
Can NMT Understand Me? Towards Perturbation-based

Evaluation of NMT Models for Code Generation

Pietro Liguori
University of Naples Federico II

Naples, Italy

pietro.liguori@unina.it

Cristina Improta
University of Naples Federico II

Naples, Italy

crist.improta@studenti.unina.it

Simona De Vivo
University of Naples Federico II

Naples, Italy

simona.devivo@unina.it

Roberto Natella
University of Naples Federico II

Naples, Italy

roberto.natella@unina.it

Bojan Cukic
University of North Carolina at

Charlotte

Charlotte, North Carolina, USA

bcukic@uncc.edu

Domenico Cotroneo
University of Naples Federico II

Naples, Italy

cotroneo@unina.it

ABSTRACT

Neural Machine Translation (NMT) has reached a level of maturity

to be recognized as the premier method for the translation between

different languages and aroused interest in different research areas,

including software engineering. A key step to validate the robust-

ness of the NMT models consists in evaluating the performance

of the models on adversarial inputs, i.e., inputs obtained from the

original ones by adding small amounts of perturbation. However,

when dealing with the specific task of the code generation (i.e., the

generation of code starting from a description in natural language),

it has not yet been defined an approach to validate the robustness

of the NMT models. In this work, we address the problem by identi-

fying a set of perturbations and metrics tailored for the robustness

assessment of such models. We present a preliminary experimental

evaluation, showing what type of perturbations affect the model

the most and deriving useful insights for future directions.

CCS CONCEPTS

• Computing methodologies→ Machine translation.

KEYWORDS

neural machine translation, robustness testing, code generation,

adversarial inputs

ACM Reference Format:

Pietro Liguori, Cristina Improta, Simona De Vivo, Roberto Natella, Bojan

Cukic, and Domenico Cotroneo. 2022. Can NMT Understand Me? Towards

Perturbation-based Evaluation of NMT Models for Code Generation. In

The 1st Intl. Workshop on Natural Language-based Software Engineering

(NLBSE’22), May 21, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3528588.3528653

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9343-0/22/05. . . $15.00
https://doi.org/10.1145/3528588.3528653

1 INTRODUCTION

As in many areas of artificial intelligence, deep neural networks

have become the dominant paradigm for machine translation, bring-

ing impressive improvements in the quality of the translation, and

continuously moving forward the state-of-the-art performance [21].

Unlike traditional phrase-based translation, which consists of

many small sub-components tuned separately, Neural Machine

Translation (NMT) attempts to build and train a single, large neural

network that reads a sentence and outputs a correct translation [4].

NMT has reached a level of maturity to be recognized as the premier

method for the translation between different languages [48] and

aroused interest in different research areas, including software en-

gineering. In particular, the code generation task, also lately referred

to as semantic parsing [49, 53], is an emerging and important appli-

cation of NMT. It consists in the automatic translation of an intent

in natural language (NL), such as the English language, into a code

snippet written in a specific programming language. Indeed, NMT

has been extensively used for generating programs (e.g., Python [51]

and Java [29]), or to perform other programming tasks, such as code

completion [9, 39], the generation of UNIX commands [27, 28], etc.

Recently, NMT techniques have been also adopted to automatically

generate code for software exploits starting from the description in

natural language [24–26].

A common situation in any translation task from NL to program-

ming language is the gap between the natural language used in the

corpora and the natural language actually used by programmers.

As a matter of fact, the corpora used for NMT models are often too

“literal” and cumbersome to be realistically used by programmers.

For example, in the Shellcode_IA32 dataset [24, 25] used for the

generation of assembly code from natural language, the intent, i.e.,

the natural language description, “Push the contents of eax onto the

stack” takes longer than writing the assembly instruction “push
eax”. The Django dataset [36], which is widely used for evaluating
neural machine translation task from English to Python [16, 50, 52],

contains numerous Python code snippets that are relatively short

(e.g., “chunk_buffer = BytesIO(chunk)”) described with with
English statements that are definitely longer than the snippets

(“evaluate the function BytesIO with argument chunk, substitute it

for chunk_buffer.”). Again, in the CoNaLa dataset [50], we can find

shortcode snippets (e.g., “GRAVITY = 9.8”) described with longer
English intents (“assign float 9.8 to variable GRAVITY”).

59

2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA Liguori et al.

Since different users express the English intents in their own

way, NMT models need to be robust against gaps between the ac-

tual intents and the ones in the corpora. A key approach typically

used in machine learning research is to perform robustness testing

of models, i.e., to evaluate the performance of the models when

dealing with unexpected inputs, and to identify cases of misclassifi-

cation. In particular, robustness testing has been adopted to identify

security issues in machine learning models, by crafting adversarial

inputs [55], i.e., inputs obtained from the original ones by adding

small amounts of perturbation, which a malicious attacker may

generate to mislead the model. These kinds of attacks on the inputs

were first investigated for computer vision systems. Recent studies

also addressed this problem in the context of language translation

(e.g., from English to Chinese) by injecting noise in the input at

different linguistic levels [5, 18, 23].

Given the gap discussed above, NMT models may not be robust

to intents that are valid descriptions of the code, but that follow

different styles or have different levels of detail compared to the

training corpus. If NMT models are unable to handle this variability,

they would be too inflexible and hamper the productivity of the

programmers, hence limiting their usability in practice. Therefore,

to evaluate the robustness of the NMT models, we aim to introduce

non-arbitrary perturbations, e.g., variations from well-intentioned

users. This is still an open research problem: while images can be

easily perturbed without losing their original meaning and seman-

tics, perturbing natural language can be much more challenging.

In light of these considerations, our work provides three key

contributions:

• We propose a set of perturbations to evaluate the robust-

ness of NMT models for the code generation task. The set

includes both perturbations already used in previous studies

and identified as suitable for the code generation task, and

novel ad-hoc perturbations for the code generation task;

• We identify a set of metrics tailored for the robustness evalu-

ation of NMT models under different levels of perturbations.

Indeed, a significant aspect to take into account is that, while

a perturbed intent may produce an output different from the

original one, it may still preserve the semantic and syntactic

correctness according to the target programming language;

• We present a preliminary experimental analysis to evaluate

the robustness of an NMT model when dealing with pertur-

bations in the intents. We show what perturbations affect

the model the most and derive useful insights for future

research.

In the following, Section 2 discusses related work; Section 3

proposes a set of perturbations to evaluate the robustness of NMT

models; Section 4 describes the metrics for the evaluation of the

model robustness; Section 5 presents the preliminary evaluation;

Section 6 concludes the paper.

2 RELATEDWORK

State-of-the-art provides several recent works on adversarial nat-

ural language processing (NLP) covering different research topics

such as sentiment analysis, toxic content detection, machine com-

prehension, and numerous similar contexts.

Previous works explored and analyzed noise generation at dif-

ferent linguistic levels, i.e., character, word, and sentence-level. At

character-level, text can be perturbed by inserting, deleting, ran-

domizing, or swapping characters to study the effects on natural

language processing (NLP) tasks [5, 17, 23]; furthermore, homo-

graphic attacks can be employed to mislead models in question

answering [47], and QWERTY character swapping can be used

to reproduce keyboard typos [5]. At the word level, words in a

sentence can be substituted with different random words, similar

words in the word embedding space, or meaning-preserving words

[18, 23, 30]. Regarding sentence-level manipulation, paraphrasing,

back translation, and reordering are some of the approaches used

to produce a syntactically and semantically similar phrase to fool

the models [18].

Heigold et al. [17] studied the effects of word scrambling and

random noise insertion in NLP tasks such as morphological tag-

ging and machine translation, both regarding English and German

languages. The perturbation strategies used include character flips

and swaps of neighboring characters to imitate typos. Belinkov

et al. [5] analyzed how natural noise, i.e., the natural occurring

of errors from available corpora, and synthetic noise, i.e., charac-

ter swaps aimed to reproduce misspellings and keyboard typos,

affect character-based NMT models, focusing on machine transla-

tion from natural languages such as French, German and Czech to

English. The authors used a black-box adversarial training setting

and found that these architectures have a tendency to break when

presented with noisy datasets.

In the context of the machine comprehension and question an-

swering, Wu et al. [47] investigated what type of text perturbation

leads to the most high-confidence misclassifications and which

embeddings are more susceptible to adversarial attacks. They used

homographic attacks, synonyms substitutions, and sentence para-

phrasing to investigatemodels’ performances in a perturbed context

paragraph. Huang et al. [18] conducted the first empirical study to

evaluate the effect of adversarial examples on SOTA neural seman-

tic parsers by perturbing existing benchmark corpora with four

different word-level operations and two sentence-level operations

and applying meaning-preserving constraints.

Recent works introduced tools and frameworks for the gen-

eration of adversarial inputs. TextBugger [23] is a framework to

efficiently generate utility-preserving adversarial texts under both

white-box and black-box settings to evaluate the robustness of

various popular, real-world online text classification systems. In

the white-box scenario, the attacker is aware of the model’s ar-

chitecture and parameters, so they first find important words by

computing the Jacobian matrix of the classifier, then choose an op-

timal perturbation from the generated five kinds of perturbations.

In the black-box scenario, the attacker does not have information

on the model’s internals, so they first find the significant sentences

and then use a scoring function to find the main words to manip-

ulate. Specifically, their targets are sentiment analysis and toxic

contents detection models. Gao et al. [13] presented DeepWordBug,

an algorithm to effectively generate small text perturbations in a

black-box setting. The authors use novel scoring and ranking tech-

niques to identify the most important words that, if perturbed, lead

the model to a misclassification. Concerning these perturbations,

60

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

Can NMT Understand Me? Towards Perturbation-based Evaluation of NMT Models for Code Generation NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

they apply character-level transformations such as swap, substitu-

tion, deletion, and insertion. Cheng et al. [6] proposed Seq2Sick,

an optimization-based framework to generate adversarial exam-

ples for sequence-to-sequence neural network models. The authors

implemented novel loss functions to conduct a non-overlapping

attack and targeted keyword attack, to handle the almost infinite

output space.

Our work can be considered complementary to the previous ones.

Indeed, although the robustness evaluation of the deep learning

models has been widely addressed by the previous research, to the

best of our knowledge, the use of adversarial attacks has not been

applied to validate the usability of the NMT models in the code

generation task.

3 PERTURBATIONS IN CODE GENERATION

To measure the robustness of the NMT models in the code gener-

ation task, we are interested to analyze the models with respect

to their inputs (i.e., intents in natural language). Indeed, the de-

scription of a natural language code snippet by different authors

may be characterized by different writing styles and capabilities.

A sentence may be rephrased through multiple synonyms, it may

order words in different ways, it may lack some significant detail,

or be too specific.

Therefore, although character-level perturbations may be mean-

ingful to study the sensitivity of NMT models to human errors (e.g.,

typos), in this work we focus on perturbing words in a sentence but

still preserving the original meaning of the intents. In particular,

we focus on two types of perturbations: the unseen synonyms, and

the missing information. The former can be used to evaluate the

performance of the translation task when the intents significantly

diverge from the terms used in the corpus (e.g., word synonyms).

The latter, instead, is suitable to assess the models’ performance

when programmers may omit information that would be redun-

dant, such as information implicitly contained in the sentence, or

information already stated in previous intents. Both these aspects

are important for the usability of NMT models.

3.1 Unseen Synonyms

A robust model should be resistant to noise caused by Unseen Syn-

onyms and should produce the same output when presented with

two semantically similar intents. Therefore, it is interesting to our

cause to substitute words within an intent either with a synonym

from a lexical database (e.g., WordNet [32]) or with their neighbor

in the word embedding space (i.e., a numerical representation of the

words) [31] and examine the model’s response.

However, blindly replacing words with their synonym may lead

to the loss of the sentence’s original meaning since terms with

small word embedding distance may belong to the same context but

not be semantically similar (e.g., the words “father” and “mother”).

Moreover, code generation is a highly specific domain, thus some

words have a precise meaning and cannot simply be replaced with

another. As a simple example, consider the intent “clear the contents

of the register”. A valid perturbation on the input can reasonably

lead to the sentence “empty the contents of the register”, but not to

“purify the contents of the register” since the verb “purify” is clearly

out of the programming context.

To overcome these issues, a solution could be limiting the space

of the possible words by creating a dictionary of words used to

describe programming code (e.g., by using books and tutorials as

reference). However, building a vocabulary from scratch containing

only words used in the programming language context may be

too time-consuming or, even worse, unfeasible. A more practical

approach consists in applying constraints on the transformation

method. An example of constraints for synonyms is to ensure that

the words can be replaced only with one of its top k-nearest neigh-

bors in the source embedding space before computing a similarity

score to filter out dissimilar terms [18, 23].

The use of the constraints for the choice of synonyms also allows

limiting situations in which the new word produces a different

meaning from the original intent. Referring to the previous example

“clear the contents of the register”, a synonym without constraints

for the verb “clear” is the verb “shift” [22], which is definitely used

in the programming code context, but with a completely different

purpose. Taking this into account, we identified three different

types of constraints useful to perform word substitution in the

intents:

• Word Embedding Distance: It measures the value of the

cosine similarity between word embeddings. The constraint-

based on the word embedding distance performs the sub-

stitution of words only if the value of the cosine similarity

between the replaced word and its synonym is higher than

a specified value;

• BERT-score: It measures token similarity between two texts

using contextual embedding [54]. Contextual embeddings,

such as BERT, can generate different vector representations

for the same word in different sentences depending on the

surrounding words, which form the context of the target

word [8]. By using the constraint on the BERT-score, the

substitution of the words is performed only if the score be-

tween the replaced word and its synonym is higher than a

specified value;

• Part-of-Speech (POS) tag: It is the process of marking up a

word in a text as corresponding to a particular part of speech.

The constraint using the POS tag allows the substitutions

only if the replaced word and its synonym have the same

POS tag (e.g., a verb should be replaced only with a verb, a

noun with a noun, etc.).

3.2 Missing Information

In the context of code generation, the removal of information be-

comes of particular interest since the intents of the corpora are

usually concise and detailed, thus they may completely lose their

original meaning even if only a single word is omitted or removed.

Nevertheless, this represents a common situation because users can

inadvertently neglect some details, or avoid specifying information

implicitly contained in the intent or included in the previous ones.

The action of removing information from the intents can be

performed randomly [18] or following particular criteria. In our

case, it is interesting to analyze how the model’s behavior and text

comprehension varies when important information is missing. This

kind of perturbation is yet to be explored in the code generation task.

For this reason, we first define what important information means

61

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA Liguori et al.

Table 1: Examples of omitted information on the same intent.

����Slashed text refers to the omitted words.

Perturbation Intent

None (Original Intent)
Store the shellcode pointer in

the ESI register.

Action-related words
���Store the shellcode pointer in

the ESI register.

Language-related words
Store the shellcode pointer in

the ESI����register.

Value-related words
Store the shellcode pointer in

the��ESI register.

in our context before removing one or more significant words from

each intent. When commenting on a code snippet, there are two

fundamental aspects to be considered: i) what action the user aims

to take, and ii) what is the target of the action. For example, the

simple intent “call the myfunc function” contains the action, i.e.,

the verb call, and the target, i.e., the myfunc function. The target of

the action can be further divided in the value of the target (i.e., the

name of the function), and the word specifying the type (i.e., the

word “function”). Based on these assumptions, we identify three

main categories of significant words in the intents:

• Action-related words: Words containing the information re-

lated to the actions of the intent, which are usually specified

by the verbs (e.g., jump, add, call, declare, etc.);

• Language-related words: Words related to the target pro-

gramming language (e.g., the words “class”, “function”, “vari-

able”, “register”, “label”, etc.);

• Value-related words: They include the name or the values

of the variables, the names of functions, classes and, where

available (e.g., assembly language), the value of the memory

addresses, and of name of registers or labels.

Table 1 shows the different types of word removal perturbations

on the English intent “Store the shellcode pointer in the ESI register.”,

which is commonly used to decode shellcodes in assembly language

for the IA-32 architecture [26]. The table shows examples in which

the intent still preserves its meaning even without specifying the

omitted words. The verb store and the keyword register are implicit

(the pointer of the shellcode can be only moved to ESI, which is,
in fact, a register), while the name of the register can be derived

from the context of the program (the ESI register is commonly
used to store the shellcode). However, this is not always the case.

For example, a list can be created or deleted, therefore, not spec-

ifying the verb can imply an opposite action. A user can create

non-primitive data structures, but the type of the structure (e.g., list,

dictionary, etc.) has to be specified to perform a correct prediction.

Finally, values and names have a broader range of meaning and

usage, hence it might be more difficult for a model to learn and

predict their behavior.

4 EVALUATION METRICS

When the input is perturbed, we need to assess if the output pre-

dicted by the model is correct, i.e., it is equivalent to the reference

of the test set (i.e., the ground-truth). However, the robustness eval-

uation of the NMT models is not trivial in that we need to take into

account different aspects.

The ambiguity of the natural language implies that the same

sentence can have different meanings and, therefore, it can be

translated into different and non-equivalent programming code

snippets. This problem is further exacerbated by the introduction

of perturbations on the intents (e.g., word synonyms, omitted words,

etc.). A significant takeaway is that, although the model’s prediction

can be incorrect with respect to the reference, it can result in the

right translation of the perturbed intent.

As well as in natural language we can express the same intents

with different sentences (e.g., through the use of synonyms, sen-

tence paraphrases, etc.), the equivalence of code snippets allows

programmers to write different but equivalent programming code.

This means that, even if the output predicted by the model differs

from the ground truth, it can still be considered correct.

In the light of the above considerations, the choice of the right

metrics is a key step to assess the robustness of the NMT models

in the code generation task. In the remainder of this section, we

describe a set of metrics suitable for this specific research problem.

4.1 Automatic Metrics

Automatic metrics are a valuable means to assess the quality of the

code generation task since they are reproducible, easy to be tuned,

and time-saving.

Among the most commonly used metrics in machine translation,

we definitely find the Bilingual Evaluation Understudy (BLEU)

score and the Exact Match Accuracy (EM) [3, 14, 29, 44, 51–53].

BLEU score [37] is based on the concept of n-gram, i.e., the adjacent

sequence of 𝑛 items (e.g., syllables, letters, words, etc.) from a given

example of text or speech. This metric measures the degree of

n-gram overlapping between the strings of words produced by

the model and the references at the corpus level. BLEU measures

translation quality by the accuracy of translating n-grams to n-

grams, for n-gram of size 1 to 4 [15]. The Exact Match Accuracy,

instead, measures the fraction of the exact match between the

output predicted by the model and the reference in the test set.

Further metrics useful in the context of the robustness evalua-

tion are based on sub-string analysis [41]. For example, the LCS-

based metric measures the normalized similarity by calculating

the longest common sub-sequence between the translation to the

output of the original input and the translation to the output of the

mutated input, respectively. The Ed-based metric measures the

edit-distance between two strings, where edit-distance is a way of

quantifying dissimilarity between two strings (i.e., the minimum

number of operations required to make two strings equal).

4.2 Manual Metrics

Although automatic metrics can evaluate the differences between

the output predicted by the model and the reference of the test set,

the automatic evaluation can not truly reflect the correctness of the

predicted code when it differs from the reference of the test set [40].

62

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

Can NMT Understand Me? Towards Perturbation-based Evaluation of NMT Models for Code Generation NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

Therefore, to properly assess the robustness of the models, we

need to evaluate the quality of the code snippets by using manual

metrics, i.e., metrics that are computed through human inspection.

In the context of the code generation task, in order to estimate

the correctness of the output, we need to look into the code with

respect to i) how the code is written, i.e., the code syntax and ii) what

the code actually does, i.e., the code semantic.

Therefore, a key step to evaluate the correctness of the model’s

output is to estimate both the Syntactic Accuracy and Seman-

tic Accuracy (also Execution Accuracy) [26, 45], which measure

the fraction of syntactic and semantic correct predictions over all

the predictions, respectively. While the former gives insights into

whether the code is correct according to the rules of the target

language, the latter indicates whether the output is the exact trans-

lation of the intent into the target programming language. The

semantic correctness implies syntax correctness, while a snippet

can be syntactically correct but semantically incorrect. Of course,

the syntactic incorrectness also implies the semantic one [26].

Different from the syntax, the evaluation of the code snippet se-

mantic depends by definition on the intent considered as reference.

For example, semantic accuracy assesses if the prediction, after

the perturbation, is correct according to the intent of the original

test set. The Perturbation Accuracy [18], instead, computes the

fraction of predictions considered correct with respect to the per-

turbed version of the intents, i.e., the output is considered correct

if it is the exact translation of the perturbed input into the target

programming language. This metric is of particular interest when

the perturbation introduces ambiguity or, even worse, changes the

semantic meaning of the intent. In this case, indeed, the output

may be considered correct according to the perturbed version of

the intent but incorrect when considering the intent in the original

test set (not perturbed) as the reference, and vice-versa.

A further metric of interest in this context is the Robust Ac-

curacy [18]. The metric focuses the evaluation on the intents of

the original test set which are properly predicted by the model

without any perturbations, discarding the ones mispredicted by

the model. To assess the robustness, it computes the fraction of

correct predictions under perturbations over the subset of the pre-

vious correct outputs. The metric is based on the assumption that

to evaluate the model’s robustness, it may be meaningless to in-

clude intents leading to the model’s mispredictions, regardless of

the perturbations.

5 PRELIMINARY EVALUATION

Weperformed a set of preliminary experiments to assess themodel’s

ability to tolerate noise and still produce accurate outputs. We

targeted the Seq2Seq model since it is widely used in a variety

of neural machine translation tasks. In particular, we adopted the

Seq2Seq model with Bahdanau-style attention mechanism [4]. We

implemented the Seq2Seq model using xnmt [35]. We used an

Adam optimizer [20] with 𝛽1 = 0.9 and 𝛽2 = 0.999, while the
learning rate 𝛼 is set to 0.001. We set all the remaining hyper-
parameters in a basic configuration: layer dimension = 512, layers

= 1, epochs (with early stopping enforced) = 200, beam size = 5.

We did not use any pre-processing or post-processing steps to help

the model in the generation of the output since we are interested

in quantifying the impact of the noise rather than maximizing the

performance.

To feed the model, we used the assembly dataset released by

Liguori et al. [26] for automatically generating assembly from natu-

ral language descriptions. This dataset consists of assembly instruc-

tions, commented in English language, which were collected from

shellcodes for IA-32 and written for the Netwide Assembler (NASM)

for Linux [10]. The dataset contains 3, 715 unique pairs of assembly
code snippets/English intents: 3105 pairs in the training set, 305

pairs in the dev set, and 305 pairs in the test set.

Our preliminary evaluation interested a subset of the perturba-

tions described in § 3. In particular, we evaluated the robustness of

the model by using three different types of perturbations:

• Unseen synonyms with constraints using the BERT-score and

POS tag: We applied a transformation only when the syn-

onym, chosen as a neighbor in the word embedding space,

and the original word have a BERT-score similarity greater

than 0.85 and the same POS tag. We empirically choose a
high value for the BERT-score similarity to introduce diver-

sity in the intent without losing the original meaning. We

randomly replaced the 10% of the selected words within a

single intent, ensuring that at least one word is swapped

with its synonym in each intent.

• Omission of the action-related words: We removed the verbs

from every intent in the test set using a POS tagger (e.g.,

“define”, “add”, etc.);

• Omission of the language-related words: We removed the

words related to the assembly programming language from

each intent (e.g., “register”, “label”, etc.) in the test set.

We used TextAttack [33], a Python framework for data aug-

mentation in NLP, to replace words with synonyms and apply the

constraints, and Flair POS-tagging model [2] as part-of-the speech

tagger. The TextAttack framework implements the word swap by

embedding transformation, i.e., a novel counter-fittingmethod for in-

jecting linguistic constraints into word vector space representations,

which post-processes word vectors to improve their usefulness for

tasks involving the semantic similarity judgements [34].

We perturbed all the intents of the test set (i.e., the test set is

100% perturbed), while we did not add any noise in the training and

dev sets. All experiments were performed on a Linux OS running

on a virtual machine with 8 CPU cores and 8 GB RAM.

5.1 Automatic Evaluation

We first evaluated the performance of the code generation task

in terms of automatic metrics both on the original and on the

perturbed test set. The key idea is that, the more the performance

decreases compared to the one of the original test set, the more

the model is affected by the perturbation. As automatic metrics,

we used the BLEU-4, the exact match accuracy (EM), the Ed-based

metric (ED), and the LCS-based metric (LCS). Table 2 shows the

results.

Among the type of perturbations, the use of unseen synonyms

with constraints less affect the performance of the model. The

model, indeed, showed to be robust when dealing with word syn-

onyms, also because the high BERT-score similarity set as constraint

63

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA Liguori et al.

Table 2: Automatic evaluation of different types of adversarial inputs. The worst performance is red/bold.

Test Set BLEU-4 (%) EM (%) ED (%) LCS (%)

Original (no perturbations) 17.39 19.67 62.48 64.70

Unseen synonyms with const. 16.03 18.11 59.53 62.66

Action-related words 13.45 13.11 53.19 56.08

Language-related words 13.09 16.39 56.09 58.48

limited the amount of diversity of the words. The explicit infor-

mation removal from the intents, instead, negatively impacted the

model’s prediction. In particular, the removal of the action-related

words implied the worst performance in terms of exact match accu-

racy, Ed-based metric, and the LCS-based metric, while the model

shows the worst BLEU-4 when dealing with the removal of the

language-related words.

5.2 Manual Evaluation

The previous metrics do not provide a complete and robust evalu-

ation: EX only measures exact match and cannot thus give credit

to semantically correct code that is different from the reference,

while it is not clear whether BLEU provides an appropriate proxy

for measuring semantics in the code generation task [51]. There-

fore, we further studied the impact of perturbations on the code

generation task by performing a manual evaluation. In particular,

for each code snippet predicted by the model, all authors evaluated

both the syntactic and semantic accuracy, independently. To reduce

the possibility of errors in the manual analysis, multiple authors

discussed cases of discrepancy, obtaining a consensus for the syn-

tactic and semantic correctness. Table 3 shows the percentage of

syntactically (SYN) and semantically (SEM) correct snippets over

all the examples of the test set.

The table shows that the use of perturbations does not negatively

impact the model’s ability to predict syntactically correct code

snippets. Even better, the removal of action-related words slightly

increased the performance of the syntactical accuracy of the model.

Through an in-depth analysis of the model’s outputs, we found that

the removal of verbs resulted in the prediction of relatively simple

code snippets (in terms of length) and, thus, syntactically correct,

but which do not represent the exact translation of the original

intent. As a matter of fact, the removal of the action-related words

resulted in the most significant dropping of the performance in

terms of semantic accuracy. Similarly, the use of unseen synonyms

and the removal of language-related words negatively affected

the semantic accuracy of the model, but the dropping of semantic

accuracy is more limited. In particular, the table shows that the

semantic accuracy of the outputs achieved when the language-

related words are omitted is close to the one of the original test

set.

We conducted a paired-sample T-test to compare the syntactic

and the semantic accuracy values of the code snippets predicted

under perturbations with the ones of the original test set (given

the same example). We found that the differences in the syntactic

accuracy obtained under different types of perturbations are not

statistically significant from the one of the original test set. Con-

cerning the semantic accuracy, the hypothesis testing suggested

Table 3: Manual evaluation of different types of adversarial

inputs. The worst performance is in red/bold (∗ = p<0.01).

Test Set SYN (%) SEM (%)

Original (no perturbations) 88.52 22.95

Unseen synonyms with const. 87.87 18.36*

Action-related words 89.51 14.75*

Language-related words 88.20 20.98

that the performance achieved with the use of unseen synonyms

and the removal of the action-related words are statistically signif-

icant with 𝑝 < 0.01. The difference of the performance achieved
with the removal of the language-related words, instead, did not

result in any statistical evidence.

A significant takeaway from this preliminary evaluation is that

in the generation of assembly code from natural language, the NMT

model: i) can deal with the use of synonyms in the intents and,

therefore, different ways of describing the code by different users;

ii) is very robust to non-explicit information on language-related

words, such as keywords; iii) is hugely affected by intents where

actions are non explicitly stated.

6 CONCLUSION AND FUTUREWORK

We addressed the problem of evaluating the robustness of the NMT

models for the code generation task by proposing a set of perturba-

tions and metrics to assess the impact of the models when dealing

with different inputs. We performed a preliminary evaluation of

the Seq2Seq model in the assembly code generation from natural

language description and showed how different perturbations on

the inputs affect the model’s performance.

As future work, we aim to extend the robustness evaluation to

different DL-based architectures [12, 42]. We are also investigating

different solutions to make NMT models more robust. In particular,

we foresee the use of the adversarial training (i.e., injecting per-

turbed inputs into training data to increase robustness) [7, 11, 19]

and the development of solutions that help the models to derive

the missing or implicit information from the context of the pro-

gram [1, 38, 43, 46].

ACKNOWLEDGMENTS

This work has been partially supported by the University of Naples

Federico II in the frame of the Programme F.R.A., project id OS-

TAGE.

64

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

Can NMT Understand Me? Towards Perturbation-based Evaluation of NMT Models for Code Generation NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Ruchit Rajeshkumar Agrawal, Marco Turchi, and Matteo Negri. 2018. Contextual

handling in neural machine translation: Look behind, ahead and on both sides.
In 21st Annual Conference of the European Association for Machine Translation.
11–20.

[2] Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual String Embed-
dings for Sequence Labeling. In Proceedings of the 27th International Conference on
Computational Linguistics, COLING 2018, Santa Fe, NewMexico, USA, August 20-26,
2018, Emily M. Bender, Leon Derczynski, and Pierre Isabelle (Eds.). Association
for Computational Linguistics, 1638–1649. https://aclanthology.org/C18-1139/

[3] Erfan Al-Hossami and Samira Shaikh. 2022. A Survey on Artificial Intelligence
for Source Code: A Dialogue Systems Perspective. CoRR abs/2202.04847 (2022).
arXiv:2202.04847 https://arxiv.org/abs/2202.04847

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1409.0473

[5] Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic andNatural Noise Both Break
Neural Machine Translation. In 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net. https://openreview.net/forum?id=BJ8vJebC-

[6] Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. 2020.
Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Ad-
versarial Examples. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI
Press, 3601–3608. https://aaai.org/ojs/index.php/AAAI/article/view/5767

[7] Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019. Robust Neural Machine
Translation with Doubly Adversarial Inputs. In Proceedings of the 57th Conference
of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, Anna Korhonen, David R. Traum,
and Lluís Màrquez (Eds.). Association for Computational Linguistics, 4324–4333.
https://doi.org/10.18653/v1/p19-1425

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[9] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In CHI ’20: CHI Conference on Human Factors in Comput-
ing Systems, Honolulu, HI, USA, April 25-30, 2020, Regina Bernhaupt, Florian ’Floyd’
Mueller, David Verweij, Josh Andres, JoannaMcGrenere, Andy Cockburn, Ignacio
Avellino, Alix Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul Samson, and
Rafal Kocielnik (Eds.). ACM, 1–12. https://doi.org/10.1145/3313831.3376442

[10] J. Duntemann. 2000. Assembly Language Step-by-Step: Programming with DOS
and Linux. Wiley. https://books.google.it/books?id=7-h1RPbnTTAC

[11] Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018. On Adversarial Exam-
ples for Character-Level Neural Machine Translation. In Proceedings of the
27th International Conference on Computational Linguistics, COLING 2018, Santa
Fe, New Mexico, USA, August 20-26, 2018, Emily M. Bender, Leon Derczynski,
and Pierre Isabelle (Eds.). Association for Computational Linguistics, 653–663.
https://aclanthology.org/C18-1055/

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020 (Findings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and
Yang Liu (Eds.). Association for Computational Linguistics, 1536–1547. https:
//doi.org/10.18653/v1/2020.findings-emnlp.139

[13] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-Box Gener-
ation of Adversarial Text Sequences to Evade Deep Learning Classifiers. In 2018
IEEE Security and Privacy Workshops, SP Workshops 2018, San Francisco, CA, USA,
May 24, 2018. IEEE Computer Society, 50–56. https://doi.org/10.1109/SPW.2018.
00016

[14] Carlos Gemmell, Federico Rossetto, and Jeffrey Dalton. 2020. Relevance Trans-
former: Generating Concise Code Snippets with Relevance Feedback. In Proceed-
ings of the 43rd International ACM SIGIR conference on research and development
in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, Jimmy
Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen,
and Yiqun Liu (Eds.). ACM, 2005–2008. https://doi.org/10.1145/3397271.3401215

[15] Lifeng Han, Gareth J. F. Jones, and Alan F. Smeaton. 2021. Translation Qual-
ity Assessment: A Brief Survey on Manual and Automatic Methods. CoRR
abs/2105.03311 (2021). arXiv:2105.03311 https://arxiv.org/abs/2105.03311

[16] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin,
Anthony Tomasic, and Graham Neubig. 2018. Retrieval-Based Neural Code
Generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018, Ellen Riloff,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for
Computational Linguistics, 925–930. https://doi.org/10.18653/v1/d18-1111

[17] Georg Heigold, Stalin Varanasi, Günter Neumann, and Josef van Genabith. 2018.
How Robust Are Character-Based Word Embeddings in Tagging and MT Against
Wrod Scramlbing or Randdm Nouse?. In Proceedings of the 13th Conference of
the Association for Machine Translation in the Americas, AMTA 2018, Boston, MA,
USA, March 17-21, 2018 - Volume 1: Research Papers, Colin Cherry and Graham
Neubig (Eds.). Association for Machine Translation in the Americas, 68–80. https:
//aclanthology.org/W18-1807/

[18] Shuo Huang, Zhuang Li, Lizhen Qu, and Lei Pan. 2021. On Robustness of
Neural Semantic Parsers. In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics: Main Volume,
EACL 2021, Online, April 19 - 23, 2021, Paola Merlo, Jörg Tiedemann, and
Reut Tsarfaty (Eds.). Association for Computational Linguistics, 3333–3342.
https://aclanthology.org/2021.eacl-main.292/

[19] Yatu Ji, Hongxu Hou, Junjie Chen, and Nier Wu. 2020. Adversarial Training for
UnknownWord Problems in Neural Machine Translation. ACM Trans. Asian Low
Resour. Lang. Inf. Process. 19, 1 (2020), 17:1–17:12. https://doi.org/10.1145/3342482

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[21] P. Koehn. 2020. Neural Machine Translation. Cambridge University Press. https:
//books.google.it/books?id=iRzhDwAAQBAJ

[22] Oxford Languages. 2022. Oxford Languages and Google - English. https://
languages.oup.com/google-dictionary-en/.

[23] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2019. TextBug-
ger: Generating Adversarial Text Against Real-world Applications. In
26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/textbugger-generating-
adversarial-text-against-real-world-applications/

[24] Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bojan Cu-
kic, and Samira Shaikh. 2021. Shellcode_IA32: A Dataset for Automatic Shellcode
Generation. In Proceedings of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021). Association for Computational Linguistics,
Online, 58–64. https://doi.org/10.18653/v1/2021.nlp4prog-1.7

[25] Pietro Liguori, Erfan Al-Hossami, Domenico Cotroneo, Roberto Natella, Bojan
Cukic, and Samira Shaikh. 2022. Canwe generate shellcodes via natural language?
An empirical study. Automated Software Engineering 29, 1 (05 Mar 2022), 30.
https://doi.org/10.1007/s10515-022-00331-3

[26] Pietro Liguori, Erfan Al-Hossami, Vittorio Orbinato, Roberto Natella, Samira
Shaikh, Domenico Cotroneo, and Bojan Cukic. 2021. EVIL: Exploiting Software
via Natural Language. In 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE). 321–332. https://doi.org/10.1109/ISSRE52982.
2021.00042

[27] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, Luke Zettlemoyer, and
Michael D. Ernst. 2017. Program synthesis from natural language using recurrent
neural networks. Technical Report UW-CSE-17-03-01. University of Washington
Department of Computer Science and Engineering, Seattle, WA, USA.

[28] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. 2018.
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the
Linux Operating System. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018,
Nicoletta Calzolari, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara
Goggi, Kôiti Hasida, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène
Mazo, Asunción Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Tokunaga
(Eds.). European Language Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2018/summaries/1021.html

[29] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomás
Kociský, Fumin Wang, and Andrew W. Senior. 2016. Latent Predictor Networks
for Code Generation. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 1: Long Papers. The Association for Computer Linguistics. https://doi.
org/10.18653/v1/p16-1057

[30] Paul Michel, Xian Li, Graham Neubig, and Juan Miguel Pino. 2019. On Evaluation
of Adversarial Perturbations for Sequence-to-Sequence Models. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy
Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics,
3103–3114. https://doi.org/10.18653/v1/n19-1314

[31] Tomás Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic Regularities
in Continuous Space Word Representations. In Human Language Technologies:

65

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA Liguori et al.

Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA, Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff (Eds.).
The Association for Computational Linguistics, 746–751. https://aclanthology.
org/N13-1090/

[32] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39–41. https://doi.org/10.1145/219717.219748

[33] John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi.
2020. TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and
Adversarial Training in NLP. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, EMNLP 2020
- Demos, Online, November 16-20, 2020, Qun Liu and David Schlangen (Eds.).
Association for Computational Linguistics, 119–126. https://doi.org/10.18653/
v1/2020.emnlp-demos.16

[34] Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić, Lina Rojas-
Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting Word Vectors to Linguistic Constraints. In Proceedings of
HLT-NAACL.

[35] Graham Neubig, Matthias Sperber, Xinyi Wang, Matthieu Felix, Austin Matthews,
Sarguna Padmanabhan, Ye Qi, Devendra Singh Sachan, Philip Arthur, Pierre Go-
dard, John Hewitt, Rachid Riad, and Liming Wang. 2018. XNMT: The eXtensible
Neural Machine Translation Toolkit. In Proceedings of the 13th Conference of the
Association for Machine Translation in the Americas, AMTA 2018, Boston, MA,
USA, March 17-21, 2018 - Volume 1: Research Papers, Colin Cherry and Graham
Neubig (Eds.). Association for Machine Translation in the Americas, 185–192.
https://aclanthology.org/W18-1818/

[36] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Translation (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015, Myra B. Cohen, Lars Grunske, andMichaelWhalen
(Eds.). IEEE Computer Society, 574–584. https://doi.org/10.1109/ASE.2015.36

[37] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:
a Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, July
6-12, 2002, Philadelphia, PA, USA. ACL, 311–318. https://doi.org/10.3115/1073083.
1073135

[38] Yves Scherrer, Jörg Tiedemann, and Sharid Loáiciga. 2019. Analysing concatena-
tion approaches to document-level NMT in two different domains. In Proceedings
of the Fourth Workshop on Discourse in Machine Translation, DiscoMT@EMNLP
2019, Hong Kong, China, November 3, 2019, Andrei Popescu-Belis, Sharid Loái-
ciga, Christian Hardmeier, and Deyi Xiong (Eds.). Association for Computational
Linguistics, 51–61. https://doi.org/10.18653/v1/D19-6506

[39] Kensen Shi, David Bieber, and Rishabh Singh. 2020. TF-Coder: Program Synthesis
for Tensor Manipulations. CoRR abs/2003.09040 (2020). arXiv:2003.09040 https:
//arxiv.org/abs/2003.09040

[40] Amanda Stent, Matthew Marge, and Mohit Singhai. 2005. Evaluating Evaluation
Methods for Generation in the Presence of Variation. In Computational Linguistics
and Intelligent Text Processing, 6th International Conference, CICLing 2005, Mexico
City, Mexico, February 13-19, 2005, Proceedings (Lecture Notes in Computer Science,
Vol. 3406), Alexander F. Gelbukh (Ed.). Springer, 341–351. https://doi.org/10.
1007/978-3-540-30586-6_38

[41] Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.
Automatic testing and improvement of machine translation. In ICSE ’20: 42nd
International Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 974–985. https:
//doi.org/10.1145/3377811.3380420

[42] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020.
TreeGen: A Tree-Based Transformer Architecture for Code Generation. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 8984–8991.
https://ojs.aaai.org/index.php/AAAI/article/view/6430

[43] Jörg Tiedemann and Yves Scherrer. 2017. Neural Machine Translation with
Extended Context. In Proceedings of the Third Workshop on Discourse in Machine
Translation, DiscoMT@EMNLP 2017, Copenhagen, Denmark, September 8, 2017,
Bonnie L. Webber, Andrei Popescu-Belis, and Jörg Tiedemann (Eds.). Association

for Computational Linguistics, 82–92. https://doi.org/10.18653/v1/w17-4811
[44] Ngoc M. Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen.

2019. Does BLEU score work for code migration?. In Proceedings of the 27th
International Conference on Program Comprehension, ICPC 2019, Montreal, QC,
Canada, May 25-31, 2019, Yann-Gaël Guéhéneuc, Foutse Khomh, and Federica
Sarro (Eds.). IEEE / ACM, 165–176. https://doi.org/10.1109/ICPC.2019.00034

[45] Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao,
Oleksandr Polozov, and Rishabh Singh. 2018. Robust text-to-sql generation with
execution-guided decoding. arXiv preprint arXiv:1807.03100 (2018).

[46] Longyue Wang, Zhaopeng Tu, Andy Way, and Qun Liu. 2017. Exploiting Cross-
Sentence Context for Neural Machine Translation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, Martha Palmer, Rebecca Hwa, and
Sebastian Riedel (Eds.). Association for Computational Linguistics, 2826–2831.
https://doi.org/10.18653/v1/d17-1301

[47] Winston Wu, Dustin Arendt, and Svitlana Volkova. 2020. Evaluating Neural
Machine Comprehension Model Robustness to Noisy Inputs and Adversarial
Attacks. CoRR abs/2005.00190 (2020). arXiv:2005.00190 https://arxiv.org/abs/
2005.00190

[48] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144 http://arxiv.
org/abs/1609.08144

[49] Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham
Neubig. 2020. Incorporating External Knowledge through Pre-training for Natural
Language to Code Generation. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association
for Computational Linguistics, 6045–6052. https://doi.org/10.18653/v1/2020.acl-
main.538

[50] Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and GrahamNeubig.
2018. Learning to mine aligned code and natural language pairs from stack
overflow. In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, Andy Zaidman,
Yasutaka Kamei, and Emily Hill (Eds.). ACM, 476–486. https://doi.org/10.1145/
3196398.3196408

[51] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August
4, Volume 1: Long Papers, Regina Barzilay and Min-Yen Kan (Eds.). Association
for Computational Linguistics, 440–450. https://doi.org/10.18653/v1/P17-1041

[52] Pengcheng Yin and Graham Neubig. 2018. TRANX: A Transition-based Neural
Abstract Syntax Parser for Semantic Parsing and Code Generation. In Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4,
2018, Eduardo Blanco and Wei Lu (Eds.). Association for Computational Linguis-
tics, 7–12. https://doi.org/10.18653/v1/d18-2002

[53] Pengcheng Yin and Graham Neubig. 2019. Reranking for Neural Semantic Pars-
ing. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, Anna Korhonen, David R. Traum, and Lluís Màrquez (Eds.). Association
for Computational Linguistics, 4553–4559. https://doi.org/10.18653/v1/p19-1447

[54] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
2020. BERTScore: Evaluating Text Generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=SkeHuCVFDr

[55] Xinze Zhang, Junzhe Zhang, Zhenhua Chen, and Kun He. 2021. Crafting Ad-
versarial Examples for Neural Machine Translation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6, 2021, Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics,
1967–1977. https://doi.org/10.18653/v1/2021.acl-long.153

66

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:26:53 UTC from IEEE Xplore. Restrictions apply.

