exponent, the latter behaviour occurs whenever the Basal Drag coeffi
cient is sufficiently high and, in these cases, the asymptotic value may be 
safely assumed to evaluate the peak force. Conversely, for small Basal 
Drag the peak force may overwhelm the asymptotic value or not 
depending on Ld values. Indeed, there exists a minimum value of the 
wall distance 

(
Ld,min

)
above which the peak force does not exceed its 

asymptotic hydrostatic value, i.e.: F̂peak = 1. The minimum value of the 
wall distance Ld,min has been found to strongly increase when the power- 
law exponent is reduced. For two different values of the channel slope, 
the dimensionless value of this lower bound, Ld,min, is individuated 
considering several values of the dimensionless governing parameters 
(Bd, n). Moreover, for Ld ⩽ Ld,min, an evaluation of the maximum value of 
the peak forces is also provided. The results of this work represent a 
novel contribution on the evaluation of the force produced by a mud/ 
lava flow wave on a rigid obstacle, furnishing a theoretical interpreta
tion of the impact dynamics and useful applicative indications on the 
estimation of the peak value. 
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