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Local convertibility of the ground state of the perturbed toric code
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We present analytical and numerical studies of the behavior of the α-Renyi entropies in the toric code in
presence of several types of perturbations aimed at studying the simulability of these perturbations to the parent
Hamiltonian using local operations and classical communications (LOCC)—a property called local convertibility.
In particular, the derivatives, with respect to the perturbation parameter, present different signs for different values
of α within the topological phase. From the information-theoretic point of view, this means that such ground states
cannot be continuously deformed within the topological phase by means of catalyst assisted local operations and
classical communications (LOCC). Such LOCC differential convertibility is on the other hand always possible in
the trivial disordered phase. The non-LOCC convertibility is remarkable because it can be computed on a system
whose size is independent of correlation length. This method can therefore constitute an experimentally feasible
witness of topological order.
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I. INTRODUCTION

In recent years, a central thrust of research in quantum
many-body theory and quantum information science has
been the identification and characterization of novel phases
of matter which cannot be adequately described by the
Landau symmetry breaking mechanism [1]. These phases are
generically exhibited by ground states of strongly interacting
systems in two spatial dimensions. Quantum spin liquids
[2], topological insulators [3], and anyonic systems [4] are
examples that are of immediate interest to the condensed
matter community and important for quantum information
processing tasks as well [4–8]. Because the low-energy states
of these gapped systems do not break any symmetry of the
Hamiltonian, there exists no local observable whose expec-
tation values may be taken as an order parameter denoting
the phase [1]; however, despite sharing the same symmetries,
there may exist phases that exhibit different physical properties
[9]. The non-symmetry-breaking quantum order [4] in such
systems thus needs careful definition and characterization. To
this end, methods of varying reliability and feasibility have
been proposed [4,10–15].

Here we focus on the class of spin liquids featuring
topologically ordered phases of matter. According to the most
common definition, gapped topological phases of matter have
a ground state degeneracy, protected by the topology of the
lattice on which the spin Hamiltonian is defined, that cannot
be resolved by local observables [4,16,17] and a gap above
the ground state. These states are very nontrivial from the
point of view of entanglement. One defines a state as trivially
entangled if it is possible to deform it to a completely factorized
state in an adiabatic way by means of a local Hamiltonian. In
the language of quantum circuits, this is the same as limiting
oneself to unitary circuits (with finite range) of constant depth
(not scaling with lattice size). A topological state then, cannot
be completely disentangled by local unitary quantum circuits.
For this reason, one says that topological states possess
long-range entanglement [18]. The order in such states can
then be detected through the values (zero for topologically
trivial states) of carefully constructed quantities, such as
the topological entanglement entropy [4,10–14,19], which
characterize the correlation between different subregions of the
many-body system, or via Wilson loop operators [20,21]. We
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note that such figures of merit for topological order (TO) are
reliable, provided that length scales of the system much larger
than the correlation length ξ are inspected. This makes the
detection of the topological order experimentally challenging,
because it involves a state tomography of a macroscopic
portion of the system.

In this paper, we elaborate on the idea that the detection of
topological quantum phases is possible through the study of its
local convertibility properties [22,23]. One starts by imagining
the manifold of ground states for a many body quantum system
formed by the continuous set of ground states |ψ(λ)〉, for all
possible values of a control parameter λ of the Hamiltonian.
The controllability of the Hamiltonian is assumed to arise from
the addition of a tunable perturbation. One then asks whether
it would be possible to simulate the effect of this perturbation
on the ground state by using LOCC operations, restricted to
two parts in which the system has been partitioned, to convert
a ground state at one point to another nearby ground state in
the manifold. If the LOCC class of operations is sufficient to
effect such a conversion then we call the ground state locally
convertible with respect to (w.r.t.) the perturbation and the
bipartition and nonlocally convertible otherwise. This notion
of local convertibility can be translated in terms of the behavior
of the entire set of Rényi entropies of the reduced state on
either of the subsystems [24,25]. Equivalently, because the
Rényi entropies are analytic functions of the eigenvalues of
the reduced density matrix, the set of which is called the
entanglement spectrum, local convertibility can also be studied
via the nature of the entanglement spectral flow as one tunes
the perturbation strength [24–33]. A ground state is locally
convertible if and only if all Rényi entropies (parametrized
by the continuous real parameter α > 0) show the same
monotonicity with varying perturbation strength [24,25].

Note that the LOCC class of operations is a restricted subset
of general coherent quantum operations on the whole system
[34–36]. An example of the latter would be the adiabatic tuning
of the Hamiltonian, which would of course be capable of
implementing the conversion. On the other hand, the LOCC
we refer to, involves coherent operations local to the two
parts into which the whole system has been bipartitioned,
and thus can include portions of the system that, indeed,
can be very nonlocal on the scale fixed by the interactions
in the Hamiltonian. In particular, therefore, the notion of local
covertibility we will examine is very distinct to the one implied
in the ideas involved in the local unitary transformations
protocols (LUTs) [18]. There two gapped states are said to
be in the same phase if and only if they are related by a local
unitary evolution defined as a unitary operation resulting from
the evolution of a local (range of the terms does not scale with
the system size) Hamiltonian for finite time.

Our findings suggest that topologically ordered ground
states are non locally convertible with respect to generic
perturbations and bipartitions (see Secs. III B, III D, and IV for
a precise meaning of the term “generic”). Once the perturbation
strength gets strong enough to take the system out of the
topologically ordered phase the ground states become locally
convertible. Exploiting the above mentioned connection with
the properties of the Rényi entropies, we show that for generic
bipartitions and systems with nonconstant correlation length,
while certain Rényi entropies (with Renyi’s parameter α � αc)

decrease as the Hamiltonian is tuned towards the quantum
critical point within a TO phase, others (0 � α � αc) show
an increase—the “splitting phenomenon.” In the topologically
trivial phases, like paramagnetic and symmetry-breaking
phases [37,38], however, all entropies increase monotonically
as the critical point is approached.

The intuition behind our result is that the property of
non local convertibility is associated with topological order
because the global nature [39] of correlations characterizing
the latter poses constraints on the locality of operations that
may be used to convert one topologically ordered ground state
to another at a different parameter value of the Hamiltonian. In
a way, our work bridges between the ideas that TO is indeed a
property of the wave function [13] with the classical analysis
of the topological phases based on dynamical properties
(quasiparticle statistics, edge excitations, etc.) [15,40]. Our
approach may be seen to complement the analysis based on the
topological entanglement entropy, which relies on constraints
on the boundary degrees of freedom for sufficiently large
subsystems. There the large size of subsystems is required
to cancel the contribution from local correlations—bulk
contributions are rejected by design. Here we show that for
the class of quantum double models [4], of which the toric
code is an example, the response of the Renyi entropies to
a Hamiltonian perturbation depends on how many and how
much the degrees of freedom within the bulk of the subsystems
contribute to the entanglement spectrum.

We comment that, despite the fact that the set of Rényi
entropies by itself does not provide any extra universal
information, compared to the Topological entanglement en-
tropy at any fixed value of the Hamiltonian parameter [5],
the “splitting” of the Renyi entropies we discussed above
provides a faithful indicator of topological order, even for
Renyi entropies of very small (sub)systems. In other words,
our approach has an added value, in that it involves the
analysis on subsystems whose sizes need not scale with the
correlation length of the physical system. This implies an
obvious reduction of the complexity involved in the operation
to trace the topological order in the system, opening the way
to much simpler experimental protocols.

The structure of the paper is as follows. In Sec. II, we
explain our basic strategy, lay down the notation and quickly
review the basic theory of majorization of probability vectors
along with criteria for LOCC convertibility of ground states. In
Sec. II E, we present the different models, a couple of which are
amenable to exact analytical treatment, while the most general
case is dealt with numerically using 2D DMRG. In Sec. III D,
we summarize our results and conclude with comments and
discussion in Sec. IV about the scope of this line of inquiry.
We place in Appendix all calculations that we reference in the
main text to ease the readibility.

II. GENERAL STRATEGY AND MATHEMATICAL
PRELIMINARIES

A. General strategy

As a concrete example of a spin Hamiltonian with TO
in the ground state, we choose Kitaev’s toric code [16]
with a perturbation V (λ), that may be tuned through to the
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topologically trivial phase. Here, all perturbed Hamiltonians
HTC + V (λ) have a unique quantum critical point. We choose
the perturbation V so that it can drive a quantum phase
transition to either a disordered paramagnetic phase, or a
ferromagnet. Phase transitions of this kind have been studied
in Refs. [41–45]. Because we want statements about local
convertibility within a phase to be generic, our aim is to obtain
the reduced density matrix (specifically its eigenvalues or trace
of arbitrary powers) in full generality. We then analyze the
behavior of the Rényi entropies w.r.t. λ. These entropies are
functions of the eigenvalues of the reduced density matrix
and the monotonicity of the entire set of entropies depends on
their relative majorization, which is a partial order on the set of
probability vectors (the vector of eigenvalues) [46]. Finally, we
check if all Rényi entropies show monotonic behavior within
a phase or does a subset of them show opposing behavior
from the rest. In order to achieve this, we need to solve for
the ground state |ψ(λ)〉 and then obtain the reduced density
matrix as a function of the parameters λ.

We employ both analytical and numerical methods to find
the ground state and compute the Rényi entropies of the model.
Analytically, we resort to two models. One, the Castelnovo-
Chamon model, possesses an exact form for the ground state.
We are able to compute exactly all the Rényi entropies by using
group theoretic methods [47]. We also study the toric code in
an external magnetic field, where the field is only acting on a
subset of spins. This model maps into free fermions [4,48,49]
and is thus exactly solvable. In Refs. [48,50], an expression
was derived for the 2-Rényi entropy for a particular subsystem
in terms of correlation functions. Here, we achieve a general
expression for the 2-Rényi entropy of a generic subsystem of
this model. These results are actually more general and can
be applied to any lattice gauge theory. Finally, we study the
toric code in presence of Ising couplings in both the x and z

directions. This model is not exactly solvable. We attack the
problem numerically using a version of infinite DMRG in two
dimensions [51–53], based on a matrix product state (MPS)
representation of the ground state manifold for a cylinder of
infinite length and finite width. This method has proven very
useful to study topological phases [54].

B. Rényi entropies

Consider a multipartite pure quantum state |ψ〉 ∈ ⊗N
i Hi .

The entanglement spectrum ν̄ = {ν1,ν2, . . . ,νdA
} of the state, is

defined as the set of eigenvalues of the reduced density matrix
ρA = TrĀ(|ψ〉 〈ψ |), where A is a subset of local Hilbert space
indices, A ⊂ [N ], with the associated Hilbert space given by
HA = ⊗j∈AHj . We call A the subsystem. The complement of
the subsystem A then is Ā = [N\A] with its associated Hilbert
space HĀ = ⊗j∈ĀHj .

The entanglement spectrum of a state is the crucial
ingredient in the definition of Rényi entropies for the reduced
density matrix ρA defined as

Sα(ρA) := 1

1 − α
log Tr

(
ρα

A

)= 1

1 − α
log

⎛
⎝∑

j

να
j

⎞
⎠ ∀α � 0.

(1)

Knowledge about the entire set of Rényi entropies
Sα(ρA) ∀α ∈ [0,∞) is equivalent to complete knowledge about
the spectrum of the state itself. At specific values of the contin-
uous parameter α, the Rényi entropies provide operationally
important information about the state: Sα=0 = log R, R being
the Schmidt rank is a measure of bipartite entanglement
for the state that serves as a criteria for efficient classical
representation of the state [55], while limα→1 Sα = SV N is the
entanglement entropy of the pure state |ψ〉, that is, a measure
of its distillable entanglement, entanglement cost and that
of formation, relative entropy of entanglement and squashed
entanglement [34]. Also a linear combination of 2-Rényi
entropies S2 calculated for suitably chosen bipartitions, can be
used as a probe of topological order [48,50]. For product states
|ψ〉 = |ψ〉A ⊗ |ψ〉Ā, the entanglement spectrum collapses to
unity for one eigenvalue and zero for all others: ρ2

A = ρA,
which means that all Rényi entropies are zero as well.

C. Manifold of topologically ordered ground states

We define the ground state manifold, M, of a
Hamiltonian H (λ) as the continuous set of ground
states |ψ(λ)〉 (in a particular topological sector) for
all possible values of the control parameters λ.
So M = {|ψ(λ)〉s.t.|ψ(λ)〉 is the ground state of H (λ)∀λ =
(λ1, . . . ,λn) ∈ Rn}. As the Hilbert space is endowed with
a definite tensor product structure H = HA ⊗ HB , which
defines a bipartition of the system, we can consider the set
of reduced density matrices ρA(λ) to the subsystem A as a
function of λ, and study the behavior of the set of Rényi
entropies Sα(λ) with λ and α:

Sα(λ) := Sα(ρA(λ)) = Sα(TrĀ(|ψ(λ)〉 〈ψ(λ)|)) ∀α � 0, (2)

In the next section, we show, on the back of specific examples,
that the monotonicity of the entire set Sα(λ)∀α is a character-
istic of the phase unless the perturbation and/or the choice of
bipartition is fine tuned. The collective behavior can be cap-
tured succinctly by the sign of the derivative Sign[∂λSα(λ)]∀α,
which remains constant in the topologically disordered
phase—negative as the perturbation is tuned away from the
critical point; whereas in the ordered phase ∂λSα(λ) < 0
for α < αc, while it is positive for α � αc, as we move away
from the quantum critical point.

D. Differential local convertibility on the ground-state manifold

The class of local operations and classical communications
[56]—LOCC operations—are general quantum operations
augmented with classical communication. The operations
allowed are local in the sense of being restricted separately
to the two parts of some bipartition of the system while
potentially unlimited two-way classical communication (CC)
is allowed between observers of the two regions so that
operations conditioned on outcomes of the other region may be
implemented. This class of operations is motivated by current
technological capabilities as generating quantum coherences
becomes exponentially more difficult with increasing system
size as well as the difficulty in quantum data communication.

Differential local convertibillity (dLOCC) is a property of
a submanifold Mi ⊂ M of the ground state manifold M
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that determines whether LOCC operations may be used to
transform from |ψ(λ)〉 ∈ Mi to another |ψ(λ + δλ)〉 ∈ Mi .
Mathematically, we say that

Mi is dLOCC iff,

Sign[∂λSα(λ)] = constant ∀α � 0 ∀ |ψ(λ)〉 ∈ Mi . (3)

A negative sign in the right-hand side (R.H.S) of the con-
dition above implies dLOCC property of Mi in the direction
of increasing λ. In this work, we focus on submanifolds Mi

that are regions of the ground state manifold pertaining to the
different phases, labeled by i, for the different Hamiltonian
models we consider. Thus we frequently refer to a phase being
dLOCC as well.

The quantity Sign[∂λSα(λ)]∀α has operational signifi-
cance w.r.t. traversing Mi using LOCC. The results of
Refs. [25,35,27–31,46] imply that one can use LOCC oper-
ations to transform a ground state |ψ(λ)〉 ∈ Mi to another
|ψ(λ + δλ)〉 ∈ Mi , which may require access to a shared
entangled state |φ〉 (entanglement catalyst) between A,Ā

(bipartition), with probability 1, at proximal values of λ,λ +
δλ, within a phase, if the vector of Schmidt coefficients of
the product state |ψ(λ + δλ)〉 |φ〉 at the target parameter value
λ + δλ majorizes the vector of Schmidt coefficients of the state
|ψ(λ)〉 |φ〉 at the initial point.

Majorization is a partial order on the set of positive
vectors ν̄λ, ν̄λ+δλ which, for our purposes here, are the
vectors of Schmidt coefficients of the states |ψ(λ)〉 |φ〉 and
|ψ(λ + δλ)〉 |φ〉 respectively w.r.t. the A,Ā bipartition. It
compares the disorder in one vector w.r.t. another. Arrang-
ing the entries of the vectors ν̄λ+δλ,ν̄λ in a nonincreasing
manner: (νλ+δλ)1 � (νλ+δλ)2 � (νλ+δλ)3 . . . . � (νλ+δλ)d and
(νλ)1 � (νλ)2 � · · · � (νλ)d , we say ν̄λ+δλ majorizes ν̄λ, i.e.,
ν̄λ ≺ ν̄λ+δλ if

k∑
j=1

(νλ)j �
k∑

j=1

(νλ+δλ)j ∀k = 1,2, . . . ,dA, (4)

which may be called the catalytic majorization relation since
the vectors represent the Schmidt coefficients of states that are
a tensor product with the catalyst state |φ〉.

It should be clear that not all pairs of states |ψ(λ + δλ)〉 and
|ψ(λ)〉 will require a catalyst for dLOCC conversion. For such
states, their respective vectors of Schmidt coefficients γλ+δλ,γλ

follow a majorization relation γλ ≺ γλ+δλ without the need for
the ancilliary entanglement catalyst |φ〉. The necessary and
sufficient condition for dLOCC conversion, with or without
the need for a catalyst is succinctly captured by the condition
[25]:

Sα(γ̄λ) � Sα(γ̄λ+δλ) ∀α, (5)

which implies Eq. (3). In words, one can use LOCC trans-
formations, possibly assisted by entanglement catalysis, to
transform from |ψ(λ)〉 to |ψ(λ + δλ)〉 provided all Rényi
entropies show monotonically decreasing behavior in going
from the initial parameter value to the final one.

Thus catalytic majorization and monotonic behavior (in α)
of the whole set of Rényi entropies are mutual implications. For
α = 1, for example, Eq. (5) implies that a necessary condition
for LOCC operations to be used to transform to the new state

FIG. 1. (Color online) The spin-1/2s (all filled circles) in the
toric code model live on the edges of a square lattice with periodic
boundary conditions. The star operator at vertex labeled s involves
the product of σ̂ x operators on the four spins (red circles) of the
edges joined at the vertex. The plaquette operator for the unit cell
labeled p involves the product of σ̂ z operators on the four spins
(green circles) on edges that form the cell. W1,W2 are spin flips along
the two noncontractible directions of a torus (blue circles).

|ψ(λ + δλ)〉 is for it to have a lower value of the entanglement
entropy w.r.t. the underlying bipartition [34].

E. The models

Here, we present the models we will be dealing with in
the rest of the paper. We consider three different perturbations
V (λ), to Kitaev’s toric code (TC) model HTC [16].

The TC Hamiltonian HTC is defined on a 2D system of
spin-1/2 particles living on the edges of a square lattice with
periodic boundary conditions in both directions, Fig. 1. The
Hilbert space size of the system defined on a square lattice
of size L × L is N = 22L2

. There are two different kinds of
mutually commuting operators that appear in the Hamiltonian:
stars As =∏i∈s σ̂ x

i defined at the vertices of the lattice that
are the products of Pauli matrices σ̂ x

i acting on the four edges
shared by a vertex and plaquettes Bp =∏j∈p σ̂ z

j that are
products of σ̂ z

j on the four edges of a unit cell. The operators
As,Bp have eigenvalues ±1. All our Hamiltonians then have
the form

H = HTC + V (λ) := −
∑

s

As −
∑

p

Bp + V (λ). (6)

Note that, because
∏

s As =∏p Bp = 1, there are only L2 − 1
independent operators of each kind. They constitute a complete
set of commuting operators with HTC, and therefore all
excitations of the unperturbed Hamiltonian HTC may be
labeled by the ±1 eigenvalues of the 2 × (L2 − 1) operators.
This means that there are 22L2−2 excited states corresponding
to each of the 22L2

/22L2−2 = 4 degenerate ground states, which
is consistent with the fact that the ground-state degeneracy for
a topologically ordered Hamiltonian of spin-1/2s defined on
a torus is 4g with g = 1 being the genus of the surface. For
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our purposes though, one can work in a gauge fixed sector
with all Bp = +1, that corresponds to an effective low-energy
theory with Z2-gauge symmetry since [As,

∏
i σ̂

z
i ] = 0∀s, and

the only excitations are those of stars, so that in this sector the
Hilbert space dimension is 2L2−1 again with four degenerate
ground states. In this gauge fixed sector, all eigenstates of
HTC are superpositions of loop operators g =∏i∈s σ̂ x

i that are
products of spin-flips on spins that are crossed by contractible
closed loops in the dual lattice. The loop operators are elements
of the group G that is generated by the stars. The four
degenerate ground states, |ψ〉 ,W1 |ψ〉 ,W1 |ψ〉 ,W1W2 |ψ〉,
each define a particular topological sector within the gauge
fixed sector and are related to each other by spin flips on
noncontractible loops W1,W2, along the two noncontractible
directions of the torus.

In our work, we focus on the simplest ground state |ψ〉,
i.e., a fixed topological sector within the gauge. Restricting
our attention to this sector, which we call T S1, essentially
captures all the phenomenology we want to highlight as well as
simplifies the calculations. Thus our analytical results pertain
to this sector where in Secs. III A and III B we consider gauge
invariant perturbations to HTC that take drive the system across
a quantum critical point between a topologically ordered and
disordered phase. For a discussion of the critical point, see
Refs. [57–59]. The more general perturbation (see Sec. III C)
is studied numerically. The tool used here is a two-dimensional
density matrix renormalization group extended to infinite
cylinders [60]. The ability to study a Hamiltonian on an infinite
cylinder allows us to obtain the entire set of quasidegenerated
ground states. From that set, we chose a ground state in a given
topological sector and make sure that the same choice was
made for every value of λx and λz in Eq. (9). This can be done
by looking at the expectation value of certain loop operators
around the cylinder. For small perturbations studied here, they
are close to ±1, which allows one to identify the topological
sector. All DMRG results presented here are converged in bond
dimension, which is a refinement parameter in this calculation.

Here, we list the perturbations studied in the current paper.
(1) The Castelnovo-Chamon model. This perturbation has

an exponential form,

V1(λ) =
∑

s

e−λ
∑

i∈s σ̂ z
i , (7)

that commutes with all the plaquette operators [Bp,V2(λ)] =
0 ∀p, i.e., it is a gauge invariant perturbation. This system
shows a phase transition from a topologically ordered phase
to a paramagnetic phase at the critical value of λ ≈ 0.44.

(2) Toric code Hamiltonian with magnetic field along spins
on rows. The perturbation here is a σ̂z magnetic field applied
only to the spins along the rows of the square lattice (we call
this direction the horizontal direction),

V2(λ) = −λ
∑

h∈horiz

σ̂ z
h . (8)

Since [Bp,V3(λ)] = 0∀p this is a gauge invariant perturbation
as well that drives the TC model from a topologically ordered
phase across the critical point at λ = 1 to a paramagnetic one.

(3) The toric-Ising model. Here the perturbation

V3(λx,λz) = −
∑

i,μ=x̂,ŷ

(
λxσ̂

x
i σ̂ x

i+μ + λzσ̂
z
i σ̂ z

i+μ

)
(9)

describes the interplay between topological and antiferro-
magnetic orders. For generic λx and λz, the perturbation
breaks the Z2 gauge symmetry. The latter is preserved for
either λx = 0 or λz = 0. When λx(λz) = 0, the topological
and antiferromagnetic orders are separated by a continuous
quantum phase transition occuring at the critical value of
λz(λx) = λc ∼ 1/6 [61].

III. RESULTS

In this section, we present analytical and numerical results
that exhibit the relationship between differential local convert-
ibility and correlation length for Hamiltonians H = HTC +
V (λ), where V (λ) = V1,V2,V3 described in the previous
section.

A. The Castelnovo-Chamon model, V = V1

We start by observing here that the perturbation V1 is such
that the spin-spin correlation function 〈σ̂ x

i σ̂ x
j 〉

λ
in a ground

state within the topological sector T S1 of the Hamiltonian
H = HTC +∑s e−λ

∑
i∈s σ̂ z

i is zero for all values of λ. In the
sector T S1, we pick a ground state |ξ 〉 given by [47]

|ξ 〉 = 1√
Z

∑
g∈G

e(λ/2)
∑

i∈
 σ z
i (g) |g〉 , (10)

where g |0〉, is the state obtained by acting with g =∏i Asi
,

g ∈ G, that is the product of star operators, on the totally
polarized all spins-up (in the z basis) reference state |0〉 and
the term σ z

i (g) = 〈g| σ̂ z
i |g〉 in the exponent takes the value of

−1 if the spin at edge i has been flipped and +1 otherwise. Z =
Z(λ) =∑g∈G eλ

∑
i σ z

i (g) is a normalization constant. Note that
with 
 denoting the set of all spins,

∑
i∈
 σ z

i (g) = N − L(g),
i.e., the sum counts the total number of spins in a state less
the number that have been flipped by the operator g ∈ G,
which are closed loops or products of closed loops in the dual
lattice.

In order to analyze the DLOCC properties of this model,
we need the reduced density matrix for a subset of spins A,
on the whole lattice 
 = A ∪ B, when the whole system is in
state (10):

ρA(λ) = 1

Z

∑
g∈G

g′∈GA

e
λ
2 (N−L(g))e

λ
2 (N−L(gg′))x

g

A |0〉A A 〈0| xg

Ag′
A,

(11)

where the group GA = {g ∈ G|g = gA ⊗ 1B} is the subgroup
of G generated by stars operators acting nontrivially only on
the spins in A and x

g

A is the restriction of the operators g ∈ G

to just the subsystem A (for details see Refs. [10,11]). We will
also need the subgroup GB = {g ∈ G|g = 1A ⊗ gB}, which
includes all products of star operators that act nontrivially
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only on the spins in B. Then the α-Rényi entropy is given by

Sα(ρA) = 1

(1 − α)
log

1

Zα

∑
g∈G

e−λEg

⎛
⎝ ∑

h∈GA,g∈GB

e−λEhgk

⎞
⎠α−1

= 1

(1 − α)
log

1

Zα(λ)

∑
g∈G

e−λEgwα−1(λ,g), (12)

where Eg = L(g) − N and w(λ,g) :=∑h∈GA,h∈GB
e−λEhgk

with all the λ dependence made explicit.
After a straightforward but tedious calculation, one can

obtain the derivative of Eq. (12) w.r.t. the parameter λ and it is
given by the expression

∂λSα(λ) = 〈〈Eg〉w(λ,g)〉Z̃(λ,α) + α

(1 − α)
〈Eg〉Z(λ)

− 1

(1 − α)
〈Eg〉Z̃(λ,α). (13)

Here, Z̃(λ,α) :=∑g∈G e−λEgwα−1(λ,g) and we use averages
w.r.t. the functions f (g) = w(λ,g),Z̃(λ,α),Z(λ) defined as
usual: 〈E(g)〉f (g) =∑g(f (g)E(g))/

∑
g(f (g)). One can now

evaluate the R.H.S. of Eq. (13) in the limit λ → 0, which
corresponds to small perturbations of the TC model and find
that ∂λSα(λ) � 0 ∀α. This implies that all Rényi entropies
decrease as we move away from the point in the phase diagram
with a flat entanglement spectrum. Under the assumption that
the slopes of Rényi entropies for fixed α do not change within
a phase, we find that this model has DLOCC within the
topologically ordered phase. Similarly if one considers the
λ → ∞ limit, one finds that all the slopes are negative as well
implying that the particular form of the perturbation V1 leads
to DLOCC in both, the TO and the paramagnetic, phases of
the model.

B. Toric code with magnetic field along spins on rows, V = V2

The gauge invariant perturbation V2(λ) lets us analyze a
model with a nonconstant correlation length ξ (λ). The Gauge
fixed (Bp = 1 ∀p) Hamiltonian (6) up to a constant offset is
thus

H = −∑s As − λ
∑

h∈horiz σ̂ z
h , (14)

where by h ∈ horiz, we mean that the external field is applied
only to spins on edges along the rows that we take to be the
horizontal direction, Fig. 2.

To solve Eq. (14), we map it to an exactly solvable model
that preserves the local algebra of the terms. We first observe
that the star operators have eigenvalues ±1. Then we note that
each σ̂ z

h operator on a horizontal link has two neighboring star
operators acting on the vertices connected by the edge. Because
the action of σ̂h

z is to flip the sign of both the star operators that
share the spin “h”, {As,σ̂

z
h} = 0 for these neighboring stars and

we can move to an alternate picture where the star operators at
a vertex are replaced by pseudospin operators, τ̂ z

s , at the same
vertex with eigenvalues ±1. The action of σ̂ z

h then corresponds
to the action of τ̂ x

i τ̂ x
i+1 when the vertices s,s + 1 share the edge

labeled “h,” i.e., it flips both neighboring pseudospins. We will
call As,σ̂

z
h operators in the “σ picture” in contrast to the “τ

picture” for operators in terms of the pseudospin operators τ̂ .

FIG. 2. An artist’s rendition of the lattice of spins (dark filled
circles) for the toric code model with a magnetic field on spins along
only the horizontal direction (shown by spins within dotted arrows).

The map is thus given by

As → τ̂ z
s ,

σ̂ z
h → τ̂ x

i τ̂ x
i+1, (15)

which maps the Hamiltonian (14) to

H̃ = −
∑

s∈ all vertices

τ̂ z
s − λ

∑
all rows

∑
s∈row

τ̂ x
s τ̂ x

s+1

= −
∑

all rows

∑
s∈row

τ̂ z
s − λ

∑
all rows

∑
s∈row

τ̂ x
s τ̂ x

s+1

=
∑

all rows

(
−
∑
s∈row

τ̂ z
s − λ

∑
s∈row

τ̂ x
s τ̂ x

s+1

)

= ⊕ all rowsHrow, Hrow = −
L∑

s=1

τ̂ z
s − λ

∑
s∈row

τ̂ x
s τ̂ x

s+1. (16)

Equation (16) implies that the new Hamiltonian is a
direct sum of 1D quantum Ising Hamiltonians on the L

rows. The ground state of H̃ is thus given by the tensor
product of the ground states of each individual row, i.e.,
|ψ〉 = ⊗j∈ all rows |ψj 〉. Each row Hamiltonian Hrow in the
expression above is solved by mapping the Pauli spins via
the Jordan-Wigner transformation to Fermions and then a
Bogoliubov transformation diagonalizes the Hamiltonian to a
free Fermionic form [62]. In the present paper, we consider the
symmetric ground state enjoying the global spin flip symmetry
of the Hamiltonian and thus 〈τ̂ x

i 〉 = 0 in the ground state.
This model exhibits two phases as well: a topologically

ordered one for weak magnetic field and a disordered one
beyond the critical value λ = 1 [48,49]. The results of this
model, which follow in the next sections, demonstrate that for
fine-tuned perturbations, one might indeed obtain differential
local convertibility for specially chosen bipartitions. We
remark that although we considered the symmetric ground
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state of the system this does not result in a loss of generality
and at the same time eases the analytical presentation.

For special choices of subsystems (we call these “thin”
subsystems for reasons that become clear in the following),
we can determine the exact eigenvalues of the reduced density
matrix for all values of the perturbing field λ and hence all
the Rényi entropies Sα , which show monotonic perturbative
behavior for all α. On the other hand, for systems with a
“bulk” some Rényi entropies have a different behavior with
increasing λ than others.

1. Thin subsystems

A drastic simplification in the exact calculation of the Rényi
entropies for the ground state of gauge theories (of which the
toric code is the simplest example, the Z2 gauge theory) can
be obtained by choosing some particular partitions [48,50]. A
thin subsystem A, in the lattice for the toric code model, is one
where there are no star operators that can act on spins, which
exclusively belong to A. For example, the bipartition of spins
on the lattice where subsystem A is comprised only of rows
(columns) with the columns (rows) forming the complement
B. Mathematically this means that the group GA only contains
the identity, 1, which in turn implies that the reduced density
matrix ρA is diagonal in the z basis of the σ spins [11]. All loops
on the real lattice are other examples, the shortest such loop
being a plaquette, Fig. 3. Intuitively, thin subsystems are those
wherein all the degrees of freedom are maximally entangled,
even in the unperturbed toric code model, while respecting the
gauge constraints. Thus increasing correlation length cannot
lead to newer nonzero values appearing in the entanglement
spectrum.

Such is the subsystem A that we now investigate. The
reduced density matrix for a plaquette with four spins is
a matrix of size 24 × 24. However, because of the gauge
constraint, Bp = 1, only three spins are independent which
means that the maximal rank of the reduced density matrix is
23 = 8. The diagonal entries of this matrix, (ρA)s̄ s̄ , correspond
to expectation values of the projector onto the different spin
configurations, s̄ = (s1,s2,s3) ∈ {−1,1}3, in the ground state

FIG. 3. (Color online) Subsystem A, shown in the shaded region,
of one plaquette with the spins 1,2,3,4, on the edges. The eigenvalues
of the reduced density matrix ρA involves calculating expectation
values of operators on the four pseudospins i,i + 1,j,j + 1, at the
shown vertices (see Appendix B 1).

of the Hamiltonian (14) of the three independent spins, i.e.,

(ρA)s̄,s̄ = 1

23
〈ψ | (1 + s1σ̂

z
1

)(
1 + s2σ̂

z
2

)(
1 + s3σ̂

z
3

) |ψ〉

= 1

23

(
1 + s1

〈
σ̂ z

1

〉+ s2
〈
σ̂ z

2

〉+ s3
〈
σ̂ z

3

〉
s1s2

〈
σ̂ z

1 σ̂ z
2

〉
+s2s3

〈
σ̂ z

2 σ̂ z
3

〉+ s3s1
〈
σ̂ z

3 σ̂ z
1

〉+ s1s2s3
〈
σ̂ z

1 σ̂ z
2 σ̂ z

3

〉 )
= 1

23

(
1 + s1

〈
τ̂ x
i τ̂ x

i+1

〉+ s2
〈
τ̂ x
i

〉2 + s3
〈
τ̂ x
j τ̂ x

j+1

〉
+ s1s2

〈
τ̂ x
i

〉2 + s2s3
〈
τ̂ x
i

〉2 + s3s1
〈
τ̂ x
i τ̂ x

i+1

〉2
+ s1s2s3

〈
τ̂ x
i

〉2 )
, (17)

where in the last line above we have used the mapping (15)
to express the diagonal entries in terms of the τ spins (see
Appendix B 1). Notice that the only nontrivial expectation
values of the τ spins are those of two point functions since
〈τ̂ x

i 〉 = 0 in the symmetric ground state. The thermodynamic
limit expressions [62,63] in the entire domain of λ is

〈
τ̂ x
i τ̂ x

i+1

〉 = 1

π

∫ π

0

cos(φ)[cos(φ) − 1/λ] + sin2(φ)

[(1/λ − cos(φ))2 + sin2(φ)]1/2

× dφ 0 < λ. (18)

Thus we can calculate the trace of arbitary powers of
the reduced density matrix, Tr(ρα

A) =∑s1,s2,s3=−1,1(ρA)αs̄s̄ ,
using which the Rényi entropies are given by (with T (λ) =
〈τ̂ x

i τ̂ x
i+1〉):

Sα(λ) = 1

1 − α
log

{
1

23α
[2(1 + T (λ))2α + 2 (1 − T (λ))2α

+ 4(1 − T (λ)2)α]

}
. (19)

From the plot of Eq. (19) in Fig. 4, we observe that for
all values of α = 0.01,0.1,0.5,1.01,2, the entropies show
monotonic behavior with λ in both the phases. While in the
topologically ordered phase, λ < 1, the entropies decrease as
we approach the quantum critical point, for the disordered
region it decreases as we move away from it.

FIG. 4. (Color online) Rényi entropies for a subsystem A of one
plaquette (shown in Fig. 3), at different values of α. All entropies show
monotonic behavior in both the phases: they decrease monotonically
with increasing correlation length ξ (λ) for λ < λc = 1, while they
increase with ξ (λ) for λ > 1.
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2. General treatment

On the lattice, we call systems with a “bulk” those that
have at least one or more star operators that act on spins
exclusively belonging to A. This means that the group GA

is nontrivial and the reduced density matrix for the subsystem
is not diagonal anymore [11]. Consequently, the analysis of
this case is considerably more involved. We refer to Ref. [64]
for an introduction to the technique used to treat a gauge theory.
Since the perturbation we consider is gauge invariant, indeed,
we can represent the state as the sum over element of a group,
and this makes the calculation possible in the formalism. We
can compute exactly the reduced density matrix (see Appendix
B 2 b for details). Moreover, we can find an exact expression
for the purity:

P (λ) = |GB |
|G|

∑
g∈GA,z∈ZA

|〈ψ(λ)| gz |ψ(λ)〉|2, (20)

where, |ψ(λ)〉 is the ground state of the Hamiltonian (14) and
|GB | is the cardinality of the group of star operators acting
exclusively in the complement of A, i.e., GB = {g ∈ G|g =
1A ⊗ gB}. As before, GA is the group of spin flips generated by
star operators exclusively in A, whileZA is the group generated
by products of σ̂ z’s acting on spins in A. This expression
can be generalized to general gauge theories and quantum
double models and to a general Rényi entropy of index α, and
constitutes one of the main results of this paper.

Although, in principle, we can calculate the entropies Sα(λ)
for each integer α, we focus on the 2−Rényi entropy only. In
particular, we demonstrate that it has a monotonic behavior in
both the phases. The monotonicity of S2(λ) is sufficient to show
that all higher entropies obey the same monotonicity because
of the continuity of the entropies in α and because of their
ordering relation: Sα′ � Sα∀α′ � α. On the other hand in the
toric code limit at λ = 0, the eigenspectrum is flat with there
being 25 equal eigenvalues summing to 1 with the remaining
27 − 25 = 96 eigenvalues, all zero. Turning on the perturbation
has the effect of making some of these zero eigenvalues
nonzero which shows up as an increase of limα→0 Sα and
other Rényi entropies with α close to zero. Alternatively put,
the Schmidt rank of the state |ψ〉 (λ) increases with λ w.r.t.
bipartitions with a bulk.

To analyze this case while keeping the presentation simple,
we choose a subsystem A, which includes the seven spins of
two neighboring stars, Fig. 5. For the calculations, here we use
the symmetric ground state in the T S1 sector.

The evaluation of the R.H.S of Eq. (20) again relies on the
σ − τ correspondence (15) and we get for the purity:

P = 1

27

[(
1 + 〈τ̂ x

1 τ̂ x
2

〉2)2(
1 + 3

〈
τ̂ x

1 τ̂ x
2

〉2 + 2
〈
τ̂ x

1 τ̂ x
3

〉2 + 〈τ̂ x
1 τ̂ x

4

〉2
+ 〈τ̂ x

1 τ̂ x
2 τ̂ x

3 τ̂ x
4

〉2 + 〈τ̂ z
i

〉2 + 〈τ̂ x
1 τ̂ z

2 τ̂ x
3

〉2 + 〈τ̂ z
2 τ̂ x

3 τ̂ x
4

〉2
+ 〈τ̂ x

1 τ̂ z
2 τ̂ x

4

〉2 + 〈τ̂ z
2 τ̂ z

3

〉2 + 〈τ̂ z
2 τ̂ z

3 τ̂ x
2 τ̂ x

3

〉2 + 〈τ̂ z
2 τ̂ z

3 τ̂ x
1 τ̂ x

4

〉2
+ 〈τ̂ z

2 τ̂ z
3 τ̂ x

1 τ̂ x
2 τ̂ x

3 τ̂ x
4

〉)]
. (21)

The 2-Rényi entropy S2(λ) = − log(P (λ)) is shown in
Fig. 6. Just as for the thin subsystem case, we find similar
monotonicity in the approach and departure from the quantum
critical point.

FIG. 5. (Color online) Subsystem A, shown as the shaded region,
comprised of a total of seven spins that form two overlapping stars.

C. The toric-Ising model, V = V3

Here, we consider the subsystem A consisting of a
plaquette with two adjoining spins pictured in Fig. 7 and
numerically show that for the perturbation V = V3(λx,λz) =
−∑i,μ=x̂,ŷ(λxσ̂

x
i σ̂ x

i+μ + λzσ̂
z
i σ̂ z

i+μ), which takes the toric
code Hamiltonian from a TO phase to a ferromagnetic phase,
the set of Rényi entropies in the TO phase show the splitting
behavior. Note that neither the perturbation here nor the choice
of the subsystem is fine tuned. In other words, the lack of
differential local convertibility is a robust property of the
topologically ordered phase and is universal. Here by universal
we mean that this property should hold for all quantum systems
that show similar behavior in their entanglement spectrum
landscape and correlation length behavior. However, the value
of α for the Rényi index such that the sign of the derivative
∂λSα(λ) changes, is nonuniversal and is numerically found
here to be α � 1.3, see Fig. 8. The space of the parameters
spanned is deep in the topological phase, with |λx,z| � 0.05.

0.5 1.0 1.5 2.0
λ

2.5

3.0

3.5

4.0

4.5

5.0

S2

0

2

4

6

8

10

12

FIG. 6. (Color online) The 2-Rényi entropy of a subsystem com-
prised of two stars A (shown in Fig. 5) across the phase transition
at λ = 1 for H = HTC + V2(λ). The monotonic behavior in both the
phases for S2 implies similar behavior for Sα∀α � 2; whereas the
general arguments presented in the text imply that for α → 0 they
should increase till the quantum critical point. The dotted line is the
inverse of the energy gap between the ground and first excited states
for the transverse field Ising model to which the perturbed gauge-fixed
toric code Hamiltonian is mapped.
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FIG. 7. (Color online) Subsystem A, shown as the shaded region,
comprised of a total of six spins, which make up the spins on a
plaquette and two neighboring spins to its northeast corner.

For high λ values, i.e., in the ferromagnetic phase, the sign
is found to be the same (not shown in the plot) for every
value of the Rényi index α. Thus even in this model where a
phase transition occurs from a TO phase to a ferromagnetic
one the latter exhibits differential local convertibility whereas
the former does not.

D. Summary of results

Here, we collect the main results of this section that
will help formulate, in the conclusions, the conjecture about
the splitting phenomenon of the Renyi’s entropies. (1) For
perturbations (Sec. III A) with constant correlation length
and any bipartition, the behavior of the Rényi entropies is
monotonic and there is no splitting phenomenon. (2) For
perturbations (Sec. III B) with nonconstant correlation length
and thin bipartitioning, the behavior of the Rényi entropies
is monotonic and there is no splitting phenomenon. (3) For
perturbations (Sec. III B) with nonconstant correlation length
and bulk bipartitioning, the Reny’s entropies split. (4) For
general perturbations (Sec. III C), the splitting behavior of the
entropies is robust and happens without reference to the size
of the subsystem as long as the subsystem has some bulk.

FIG. 8. (Color online) Behavior of three representative Rényi
entropies for the toric-Ising model [V = V3(λx,λz)] in the perturba-
tion parameter (λx,λz) plane within the topologically ordered phase
for subsystem A as shown in Fig. 7. For α = 0.6, the entropy
increases, while for α = 5, it decreases monotonically with increasing
correlation length. The change between these two types of behavior
occurs at α � 1.3, the value of which was identified numerically.

IV. DISCUSSION AND CONCLUSION

In this paper, we have considered a paradigmatic class
of topological phases, as those ones arising from the toric
code with perturbations driven by a set of control parameters
λ = (λ1, . . . ,λn). We focused on the case where the energy
gap can vanish, giving rise to a quantum phase transition to
a topologically trivial phase (paramagnet). The perturbations
studied affect the correlation length ξ of the system that is
vanishing for the exact toric code at λ = 0.

We have shown that the two phases can be distinguished
through their differing local-convertible behavior. Bipartition-
ing the system into subsystems A and B, the result of the
local-convertibility analysis is that two nearby states in the
topological quantum phase, generically cannot be connected
by local operations in A and B augmented with classical
communications (even in the presence of a catalyst); in
the paramagnetic phases, in contrast, the states are locally
convertible. This is consistent with the fact that in the
topogically trivial phases it is always possible to transform the
ground state to a totally factorized state in the physical degrees
of freedom by using a local unitary quantum circuit of fixed
depth. The locally convertible character of a phase implies
it’s limited adiabatic computational power since the physical
transformation may be simulated using LOCC operations,
which do not generate quantum coherences between the two
parts of the bipartition [38,65].

Local convertibility is shown to depend on the manner in
which the Rényi entropies of the reduced state on a subsystem
behave. The nonlocal convertible phase features a splitting
behavior of the entropies, with their partial derivative along
the control parameter λi changing sign for a particular value
of the Rényi index α. The value of α at which the splitting
occurs is instead dependent on the details of the model. The
splitting phenomenon is observed within the whole topological
phase irrespective of the particular form of the perturbation or
of the subsystem A, unless it is very fine tuned—such as the
ones without any bulk. For the class of systems we considered,
perturbed toric code models, subsystems with bulk are those
that have at least one star operator acting exclusively within it.
This implies that the correlation length for local observables (in
the subsystem) is nonconstant and yet more degrees of freedom
contribute to the entanglement spectrum with an increase of
correlation length as the perturbation is increased.

There is no constraint on how small a subsystem needs to
be, aside from the caveats that would qualify a bipartition as
fine tuned, for its entropies to show the splitting behavior. This
makes the experimental analysis of local-convertibility quite
feasible. A schematic of such a protocol is as follows. One
first identifies a subsystem small enough to permit complete
state tomography with the resources at hand. Second, the
system is perturbed by some easy to implement perturbation.
State tomography is then done for the subsystem at different
values of the perturbation strength. The knowledge of the
state at these values yields the Rényi entropy plots, which
establish the state’s local-convertibility behavior. By repeating
these steps for a few different bipartitions and perturbations
one should be able to identify the non locally convertible
behavior, if any, of the global pure state of the whole system.
Alternatively, as argued in Sec. III B 2, if the perturbation
increases the correlation length then the Rényi entropies for
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small α → 0 values are bound to increase, with increasing
perturbation strength, as yet more degrees of freedom con-
tribute to the entanglement spectrum. Thus monotonically
decreasing behavior of only the α = 2 Rényi entropy in
the topologically ordered phase, which guarantees the same
behavior for entropies with α > 2, along with a measurement
of the correlation length is sufficient to identify the splitting
behavior. The 2-Rényi entropy, S2(λ) = − log Tr[ρ(λ)2], in
turn can be determined by purity measurements which directly
accessible to experiments [66].

We hasten to point out that it is our view that the non-
LOCC convertibility is typical of states in a phase with no local
order parameter, including, for example, topologically ordered
states. Further, that it is a necessary but not sufficient condition
exhibited by such states. A case in point is the analysis for
cluster states [67–69] shown in Fig. 11. While these states are
topologically trivial they do not have a local order parameter
and a perturbative analysis of their Rényi entropies shows
the characteristic splitting behavior and imply their non local
convertibility.

This phenomenon relies on the structure of the entangle-
ment spectrum around a special point in the phase. Indeed,
in the topologically ordered phase of this model there exists
an extremal point with a flat entanglement spectrum and zero
correlation length, ξ = 0. As we perturb away from this point,
if the correlation length ξ also increases then newer degrees of
freedom get involved in the entanglement spectrum as a result
of which the lower (α → 0) entropies increase, on the other
hand, the higher α entropies decrease because of the algebraic
suppression of the contributions from the new small but
nonzero values in the spectrum and loss of contributions from
the previously nonzero larger eigenvalues. We comment that
since similar phenomenology in the entanglement spectrum
is known to be displayed in cluster states [67–69], or more
generally in all graph states [70], similar findings in the Rényi
entropies response should apply to those as well. Our work
here should be seen as supporting a growing body of evidence
[23,38] that this characteristic perturbative response would
hold for a wider class of states such as quantum double
models, cluster states and other quantum spin liquids. In the
toric code case, knowledge about the ground-state degeneracy
can additionally distinguish its TO ground states from the
latter. Compared to this, ground states of all symmetry-broken

phases exhibit monotonic behavior of their Rényi entropies
with an increase in correlation length, and are thus always
locally convertible [38].

In order to compute the Rényi entropies for the perturbed
toric code, we have resorted to two methods. For general
perturbations that break gauge invariance, and also make the
system nonintegrable, we resort to a 2D DMRG method, which
can treat infinite cylinders [54]. On the other hand, for the
gauge invariant perturbation, we find a general expression
for the Rényi entropies, that can be generalized to every
gauge theory [71]. Moreover, for a particular form of the
perturbation, the system is integrable, and we can find an
exact analytical formula for the Rényi entropy. This result
is technically relevant, and would allow to treat several
problems, including stability issues at zero [72–74] and finite
temperature [21,75–77], the confinement problem [21], and
the identification of relevant correlations [78,79]. A very
important arena in which this technique can be useful is the
dynamical problem [80–82], e.g., the resilience of the splitting
property or of topological entropies after a quantum quench
[50,83]. Similarly, this technique can prove useful to probe the
resilience to perturbations of measures of topological order
based on negativity [84,85], or symmetry principles [77].

In perspective, it would also be interesting to see if the local
convertibility properties—or failure of thereof—hold for more
general TO states without flat entanglement spectra such as
fractional quantum Hall states [86–88] and chiral spin liquids
[89].
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APPENDIX A: CALCULATIONS FOR THE CASTELNOVO CHAMON MODEL

1. Derivative of the Rényi entropy

Differentianting Eq. (12) w.r.t λ yields

∂λSα(ρA) = ∂λ

[
1

(1 − α)
log Tr

(
ρα

A

)] = 1

(1 − α)Tr
(
ρα

A

)∂λ

[
Tr
(
ρα

A

)] = 1

(1 − α)Tr
(
ρα

A

)∂λ

⎡
⎣ 1

Zα(λ)

∑
g∈G

e−λEgwα−1(λ,g)

⎤
⎦

= 1

(1 − α)Tr
(
ρα

A

)
⎧⎨
⎩ 1

Zα(λ)

∑
g∈G

[−Ege
−λEgwα−1(λ,g) + (α − 1)w′(λ,g)wα−2(λ,g)e−λEg ]

− αZ′(λ)

Zα+1(λ)

∑
g∈G

e−λEgwα−1(λ,g)

⎫⎬
⎭
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= 1

(1 − α)Tr
(
ρα

A

)
Zα(λ)

⎧⎨
⎩∑

g∈G

[−Ege
−λEgwα−1(λ,g) + (α − 1)w′(λ,g)wα−2(λ,g)e−λEg ]

− αZ′(λ)

Z(λ)

∑
g∈G

e−λEgwα−1(λ,g)

⎫⎬
⎭

= 1

(1 − α)Tr
(
ρα

A

)
Zα(λ)

⎧⎨
⎩∑

g∈G

[−Ege
−λEgwα−1(λ,g) + (α − 1)w′(λ,g)wα−2(λ,g)e−λEg ]

+ α〈Eg〉Z(λ)

∑
g∈G

e−λEgwα−1(λ,g)

⎫⎬
⎭

= 1

(1 − α)Tr
(
ρα

A

)
Zα(λ)

∑
g∈G

[
(α − 1)w′(λ,g)

w(λ,g)
+ α〈Eg〉Z(λ) − Eg

]
e−λEgwα−1(λ,g). (A1)

In the second last line above, we have used the fact that Z′(λ)
Z(λ) = −∑g∈G

Ege
−λEg

Z(λ) = −〈Eg〉Z(λ). Next, we define certain averages
that appear in Eq. (A1). For any function f (h,g,k),g ∈ G,h ∈ GA,k ∈ GB,f (g) = f (h = 1A,g,k = 1B), we have

〈f (g)〉Z(λ) :=
∑
g∈G

f (g)
e−λEg

Z(λ)
, Z(λ) :=

∑
g∈G

e−λEg ,

〈f (h,g,k)〉w(λ,g) :=
∑
h∈GA
k∈GB

f (h,g,k)
e−λEhgk

w(λ,g)
, w(λ,g) :=

∑
h∈GA
k∈GB

e−λEhgk , (A2)

〈f (g)〉Z̃(λ,α) :=
∑
g∈G

f (g)
e−λEgwα−1(λ,g)

Z̃(λ,α)
, Z̃(λ,α) :=

∑
g∈G

e−λEgwα−1(λ,g).

Observe now that the term outside the sum in Eq. (A1) has in the denominator the product Tr(ρα
A)Zα(λ) =∑

g∈G e−λEgwα−1(λ,g) = Z̃(λ,α). This implies that the R.H.S. of Eq. (A1) is really an average w.r.t. the new partition function
Z̃(λ,α), i.e.,

∂λSα(λ) = 1

(1 − α)

∑
g∈G

T (α,λ,g)
e−λEgwα−1(λ,g)

Z̃(λ,α)
, (A3)

where T (α,λ,g) := [ (α−1)w′(λ,g)
w(λ,g) + α〈Eg〉Z(λ) − Eg].

Further note that w′(λ,g)
w(λ,g) = −

∑
h∈GA
k∈GB

Eh,g,ke
−λEhgk

w(λ,g) = −〈Eg〉w(λ,g) is a function of g ∈ G, whereas Z′(λ)
Z(λ) = −∑g∈G

Ege
−λEg

Z(λ) =
−〈Eg〉Z(λ) is independent of g ∈ G. Equation (A3) thus takes the form of a sum of averages:

∂λSα(λ) = 〈〈Eg〉w(λ,g)〉Z̃(λ,α) + α

(1 − α)
〈Eg〉Z(λ) − 1

(1 − α)
〈Eg〉Z̃(λ,α). (A4)

2. Perturbations around the toric code limit

One can perform a small λ expansion of Eq. (A4) to see that the model permits DLOCC for any bipartition for small
perturbations to the toric code limit of λ = 0. To see this let us note the following:

Z(λ) ≈
∑
g∈G

(1 − λEg) = |G| − λ
∑

g

Eg,

w(λ,g) ≈
∑
h∈GA
k∈GB

(1 − λEhgk) = |GA||GB | − λ
∑
h∈GA
k∈GB

Ehgk,

Z̃(λ,α) ≈
∑
g∈G

(1 − λEg)

⎛
⎜⎝|GA||GB | − λ

∑
h∈GA
k∈GB

Ehgk

⎞
⎟⎠

α−1
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≈
∑
g∈G

(|GA||GB |)α−1(1 − λEg)

⎛
⎜⎝1 − λ(α − 1)

|GA||GB |
∑
h∈GA
k∈GB

Ehgk

⎞
⎟⎠

≈ (|GA||GB |)α−1
∑
g∈G

⎛
⎜⎝1 − λEg − λ(α − 1)

|GA||GB |
∑
h∈GA
k∈GB

Ehgk

⎞
⎟⎠

= (|GA||GB |)α−1

⎛
⎜⎝|G| −

∑
g

Eg − λ(α − 1)

|GA||GB |
∑

g

∑
h∈GA
k∈GB

Ehgk

⎞
⎟⎠

= (|GA||GB |)α−1

(
|G| − αλ

∑
g

Eg

)
. (A5)

Using the weights (1 − λEg),(1 − λEhgk),(1 − λαEg) for the evaluation of the averages w.r.t. Z(λ),w(λ,g),Z̃(λ,α), respectively,
we find that

∂λSα(λ) = 0 + λ(C1α + C2) + higher order terms in λ

with C1 = (
∑

g Eg)2

|G|2 −
∑

g

∑
h∈GA
k∈GB

EgEhgk

|G||GA||GB | ,

C2 = −
∑

g E2
g

|G| +
∑

g

∑
h∈GA
k∈GB

∑
h′∈GA
k′∈GB

EhgkEh′gk′

|G|(|GA||GB |)2
. (A6)

To prove that C1,C2 � 0 we note that cosets w.r.t. the subgroup GA × GB of the group G divide the group into disjoint subsets.
If q labels these unique subsets, then one can write

∑
g

∑
h∈GA
k∈GB

EgEhgk ≡
∑

q∈Q=G/(GA×GB )

∑
h′∈GA
k′∈GB

∑
h∈GA
k∈GB

Eh′qk′Ehh′qk′k =
∑

q∈Q=G/(GA×GB )

∑
h′∈GA
k′∈GB

Eh′qk′
∑
h̃∈GA
k̃∈GB

Eh̃qk̃

=
∑

q∈Q=G/(GA×GB )

⎛
⎜⎜⎝∑

h′∈GA
k′∈GB

Eh′qk′

⎞
⎟⎟⎠

2

. (A7)

Let us now note that each Eg � 0 ∀g ∈ G. Thus to prove that C1 � 0, one needs to prove that for a collection of |G|
positive numbers E1,E2, . . . .,E|G| any grouping of |GA| × |GB | numbers such that mod(|G|,|GA| × |GB |) = 0 yields (with
k = |G|/|GA| × |GB |)

[(
E1 + E2 + . . . . + E|GA||GB |

)2 + (E|GA||GB |+1 + · · · + E2|GA||GB |
)2 + (E(k−1)|GA||GB | + · · · + Ek|GA||GB |

)2]
|G||GA||GB |

� (E1 + E2 + . . . . + E|G|)2

|G|2 (A8)

with equality holding iff E1 = E2 = · · · = E|G|. If one represents the sum of the energies in each coset by Si,i = 1,2, . . . .,k

then condition (A8) is equivalent to proving

S2
1 + · · · + S2

k � (S1 + S2, + · · · + Sk)2

k
⇒ (k − 1)

[
S2

1 + · · · + S2
k

]
� 2

∑
i<j

SiSj ,
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which is the sum of several inequalities all of which are of the form (S2
i + S2

j ) � 2SiSj . The same inequalities are used to prove
C2 � 0 by noticing that∑

g

∑
h∈GA
k∈GB

∑
h′∈GA
k′∈GB

EhgkEh′gk′ =
∑

q

∑
h′′∈GA
k′′∈GB

∑
h∈GA
k∈GB

∑
h′∈GA
k′∈GB

Ehh′′qk′′kEh′h′′qk′′k′ = |GA||GB |
∑

q

∑
h∈GA
k∈GB

∑
h̃∈GA
k̃∈GB

EhqkEh̃qk̃

= |GA||GB |
∑

q

⎛
⎜⎝∑

h∈GA
k∈GB

Ehqk

⎞
⎟⎠

2

. (A9)

3. Large λ: spin-polarized phase

For the large-λ case note that successive contributions to the partition functions get suppressed by factors of e−2λ. This is
because the possible lengths of loops increase in steps of two after the shortest nontrivial length of 4, i.e., Eg = 0,4,6,8,10, . . .

Although the number of loops of each length increases algebraically in the number of sites in the lattice, the exponential
suppression means that we can consider only the maximally contributing term in a proper limit of λ. Thus

Z(λ) =
∑
g∈G

e−λEg = 1 + L2e−4λ + O(e−6λ) ≈ 1 + L2e−4λ.

The partition function w(λ,g) depends on the particular value of the element g ∈ G and hence admits three possibilities. (1)
When g = gA × gB ∈ GA × GB , we have

w(λ,g) =
∑
h∈GA
k∈GB

e−λE(hgA )(kgB ) =
∑
h′∈GA
k′∈GB

e−λE(h′ )(k′ ) =
∑
h∈GA
k∈GB

e−λ(Eh′ +Ek′ ) =
(∑

h′∈GA

e−λEh′

)(∑
k′∈GB

e−λEk′

)

= (1 + nAe−4λ + O(e−6λ))(1 + nBe−4λ + O(e−6λ)) ≈ 1 + (nA + nB)e−4λ, (A10)

where nA,nB are, respectively, the number of independent star operators in A and B–the two parts of the bipartition.
(2) When g /∈ GA × GB there are two subcategories of such operators. (2a) For g = A∂A(gA × gB), i.e., a product of a single

boundary star operator and an element from the subgroup GA × GB the only nonvanishing contribution to w(λ,g) comes from a
loop of length 4 and thus w(λ,g) = e−λ4. (2b) For all other loop operators g ∈ G, w(λ,g) = 0 in the limit that we are working in.

Thus a complete list of w(λ,g) for any g ∈ G is as follows:

w(λ,g) =

⎧⎪⎨
⎪⎩

(1 + nABe−4λ) ∀g ∈ GA × GB

e−4λ ∀g = A∂A(gA × gB)

0 otherwise

(A11)

with nAB = nA + nB . At this point, let us also evaluate the partition function Z̃(λ,α) =∑g∈G e−λEgwα−1(λ,g). Note that because
of the dependence on α in the different terms of the partition function, we get different forms for Z̃(λ,α) for α > 1 and α < 1:

Z̃(λ,α) =
{

1 + αnABe−4λ for α > 1

1 + αnABe−4λ + L∂Ae−4λα for α < 1
, (A12)

where L∂A is the length of the boundary of the bipartition.
Now we evaluate the three different expectation values of the loop lengths and find that

〈Eg〉Z(λ) = 4.L2e−4λ

1 + L2e−4λ
, 〈Eg〉Z̃(λ,α) =

⎧⎨
⎩

4nABe−4λ

1+αnABe−4λ for α > 1

4(nABe−4λ+L∂Ae−4λα )
1+αnABe−4λ+L∂Ae−4λα for α < 1

,

〈〈Eg〉w(λ,g)〉Z̃(λ,α)
=
⎧⎨
⎩

4nABe−4λ

1+αnABe−4λ for α > 1

4(nABe−4λ+L∂Ae−4λα)
1+αnABe−4λ+L∂Ae−4λα for α < 1

. (A13)

Using the expressions (A13) in Eq. (A4), we get the derivative of the Renyi entropy in the two domains of α to be

∂λSα(λ) = 4αe−4λ

1 − α

[
(L2 − nAB) + (α − 1)nABL2e−4λ

(1 + L2e−4λ)(1 + αnABe−4λ)

]
,

α > 1 = 4αe−4λ

1 − α

{
[(L2 − nAB) − L∂Ae−4λ(α−1)]

(1 + L2e−4λ)(1 + αnABe−4λ + L∂Ae−4λα)

}
, α < 1. (A14)
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Note that in the above equation for α > 1 the numerator is clearly positive for the term in the square bracket, whereas the factor
1

1−α
provides the overall negative sign. For the α < 1 region, the numerator in the curly brackets yields a negative sign can be

seen as follows:

(L2 − nAB) − L∂Ae−4λ(α−1) < 0 ⇒ 1

1 − α
log

(
L2 − nAB

L∂A

)
< λ ⇒ 0 < λ,

which is always true and where we use the fact that L2 − nAB = L∂A.

APPENDIX B: CALCULATIONS FOR THE TORIC CODE
WITH EXTERNAL FIELD ALONG HORIZONTAL ROWS

1. Thin systems

To show how the correspondence of the σ and τ operators,
Eq. (15), is used we give two examples (the pseudospin
operators are the blue stars at the vertices in Fig. 9):〈

σ̂ z
1

〉 = 〈τ̂ x
i τ̂ x

i+1

〉
,〈

σ̂ z
2 σ̂ z

3

〉 = 〈τ̂ x
i τ̂ x

j τ̂ x
j τ̂ x

j+1

〉 = 〈τ̂ x
i τ̂ x

j+1

〉 = 〈τ̂ x
i

〉 〈
τ̂ x
j+1

〉
. (B1)

2. General treatment: systems with a bulk

a. The reduced density matrix

A state within the gauge theory of TC model with
Bp = 1 ∀p can be written in two different ways:

|ψ〉 =
∑
g∈G

a(g)g |⇑〉, (B2)

|ψ〉 =
∑
z∈Z

b(z)z |0〉, (B3)

σ̂ z
i |⇑〉 = |⇑〉 ∀ i, (B4)

|0〉 = |G|−1/2
∑
g∈G

g |⇑〉, (B5)

where |⇑〉 is the state with all spins pointing up in the z basis
and G is the group generated by the N2 − 1 independent star
operators As (or equivalently closed loops of σ̂ x operators in

FIG. 9. (Color online) Subsystem A of one plaquette with the
spins (green ovals), 1,2,3,4, on the edges. The eigenvalues of the
reduced density matrix ρA, involves calculating expectation values of
operators on the four pseudospins (blue stars) i,i + 1,j,j + 1, at the
shown vertices.

the dual lattice). The ground state of the TC model is indicated
by |0〉 and Z is the group generated by all the open string
operators (in the real lattice) of the form σ̂ z

i σ̂ z
j · · · σ̂ z

k .
Combining Eqs. (B3) and (B5), we get

|ψ〉 = |G|−1/2
∑
z∈Z

b(z)
∑
g∈G

zg |⇑〉. (B6)

Note that g is a product of closed loops of σx operators and
z is a string of σz operators. If we try to commute these two
operators we get a negative sign for every spin that is common
to both of these strings. Let us introduce the following notation:
given g ∈ G and z ∈ Z , we denote by g ∩ z the number
of spins that gets acted upon nontrivially by each of these
operators. Thus we arrive at the operator identity:

gz = zg(−1)g∩z . (B7)

We can also think of z as a set of excitations of stars rather than
a string of σ̂ z operators as far as (−1)g∩z is concerned. This
is because a star and a string share an odd number of spins
only if the string has an open end at the position of the star.
In this picture g and z live in the same space, i.e., the vertices
of the real lattice. We refer to g ∩ z as the overlap of g and
z, by which we mean the number of stars that are common to
g = As1As2 . . . and z identified with the stars at the ends of
open strings.

Using Eq. (B7) and the fact that z |⇑〉 = |⇑〉, Eq. (B6) can
be written as

|ψ〉 = |G|−1/2
∑
z∈Z

b(z)
∑
g∈G

(−1)g∩zg |⇑〉 . (B8)

The density matrix associated with this pure state is given by

ρ = |G|−1
∑

z,z′∈Z
b̄(z′)b(z)

×
∑

g,g′∈G

(−1)g∩z+g′∩z′ |xAxB〉 〈x ′
Ax ′

B | , (B9)

where we have adopted the notation g |⇑〉 = |xAxB〉.
The reduced density matrix of subsystem A can be obtain

by tracing over the spins in B.

ρA = |G|−1
∑

z,z′∈Z
b̄(z′)b(z)

×
∑

g,g′∈G

(−1)g∩z+g′∩z′ 〈x ′
B |xB〉 |xA〉 〈x ′

A| . (B10)

Note that 〈x ′
B |xB〉 imposes the condition g′ = gg̃, where g̃ ∈

GA and GA is the subgroup of G generated by star operators
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acting nontrivially only on the spins in A. Thus we can write

ρA = |G|−1
∑

z,z′∈Z
b̄(z′)b(z)

∑
g∈G

g̃∈GA

(−1)g∩z+gg̃∩z′ |xA〉 〈g̃xA| .

(B11)

An expression for the purity of the subsystem A follows
directly:

P = |G|−2
∑

z1 ,z2∈Z
z′1 ,z′2∈Z

∑
g1 ,g2∈G

g̃1 ,g̃2∈GA

b̄(z′
1)b(z1)b̄(z′

2)b(z2)

×(−1)g1g̃1∩z′
1+g2g̃2∩z′

2+g1∩z1+g2∩z2〈g̃1x1A|x2A〉〈g̃2x2A|x1A〉.
(B12)

Note that 〈g̃1x1A|x2A〉 imposes the condition g2 = g̃1g1ḡ1,
where ḡ ∈ GB and GB is the group generated by star operators
acting trivially on the spins in subsystem A. Using this
condition, we can replace the sum over g2 by a sum over
ḡ1 and write the last inner product in Eq.(B13) as

〈g̃2x2A|x1A〉 = 〈g̃2g2|x1A〉 = 〈g̃2g̃1g1ḡ1|x1A〉
= 〈g̃2g̃1x1A|x1A〉, (B13)

where we replaced x2A by g2, dropped the ḡ1 and replaced g1

by x1A since none of these changes effect the spin configuration
in subsystem A, thus the inner product with |x1A〉. This inner
product determines g̃2 = g̃1 and kills the summation over g̃2.
After some algebra (also noting that g̃1g̃1 = 1) we obtain for
the purity

P = |G|−2
∑

z1 ,z2∈Z
z′1 ,z′2∈Z

b̄(z′
1)b(z1)b̄(z′

2)b(z2)

×
∑
g1∈G

g̃1∈GA
ḡ1∈GB

(−1)g1g̃1∩z′
1+g1ḡ1∩z′

2+g1∩z1+g̃1g1ḡ1∩z2 . (B14)

First, we focus on the last term. If a product of g and z operators
are commuted, the result can be expressed in two different
ways. One can apply Eq. (B7) to the products themselves,
since any product of g’s and z’s is another member of the
group G or Z , respectively,

g1 . . . gkz1 . . . zl = z1 . . . zlg1 . . . gk(−1)g1...gk∩z1...zl . (B15)

However, one can also choose to commute each gi and zj one
at a time, picking a sign (−1)gi∩zi for each pair. This procedure
results in

g1 . . . gkz1 . . . zl = (−1)
∑k

i=1

∑l
j=1 gi∩zj . (B16)

Thus we can manipulate the terms involving powers of (−1)
by separating them and regrouping back together in different
ways. We rewrite the last summations in Eq. (B14) as∑

g̃1∈GA

(−1)g̃1∩z′
1+g̃1∩z2

∑
g1∈G

(−1)g1∩z1z
′
1z2z

′
2

×
∑

ḡ1∈GB

(−1)ḡ1∩z2z
′
2 . (B17)

First, we work on the term appearing in the first sum above.
From Eq. (B3), we have

b(z2) = 〈0| z2 |ψ〉 , b̄(z′
1) = 〈ψ | z′

1 |0〉. (B18)

Using the above formulas, Eq. (B7), and the fact that that
g̃1 |0〉 = |0〉, we have

(−1)g̃1∩z2+g̃1∩z′
1 b̄(z′

1)b(z2) = b(z2g̃1)b̄(g̃1z
′
1) . (B19)

Next, we work on the last two sums in Eq. (B17). Let us
consider the general expression

∑
g∈GR

(−1)g∩z for an arbitrary
subgroup GR of G. When phrased in terms of the overlap, this
summation becomes a problem of combinatorics. Given z, g ∩
z does only depend whether g has stars on the vertices where
z has excitations. Lets assume that z has k �= 0 excitations
in the domain of GR (excitations outside R do not effect the
sum). The sum over g involves all the combinations of star
operators on these k vertices. There are ( k

m
) elements g ∈ GR

that have overlap m, because this is the number of ways you
can distribute m stars on k vertices. The summation for z with
k �= 0 excitations in the domain of GR vanishes since

∑
g∈GR

(−1)g∩z =
k∑

m=0

(
k

m

)
(−1)m = (1 − 1)k = 0. (B20)

If, on the other hand, z has no excitations in the domain of GR

there is no overlap with g and the summation is trivial:∑
g∈GR

(−1)g∩z = |GR|. (B21)

We can simplify the expression in Eq. (B17) with the help
of Eqs. (B20) and (B21). The second sum in Eq. (B17)
places the following constraint:

∑
g1∈G(−1)g1∩z1z

′
1z2z

′
2 ⇒

z′
2 = z1z

′
1z2. The third sum leads to another constraint∑

ḡ1∈GB
(−1)ḡ1∩z2z

′
2 ⇒ z2z

′
2 ∈ ZA. The condition that z2z

′
2 not

generate any excitations in GB is equivalent to saying that only
σz operators in the subsystem A can be present. Using these
results to evaluate some of the sums over z’s in Eq. (B14), we
get

P = |G| |GB |
|G|2

∑
g̃1∈GA

∑
z1 ,z2∈Z
z̃1∈ZA

b̄(g̃1z̃1z1)b(z1)b̄(z̃1z2)b(z2g̃1) .

(B22)

Finally, from Eqs. (B18) and (B3), we have∑
z∈Z

b̄(Az)b(zB) =
∑
z∈Z

〈ψ | Az |0〉 〈0| zB |ψ〉

= 〈ψ | AB |ψ〉, (B23)

where in the last line we used the fact that
∑

z∈Z z |0〉 〈0| z = 1
within the gauge sector we are working in.

Using Eq. (B23) in Eq. (B22), we arrive at our final
expression for the subsystem purity:

P = |GB |
|G|

∑
g̃1∈GA
z̃1∈ZA

〈ψ | g̃1z̃1 |ψ〉 〈ψ | z̃1g̃1 |ψ〉

= |GB |
|G|

∑
g̃1∈GA
z̃1∈ZA

|〈ψ | g̃1z̃1 |ψ〉|2 . (B24)
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FIG. 10. (Color online) Subsystem A with a bulk has spins
comprised of those that form two adjoining stars (green ovals). The
pseudospins (blue stars) that appear in the calculation are labeled by
the numbers 1,2,3,4,5,6,7,8.

Using the technique developed here we also obtained the
following, more general result:

TrA
(
ρn

A

) = |GB |n−1

|G|n−1

∑
g1 ,...,gn−1∈GA
z1 ,...,zn−1∈ZA

〈ψ | g1z1 . . . zn−1 |ψ〉

× 〈ψ | g2z1g1 |ψ〉
× · · · 〈ψ | gn−1zn−2gn−2 |ψ〉 〈ψ | zn−1gn−1 |ψ〉 .

(B25)

Note that for a general state (not necessarily within the gauge
invariant sector) the trace of the integer powers of the reduced
density matrix would require the measurement of all possible
subsystem operators. Equation (B25) shows that for states
within the gauge invariant sector the number of necessary
measurements is much smaller, which is a consequence of the
gauge condition.

b. Evaluation of the purity for a system with two adjoining stars

Working with the symmetric state considerably eases the
analytical calculations as all operators that anticommute with
the global spin flip (or parity in the fermionic picture),

∏
i τ̂

z
i ,

have a zero expectation value in the ground state. This implies
that many operators in the product: gz that have an odd
number of τ̂ x

i operators in any row, have zero expectation.
The expression for purity (B24) involves expectation values
of operators in the σ picture. Our strategy is to calculate the
product of operators appearing in Eq. (B24) by separating the
different contributions based on the number of star operators
in the product. Schematically, we represent this as

all operators of the form gz

=
type I︷ ︸︸ ︷

operator products with no stars

+
type II︷ ︸︸ ︷

operator products with only 1 star

+
type III︷ ︸︸ ︷

operator products with both stars. (B26)

Now, we collect all terms of type I as follows. From
Fig. 10, we find that only those operators, which have either
both or none of the σ̂ z on edges between vertices labeled
(5 − 2),(6 − 3) in the product contribute. Similarly, only those
operators that have the product of both or none of σ̂ z on edges
between vertices labeled (2 − 7),(3 − 8) contribute. However,
all possible products of σ̂ z

i on the row of spins labeled D in
the same figure are a priori nonzero. This means that out of a
total of 27 operators of the type i—we need to consider only
those that have products of both the σ̂ z

i ’s in the oval marked E

or both the σ̂ z
i ’s in the oval marked F as factors as shown in

Fig. 10. However, all possible products of σ z
i ’s along the row

marked A in the same figure are a priori nonzero. This means
that we need to consider a total number of 22 × 23 operators
of type I where the factor 22 comes from the fact that E,F

can be turned on (both σ z
i ’s present in the product) or off(none

present) in four different ways (subtypes) for each of the 23

operator products of σ z
i ’s along row D. We can then write

TABLE I. All possible a priori nonzero operators of type I arranged into four subtypes. For each subtype, the
first row gives the operators in the σ picture and the corresponding operator in the τ picture appears in the second
row. An entry of 1 against E means that both σ̂ z

5−2 and σ̂ z
6−3 appear as factors in the operator product z ∈ ZA.

subtype ↓ E F (E × F × A)

a 0 0 1 × {1,σ z
1−2,σ

z
2−3,σ

z
1−2σ

z
2−3,σ

z
3−4,σ

z
1−2σ

z
3−4,σ

z
2−3σ

z
3−4,σ

z
1−2σ

z
2−3σ

z
3−4}

1 ×
Q︷ ︸︸ ︷

{1,τ x
1 τ x

2 ,τ x
2 τ x

3 ,τ x
1 τ x

3 ,τ x
3 τ x

4 ,τ x
1 τ x

2 τ x
3 τ x

4 ,τ x
2 τ x

4 ,τ x
1 τ x

4 }
b 1 0 σ z

5−2σ
z
6−3 × {1,σ z

1−2,σ
z
2−3,σ

z
1−2σ

z
2−3,σ

z
3−4,σ

z
1−2σ

z
3−4,σ

z
2−3σ

z
3−4,σ

z
1−2σ

z
2−3σ

z
3−4}

τ x
5 τ x

6 ×
Q︷ ︸︸ ︷

{τ x
2 τ x

3 ,τ x
1 τ x

3 ,1,τ x
1 τ x

2 ,τ x
2 τ x

4 ,τ x
1 τ x

4 ,τ x
3 τ x

4 ,τ x
1 τ x

2 τ x
3 τ x

4 }
c 0 1 σ z

7−2σ
z
8−3 × {1,σ z

1−2,σ
z
2−3,σ

z
1−2σ

z
2−3,σ

z
3−4,σ

z
1−2σ

z
3−4,σ

z
2−3σ

z
3−4,σ

z
1−2σ

z
2−3σ

z
3−4}

τ x
7 τ x

8 ×
Q︷ ︸︸ ︷

{τ x
2 τ x

3 ,τ x
1 τ x

3 ,1,τ x
1 τ x

2 ,τ x
2 τ x

4 ,τ x
1 τ x

4 ,τ x
3 τ x

4 ,τ x
1 τ x

2 τ x
3 τ x

4 }
d 1 1 σ z

5−2σ
z
6−3σ

z
7−2σ

z
8−3 × {1,σ z

1−2,σ
z
2−3,σ

z
1−2σ

z
2−3,σ

z
3−4,σ

z
1−2σ

z
3−4,σ

z
2−3σ

z
3−4,σ

z
1−2σ

z
2−3σ

z
3−4}

τ x
5 τ x

6 τ x
7 τ x

8 ×
Q︷ ︸︸ ︷

{1,τ x
1 τ x

2 ,τ x
2 τ x

3 ,τ x
1 τ x

3 ,τ x
3 τ x

4 ,τ x
1 τ x

2 τ x
3 τ x

4 ,τ x
2 τ x

4 ,τ x
1 τ x

4 }
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down a table corresponding to the possible operators we need
to calculate expectation values for, in the τ picture by using
the map (15). For example, σ̂ z

1−2, which is an operator on the
spin on the edge connecting vertices 1,2, is mapped to the
product τ̂ x

1 τ̂ x
2 . Table I tabulates the operators in both the σ and

τ pictures. Note that operators of each of the four subtypes are
products of elements from the group of operators labeled Q,
which are products of τ̂ x’s only along row A and depending on
whether E or F is turned on—product of τ̂ x

5 τ̂ x
6 or/and τ̂ x

7 τ̂ x
8 on

rows B and C. Because operators of each subtype factorize into
operators from the group Q, which belong to one particular
row, and other operators on adjacent rows, we need to evaluate
only eight correlation functions to determine all expectation
values of operators of type I.

One can similarly tabulate all operators of type II and type
III in the σ and τ representations, which we omit here for the
sake of brevity, and evaluate the sum of expectation values in
Eq. (B24) leading to Eq. (21).

APPENDIX C: BEHAVIOR OF RÉNYI ENTROPIES FOR
THE CLUSTER STATE

Cluster states do not possess topological order even though
they permit no local order parameter [67–69]. A numerical
analysis of their local convertibility properties, as shown in
Fig. 11, reveals that the Rényi entropies split in their behavior

FIG. 11. Behavior of representative Rényi entropies for a clus-
ter state, that is, the ground state of the Hamiltonian H =
−∑i σ

z
i−x̂σ

z
i+x̂σ

z
i+ŷσ

z
i−ŷσ

x
i − λ

∑
i,μ=x̂,ŷ(σ x

i σ x
i+μ + 0.5σ z

i σ z
i+μ), w.r.t.

the perturbation parameter λ. The change between monotonically
increasing and decreasing behaviors occurs at α � 0.8, the value of
which was identified numerically. The region considered as subsytem
A is a 3 × 3 block of spins in a 2D lattice with infinite extent
along the x direction and five spins along y with periodic boundary
conditions.

w.r.t. the perturbation and hence cluster states are not locally
convertible.
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