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ABSTRACT

Neural Machine Translation (NMT) has reached a level of maturity

to be recognized as the premier method for the translation between

different languages and aroused interest in different research areas,

including software engineering. A key step to validate the robust-

ness of the NMT models consists in evaluating the performance

of the models on adversarial inputs, i.e., inputs obtained from the

original ones by adding small amounts of perturbation. However,

when dealing with the specific task of the code generation (i.e., the

generation of code starting from a description in natural language),

it has not yet been defined an approach to validate the robustness

of the NMT models. In this work, we address the problem by identi-

fying a set of perturbations and metrics tailored for the robustness

assessment of such models. We present a preliminary experimental

evaluation, showing what type of perturbations affect the model

the most and deriving useful insights for future directions.
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1 INTRODUCTION

As in many areas of artificial intelligence, deep neural networks

have become the dominant paradigm for machine translation, bring-

ing impressive improvements in the quality of the translation, and

continuously moving forward the state-of-the-art performance [21].

Unlike traditional phrase-based translation, which consists of

many small sub-components tuned separately, Neural Machine

Translation (NMT) attempts to build and train a single, large neural

network that reads a sentence and outputs a correct translation [4].

NMT has reached a level of maturity to be recognized as the premier

method for the translation between different languages [48] and

aroused interest in different research areas, including software en-

gineering. In particular, the code generation task, also lately referred

to as semantic parsing [49, 53], is an emerging and important appli-

cation of NMT. It consists in the automatic translation of an intent

in natural language (NL), such as the English language, into a code

snippet written in a specific programming language. Indeed, NMT

has been extensively used for generating programs (e.g., Python [51]

and Java [29]), or to perform other programming tasks, such as code

completion [9, 39], the generation of UNIX commands [27, 28], etc.

Recently, NMT techniques have been also adopted to automatically

generate code for software exploits starting from the description in

natural language [24–26].

A common situation in any translation task from NL to program-

ming language is the gap between the natural language used in the

corpora and the natural language actually used by programmers.

As a matter of fact, the corpora used for NMT models are often too

“literal” and cumbersome to be realistically used by programmers.

For example, in the Shellcode_IA32 dataset [24, 25] used for the

generation of assembly code from natural language, the intent, i.e.,

the natural language description, “Push the contents of eax onto the

stack” takes longer than writing the assembly instruction “push
eax”. The Django dataset [36], which is widely used for evaluating
neural machine translation task from English to Python [16, 50, 52],

contains numerous Python code snippets that are relatively short

(e.g., “chunk_buffer = BytesIO(chunk)”) described with with
English statements that are definitely longer than the snippets

(“evaluate the function BytesIO with argument chunk, substitute it

for chunk_buffer.” ). Again, in the CoNaLa dataset [50], we can find

shortcode snippets (e.g., “GRAVITY = 9.8”) described with longer
English intents (“assign float 9.8 to variable GRAVITY” ).
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Since different users express the English intents in their own

way, NMT models need to be robust against gaps between the ac-

tual intents and the ones in the corpora. A key approach typically

used in machine learning research is to perform robustness testing

of models, i.e., to evaluate the performance of the models when

dealing with unexpected inputs, and to identify cases of misclassifi-

cation. In particular, robustness testing has been adopted to identify

security issues in machine learning models, by crafting adversarial

inputs [55], i.e., inputs obtained from the original ones by adding

small amounts of perturbation, which a malicious attacker may

generate to mislead the model. These kinds of attacks on the inputs

were first investigated for computer vision systems. Recent studies

also addressed this problem in the context of language translation

(e.g., from English to Chinese) by injecting noise in the input at

different linguistic levels [5, 18, 23].

Given the gap discussed above, NMT models may not be robust

to intents that are valid descriptions of the code, but that follow

different styles or have different levels of detail compared to the

training corpus. If NMT models are unable to handle this variability,

they would be too inflexible and hamper the productivity of the

programmers, hence limiting their usability in practice. Therefore,

to evaluate the robustness of the NMT models, we aim to introduce

non-arbitrary perturbations, e.g., variations from well-intentioned

users. This is still an open research problem: while images can be

easily perturbed without losing their original meaning and seman-

tics, perturbing natural language can be much more challenging.

In light of these considerations, our work provides three key

contributions:

• We propose a set of perturbations to evaluate the robust-

ness of NMT models for the code generation task. The set

includes both perturbations already used in previous studies

and identified as suitable for the code generation task, and

novel ad-hoc perturbations for the code generation task;

• We identify a set of metrics tailored for the robustness evalu-

ation of NMT models under different levels of perturbations.

Indeed, a significant aspect to take into account is that, while

a perturbed intent may produce an output different from the

original one, it may still preserve the semantic and syntactic

correctness according to the target programming language;

• We present a preliminary experimental analysis to evaluate

the robustness of an NMT model when dealing with pertur-

bations in the intents. We show what perturbations affect

the model the most and derive useful insights for future

research.

In the following, Section 2 discusses related work; Section 3

proposes a set of perturbations to evaluate the robustness of NMT

models; Section 4 describes the metrics for the evaluation of the

model robustness; Section 5 presents the preliminary evaluation;

Section 6 concludes the paper.

2 RELATEDWORK

State-of-the-art provides several recent works on adversarial nat-

ural language processing (NLP) covering different research topics

such as sentiment analysis, toxic content detection, machine com-

prehension, and numerous similar contexts.

Previous works explored and analyzed noise generation at dif-

ferent linguistic levels, i.e., character, word, and sentence-level. At

character-level, text can be perturbed by inserting, deleting, ran-

domizing, or swapping characters to study the effects on natural

language processing (NLP) tasks [5, 17, 23]; furthermore, homo-

graphic attacks can be employed to mislead models in question

answering [47], and QWERTY character swapping can be used

to reproduce keyboard typos [5]. At the word level, words in a

sentence can be substituted with different random words, similar

words in the word embedding space, or meaning-preserving words

[18, 23, 30]. Regarding sentence-level manipulation, paraphrasing,

back translation, and reordering are some of the approaches used

to produce a syntactically and semantically similar phrase to fool

the models [18].

Heigold et al. [17] studied the effects of word scrambling and

random noise insertion in NLP tasks such as morphological tag-

ging and machine translation, both regarding English and German

languages. The perturbation strategies used include character flips

and swaps of neighboring characters to imitate typos. Belinkov

et al. [5] analyzed how natural noise, i.e., the natural occurring

of errors from available corpora, and synthetic noise, i.e., charac-

ter swaps aimed to reproduce misspellings and keyboard typos,

affect character-based NMT models, focusing on machine transla-

tion from natural languages such as French, German and Czech to

English. The authors used a black-box adversarial training setting

and found that these architectures have a tendency to break when

presented with noisy datasets.

In the context of the machine comprehension and question an-

swering, Wu et al. [47] investigated what type of text perturbation

leads to the most high-confidence misclassifications and which

embeddings are more susceptible to adversarial attacks. They used

homographic attacks, synonyms substitutions, and sentence para-

phrasing to investigatemodels’ performances in a perturbed context

paragraph. Huang et al. [18] conducted the first empirical study to

evaluate the effect of adversarial examples on SOTA neural seman-

tic parsers by perturbing existing benchmark corpora with four

different word-level operations and two sentence-level operations

and applying meaning-preserving constraints.

Recent works introduced tools and frameworks for the gen-

eration of adversarial inputs. TextBugger [23] is a framework to

efficiently generate utility-preserving adversarial texts under both

white-box and black-box settings to evaluate the robustness of

various popular, real-world online text classification systems. In

the white-box scenario, the attacker is aware of the model’s ar-

chitecture and parameters, so they first find important words by

computing the Jacobian matrix of the classifier, then choose an op-

timal perturbation from the generated five kinds of perturbations.

In the black-box scenario, the attacker does not have information

on the model’s internals, so they first find the significant sentences

and then use a scoring function to find the main words to manip-

ulate. Specifically, their targets are sentiment analysis and toxic

contents detection models. Gao et al. [13] presented DeepWordBug,

an algorithm to effectively generate small text perturbations in a

black-box setting. The authors use novel scoring and ranking tech-

niques to identify the most important words that, if perturbed, lead

the model to a misclassification. Concerning these perturbations,
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they apply character-level transformations such as swap, substitu-

tion, deletion, and insertion. Cheng et al. [6] proposed Seq2Sick,

an optimization-based framework to generate adversarial exam-

ples for sequence-to-sequence neural network models. The authors

implemented novel loss functions to conduct a non-overlapping

attack and targeted keyword attack, to handle the almost infinite

output space.

Our work can be considered complementary to the previous ones.

Indeed, although the robustness evaluation of the deep learning

models has been widely addressed by the previous research, to the

best of our knowledge, the use of adversarial attacks has not been

applied to validate the usability of the NMT models in the code

generation task.

3 PERTURBATIONS IN CODE GENERATION

To measure the robustness of the NMT models in the code gener-

ation task, we are interested to analyze the models with respect

to their inputs (i.e., intents in natural language). Indeed, the de-

scription of a natural language code snippet by different authors

may be characterized by different writing styles and capabilities.

A sentence may be rephrased through multiple synonyms, it may

order words in different ways, it may lack some significant detail,

or be too specific.

Therefore, although character-level perturbations may be mean-

ingful to study the sensitivity of NMT models to human errors (e.g.,

typos), in this work we focus on perturbing words in a sentence but

still preserving the original meaning of the intents. In particular,

we focus on two types of perturbations: the unseen synonyms, and

the missing information. The former can be used to evaluate the

performance of the translation task when the intents significantly

diverge from the terms used in the corpus (e.g., word synonyms).

The latter, instead, is suitable to assess the models’ performance

when programmers may omit information that would be redun-

dant, such as information implicitly contained in the sentence, or

information already stated in previous intents. Both these aspects

are important for the usability of NMT models.

3.1 Unseen Synonyms

A robust model should be resistant to noise caused by Unseen Syn-

onyms and should produce the same output when presented with

two semantically similar intents. Therefore, it is interesting to our

cause to substitute words within an intent either with a synonym

from a lexical database (e.g., WordNet [32]) or with their neighbor

in the word embedding space (i.e., a numerical representation of the

words) [31] and examine the model’s response.

However, blindly replacing words with their synonym may lead

to the loss of the sentence’s original meaning since terms with

small word embedding distance may belong to the same context but

not be semantically similar (e.g., the words “father” and “mother”).

Moreover, code generation is a highly specific domain, thus some

words have a precise meaning and cannot simply be replaced with

another. As a simple example, consider the intent “clear the contents

of the register”. A valid perturbation on the input can reasonably

lead to the sentence “empty the contents of the register”, but not to

“purify the contents of the register” since the verb “purify” is clearly

out of the programming context.

To overcome these issues, a solution could be limiting the space

of the possible words by creating a dictionary of words used to

describe programming code (e.g., by using books and tutorials as

reference). However, building a vocabulary from scratch containing

only words used in the programming language context may be

too time-consuming or, even worse, unfeasible. A more practical

approach consists in applying constraints on the transformation

method. An example of constraints for synonyms is to ensure that

the words can be replaced only with one of its top k-nearest neigh-

bors in the source embedding space before computing a similarity

score to filter out dissimilar terms [18, 23].

The use of the constraints for the choice of synonyms also allows

limiting situations in which the new word produces a different

meaning from the original intent. Referring to the previous example

“clear the contents of the register”, a synonym without constraints

for the verb “clear” is the verb “shift” [22], which is definitely used

in the programming code context, but with a completely different

purpose. Taking this into account, we identified three different

types of constraints useful to perform word substitution in the

intents:

• Word Embedding Distance: It measures the value of the

cosine similarity between word embeddings. The constraint-

based on the word embedding distance performs the sub-

stitution of words only if the value of the cosine similarity

between the replaced word and its synonym is higher than

a specified value;

• BERT-score: It measures token similarity between two texts

using contextual embedding [54]. Contextual embeddings,

such as BERT, can generate different vector representations

for the same word in different sentences depending on the

surrounding words, which form the context of the target

word [8]. By using the constraint on the BERT-score, the

substitution of the words is performed only if the score be-

tween the replaced word and its synonym is higher than a

specified value;

• Part-of-Speech (POS) tag: It is the process of marking up a

word in a text as corresponding to a particular part of speech.

The constraint using the POS tag allows the substitutions

only if the replaced word and its synonym have the same

POS tag (e.g., a verb should be replaced only with a verb, a

noun with a noun, etc.).

3.2 Missing Information

In the context of code generation, the removal of information be-

comes of particular interest since the intents of the corpora are

usually concise and detailed, thus they may completely lose their

original meaning even if only a single word is omitted or removed.

Nevertheless, this represents a common situation because users can

inadvertently neglect some details, or avoid specifying information

implicitly contained in the intent or included in the previous ones.

The action of removing information from the intents can be

performed randomly [18] or following particular criteria. In our

case, it is interesting to analyze how the model’s behavior and text

comprehension varies when important information is missing. This

kind of perturbation is yet to be explored in the code generation task.

For this reason, we first define what important information means
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Table 1: Examples of omitted information on the same intent.

����Slashed text refers to the omitted words.

Perturbation Intent

None (Original Intent)
Store the shellcode pointer in

the ESI register.

Action-related words
���Store the shellcode pointer in

the ESI register.

Language-related words
Store the shellcode pointer in

the ESI����register.

Value-related words
Store the shellcode pointer in

the��ESI register.

in our context before removing one or more significant words from

each intent. When commenting on a code snippet, there are two

fundamental aspects to be considered: i) what action the user aims

to take, and ii) what is the target of the action. For example, the

simple intent “call the myfunc function” contains the action, i.e.,

the verb call, and the target, i.e., the myfunc function. The target of

the action can be further divided in the value of the target (i.e., the

name of the function), and the word specifying the type (i.e., the

word “function”). Based on these assumptions, we identify three

main categories of significant words in the intents:

• Action-related words: Words containing the information re-

lated to the actions of the intent, which are usually specified

by the verbs (e.g., jump, add, call, declare, etc.);

• Language-related words: Words related to the target pro-

gramming language (e.g., the words “class”, “function”, “vari-

able”, “register”, “label”, etc.);

• Value-related words: They include the name or the values

of the variables, the names of functions, classes and, where

available (e.g., assembly language), the value of the memory

addresses, and of name of registers or labels.

Table 1 shows the different types of word removal perturbations

on the English intent “Store the shellcode pointer in the ESI register.”,

which is commonly used to decode shellcodes in assembly language

for the IA-32 architecture [26]. The table shows examples in which

the intent still preserves its meaning even without specifying the

omitted words. The verb store and the keyword register are implicit

(the pointer of the shellcode can be only moved to ESI, which is,
in fact, a register), while the name of the register can be derived

from the context of the program (the ESI register is commonly
used to store the shellcode). However, this is not always the case.

For example, a list can be created or deleted, therefore, not spec-

ifying the verb can imply an opposite action. A user can create

non-primitive data structures, but the type of the structure (e.g., list,

dictionary, etc.) has to be specified to perform a correct prediction.

Finally, values and names have a broader range of meaning and

usage, hence it might be more difficult for a model to learn and

predict their behavior.

4 EVALUATION METRICS

When the input is perturbed, we need to assess if the output pre-

dicted by the model is correct, i.e., it is equivalent to the reference

of the test set (i.e., the ground-truth). However, the robustness eval-

uation of the NMT models is not trivial in that we need to take into

account different aspects.

The ambiguity of the natural language implies that the same

sentence can have different meanings and, therefore, it can be

translated into different and non-equivalent programming code

snippets. This problem is further exacerbated by the introduction

of perturbations on the intents (e.g., word synonyms, omitted words,

etc.). A significant takeaway is that, although the model’s prediction

can be incorrect with respect to the reference, it can result in the

right translation of the perturbed intent.

As well as in natural language we can express the same intents

with different sentences (e.g., through the use of synonyms, sen-

tence paraphrases, etc.), the equivalence of code snippets allows

programmers to write different but equivalent programming code.

This means that, even if the output predicted by the model differs

from the ground truth, it can still be considered correct.

In the light of the above considerations, the choice of the right

metrics is a key step to assess the robustness of the NMT models

in the code generation task. In the remainder of this section, we

describe a set of metrics suitable for this specific research problem.

4.1 Automatic Metrics

Automatic metrics are a valuable means to assess the quality of the

code generation task since they are reproducible, easy to be tuned,

and time-saving.

Among the most commonly used metrics in machine translation,

we definitely find the Bilingual Evaluation Understudy (BLEU)

score and the Exact Match Accuracy (EM) [3, 14, 29, 44, 51–53].

BLEU score [37] is based on the concept of n-gram, i.e., the adjacent

sequence of 𝑛 items (e.g., syllables, letters, words, etc.) from a given

example of text or speech. This metric measures the degree of

n-gram overlapping between the strings of words produced by

the model and the references at the corpus level. BLEU measures

translation quality by the accuracy of translating n-grams to n-

grams, for n-gram of size 1 to 4 [15]. The Exact Match Accuracy,

instead, measures the fraction of the exact match between the

output predicted by the model and the reference in the test set.

Further metrics useful in the context of the robustness evalua-

tion are based on sub-string analysis [41]. For example, the LCS-

based metric measures the normalized similarity by calculating

the longest common sub-sequence between the translation to the

output of the original input and the translation to the output of the

mutated input, respectively. The Ed-based metric measures the

edit-distance between two strings, where edit-distance is a way of

quantifying dissimilarity between two strings (i.e., the minimum

number of operations required to make two strings equal).

4.2 Manual Metrics

Although automatic metrics can evaluate the differences between

the output predicted by the model and the reference of the test set,

the automatic evaluation can not truly reflect the correctness of the

predicted code when it differs from the reference of the test set [40].
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Therefore, to properly assess the robustness of the models, we

need to evaluate the quality of the code snippets by using manual

metrics, i.e., metrics that are computed through human inspection.

In the context of the code generation task, in order to estimate

the correctness of the output, we need to look into the code with

respect to i) how the code is written, i.e., the code syntax and ii) what

the code actually does, i.e., the code semantic.

Therefore, a key step to evaluate the correctness of the model’s

output is to estimate both the Syntactic Accuracy and Seman-

tic Accuracy (also Execution Accuracy) [26, 45], which measure

the fraction of syntactic and semantic correct predictions over all

the predictions, respectively. While the former gives insights into

whether the code is correct according to the rules of the target

language, the latter indicates whether the output is the exact trans-

lation of the intent into the target programming language. The

semantic correctness implies syntax correctness, while a snippet

can be syntactically correct but semantically incorrect. Of course,

the syntactic incorrectness also implies the semantic one [26].

Different from the syntax, the evaluation of the code snippet se-

mantic depends by definition on the intent considered as reference.

For example, semantic accuracy assesses if the prediction, after

the perturbation, is correct according to the intent of the original

test set. The Perturbation Accuracy [18], instead, computes the

fraction of predictions considered correct with respect to the per-

turbed version of the intents, i.e., the output is considered correct

if it is the exact translation of the perturbed input into the target

programming language. This metric is of particular interest when

the perturbation introduces ambiguity or, even worse, changes the

semantic meaning of the intent. In this case, indeed, the output

may be considered correct according to the perturbed version of

the intent but incorrect when considering the intent in the original

test set (not perturbed) as the reference, and vice-versa.

A further metric of interest in this context is the Robust Ac-

curacy [18]. The metric focuses the evaluation on the intents of

the original test set which are properly predicted by the model

without any perturbations, discarding the ones mispredicted by

the model. To assess the robustness, it computes the fraction of

correct predictions under perturbations over the subset of the pre-

vious correct outputs. The metric is based on the assumption that

to evaluate the model’s robustness, it may be meaningless to in-

clude intents leading to the model’s mispredictions, regardless of

the perturbations.

5 PRELIMINARY EVALUATION

Weperformed a set of preliminary experiments to assess themodel’s

ability to tolerate noise and still produce accurate outputs. We

targeted the Seq2Seq model since it is widely used in a variety

of neural machine translation tasks. In particular, we adopted the

Seq2Seq model with Bahdanau-style attention mechanism [4]. We

implemented the Seq2Seq model using xnmt [35]. We used an

Adam optimizer [20] with 𝛽1 = 0.9 and 𝛽2 = 0.999, while the
learning rate 𝛼 is set to 0.001. We set all the remaining hyper-
parameters in a basic configuration: layer dimension = 512, layers

= 1, epochs (with early stopping enforced) = 200, beam size = 5.

We did not use any pre-processing or post-processing steps to help

the model in the generation of the output since we are interested

in quantifying the impact of the noise rather than maximizing the

performance.

To feed the model, we used the assembly dataset released by

Liguori et al. [26] for automatically generating assembly from natu-

ral language descriptions. This dataset consists of assembly instruc-

tions, commented in English language, which were collected from

shellcodes for IA-32 and written for the Netwide Assembler (NASM)

for Linux [10]. The dataset contains 3, 715 unique pairs of assembly
code snippets/English intents: 3105 pairs in the training set, 305

pairs in the dev set, and 305 pairs in the test set.

Our preliminary evaluation interested a subset of the perturba-

tions described in § 3. In particular, we evaluated the robustness of

the model by using three different types of perturbations:

• Unseen synonyms with constraints using the BERT-score and

POS tag: We applied a transformation only when the syn-

onym, chosen as a neighbor in the word embedding space,

and the original word have a BERT-score similarity greater

than 0.85 and the same POS tag. We empirically choose a
high value for the BERT-score similarity to introduce diver-

sity in the intent without losing the original meaning. We

randomly replaced the 10% of the selected words within a

single intent, ensuring that at least one word is swapped

with its synonym in each intent.

• Omission of the action-related words: We removed the verbs

from every intent in the test set using a POS tagger (e.g.,

“define”, “add”, etc.);

• Omission of the language-related words: We removed the

words related to the assembly programming language from

each intent (e.g., “register”, “label”, etc.) in the test set.

We used TextAttack [33], a Python framework for data aug-

mentation in NLP, to replace words with synonyms and apply the

constraints, and Flair POS-tagging model [2] as part-of-the speech

tagger. The TextAttack framework implements the word swap by

embedding transformation, i.e., a novel counter-fittingmethod for in-

jecting linguistic constraints into word vector space representations,

which post-processes word vectors to improve their usefulness for

tasks involving the semantic similarity judgements [34].

We perturbed all the intents of the test set (i.e., the test set is

100% perturbed), while we did not add any noise in the training and

dev sets. All experiments were performed on a Linux OS running

on a virtual machine with 8 CPU cores and 8 GB RAM.

5.1 Automatic Evaluation

We first evaluated the performance of the code generation task

in terms of automatic metrics both on the original and on the

perturbed test set. The key idea is that, the more the performance

decreases compared to the one of the original test set, the more

the model is affected by the perturbation. As automatic metrics,

we used the BLEU-4, the exact match accuracy (EM), the Ed-based

metric (ED), and the LCS-based metric (LCS). Table 2 shows the

results.

Among the type of perturbations, the use of unseen synonyms

with constraints less affect the performance of the model. The

model, indeed, showed to be robust when dealing with word syn-

onyms, also because the high BERT-score similarity set as constraint
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Table 2: Automatic evaluation of different types of adversarial inputs. The worst performance is red/bold.

Test Set BLEU-4 (%) EM (%) ED (%) LCS (%)

Original (no perturbations) 17.39 19.67 62.48 64.70

Unseen synonyms with const. 16.03 18.11 59.53 62.66

Action-related words 13.45 13.11 53.19 56.08

Language-related words 13.09 16.39 56.09 58.48

limited the amount of diversity of the words. The explicit infor-

mation removal from the intents, instead, negatively impacted the

model’s prediction. In particular, the removal of the action-related

words implied the worst performance in terms of exact match accu-

racy, Ed-based metric, and the LCS-based metric, while the model

shows the worst BLEU-4 when dealing with the removal of the

language-related words.

5.2 Manual Evaluation

The previous metrics do not provide a complete and robust evalu-

ation: EX only measures exact match and cannot thus give credit

to semantically correct code that is different from the reference,

while it is not clear whether BLEU provides an appropriate proxy

for measuring semantics in the code generation task [51]. There-

fore, we further studied the impact of perturbations on the code

generation task by performing a manual evaluation. In particular,

for each code snippet predicted by the model, all authors evaluated

both the syntactic and semantic accuracy, independently. To reduce

the possibility of errors in the manual analysis, multiple authors

discussed cases of discrepancy, obtaining a consensus for the syn-

tactic and semantic correctness. Table 3 shows the percentage of

syntactically (SYN) and semantically (SEM) correct snippets over

all the examples of the test set.

The table shows that the use of perturbations does not negatively

impact the model’s ability to predict syntactically correct code

snippets. Even better, the removal of action-related words slightly

increased the performance of the syntactical accuracy of the model.

Through an in-depth analysis of the model’s outputs, we found that

the removal of verbs resulted in the prediction of relatively simple

code snippets (in terms of length) and, thus, syntactically correct,

but which do not represent the exact translation of the original

intent. As a matter of fact, the removal of the action-related words

resulted in the most significant dropping of the performance in

terms of semantic accuracy. Similarly, the use of unseen synonyms

and the removal of language-related words negatively affected

the semantic accuracy of the model, but the dropping of semantic

accuracy is more limited. In particular, the table shows that the

semantic accuracy of the outputs achieved when the language-

related words are omitted is close to the one of the original test

set.

We conducted a paired-sample T-test to compare the syntactic

and the semantic accuracy values of the code snippets predicted

under perturbations with the ones of the original test set (given

the same example). We found that the differences in the syntactic

accuracy obtained under different types of perturbations are not

statistically significant from the one of the original test set. Con-

cerning the semantic accuracy, the hypothesis testing suggested

Table 3: Manual evaluation of different types of adversarial

inputs. The worst performance is in red/bold (∗ = p<0.01).

Test Set SYN (%) SEM (%)

Original (no perturbations) 88.52 22.95

Unseen synonyms with const. 87.87 18.36*

Action-related words 89.51 14.75*

Language-related words 88.20 20.98

that the performance achieved with the use of unseen synonyms

and the removal of the action-related words are statistically signif-

icant with 𝑝 < 0.01. The difference of the performance achieved
with the removal of the language-related words, instead, did not

result in any statistical evidence.

A significant takeaway from this preliminary evaluation is that

in the generation of assembly code from natural language, the NMT

model: i) can deal with the use of synonyms in the intents and,

therefore, different ways of describing the code by different users;

ii) is very robust to non-explicit information on language-related

words, such as keywords; iii) is hugely affected by intents where

actions are non explicitly stated.

6 CONCLUSION AND FUTUREWORK

We addressed the problem of evaluating the robustness of the NMT

models for the code generation task by proposing a set of perturba-

tions and metrics to assess the impact of the models when dealing

with different inputs. We performed a preliminary evaluation of

the Seq2Seq model in the assembly code generation from natural

language description and showed how different perturbations on

the inputs affect the model’s performance.

As future work, we aim to extend the robustness evaluation to

different DL-based architectures [12, 42]. We are also investigating

different solutions to make NMT models more robust. In particular,

we foresee the use of the adversarial training (i.e., injecting per-

turbed inputs into training data to increase robustness) [7, 11, 19]

and the development of solutions that help the models to derive

the missing or implicit information from the context of the pro-

gram [1, 38, 43, 46].
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