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Quantum coherence in ergodic and many-body localized systems
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Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since
there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect
them also to differ in terms of their coherences in a given basis. Here, we numerically calculate different measures
of quantum coherence in the excited eigenstates of an interacting disordered Hamiltonian as a function of the
disorder. We show that quantum coherence can be used as an order parameter to detect the well-studied ergodic
to many-body localized phase transition. We also perform quantum quench studies to distinguish the behavior
of coherence in thermalized and localized phases. We then present a protocol to calculate measurement-based
localizable coherence to investigate the thermal and many-body localized phases. The protocol allows one to
investigate quantum correlations experimentally in a nondestructive way, in contrast to measures that require
tracing out a subsystem, which always destroys coherence and correlation.
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I. INTRODUCTION

Advances in experimental realizations of closed quantum
many-body systems such as ultracold atoms, trapped ions,
or superconducting qubits undergoing unitary evolution over
long timescales [1–5] have led to the study of quantum
dynamical phenomena such as dynamical quantum phase
transitions [6,7], discrete time crystals [8], and many-body
localization (MBL) [9]. One of the main focuses of these
studies is to examine the way isolated systems reach thermal
equilibrium. Deutsch [10] and Srednicki [11] discussed the
process of thermalization and the eigenstate thermalization
hypothesis (ETH) [11] was put forward as a strong criterion
for thermalization to occur in closed quantum many-body
systems. MBL [12–18] has emerged as an extension of the
much-studied Anderson localization [19], applicable in the
case of closed interacting systems. MBL systems fail to
thermalize due to the presence of local integrals of motion
[20–22] and hence the MBL eigenstates violate the ETH hy-
pothesis, according to which all the eigenstates of a thermal-
izing system have to be locally thermal. ETH also postulates
that the matrix elements of any local observable O, between
two eigenstates i, j of the Hamiltonian, can be expressed as
〈i|O| j〉 = O(Ē )δi j + exp[−S(Ē )/2] fO(Ē , ω)Ri j , where Ē ≡
(Ei + Ej )/2, ω = Ej − Ei, and S(E ) is the thermodynamic
entropy at energy E . It is also important to note that both O(Ē )
and fO(Ē , ω) are smooth functions of their arguments and
Ri j is a random real or complex variable with zero mean and
unit variance.

The effort of keeping a quantum system decoupled from
the environment and thus undergoing unitary dynamics is
done with the goal of preserving coherence in the many-body
wave function. Coherence quantifies the amount of superposi-
tion of a particular state in any fixed basis sets. A rigorous
framework for quantum coherence as a resource has been
developed recently [23–26]. The study of quantum coherence

in closed quantum systems is relevant because quantum coher-
ence is exactly what is responsible for quantum fluctuations
and correlations. In a many-body quantum system, local de-
grees of freedom are described by a tensor product structure
(TPS). Coherent superposition of basis states in a TPS results
in quantum entanglement and this is why, in recent years,
entanglement has been widely studied as a diagnostic tool for
quantum phase transitions in many-body systems [27] or as
a probe to exotic quantum orders such as topological order
[28–34]. In the context of the ETH-MBL phase transition in
spin chains, entanglement has been used as a useful marker
of the transition [35–38]. In quantum many-body dynamics,
the nature of the growth of entanglement entropy has been
considered as an important tool for characterizing different
dynamical phases. It has been shown that MBL offers slow
logarithmic growth while ETH has a linear growth of entan-
glement entropy [39,40].

In this paper, we study the role that quantum coherence
plays in the MBL-ETH transition. As coherence is a function
of the wave function, one should expect that some of its
moments should be able to capture any kind of transition.
We first show that coherence (in the computational basis) in
a high-energy eigenstate and its variance due to sample-to-
sample fluctuations do indeed signal the MBL-ETH transi-
tion. Second, we look at the coherence/decoherence power
of dynamics generated by MBL and ETH Hamiltonians.
We find that ergodic dynamics induced by ETH has more
coherence/decoherence power in a basis that is incompatible
with that of the energy, while the dynamics induced by MBL
has a low coherence/decoherence power, or, in other words,
retains memory of the initial conditions.

However, quantum coherence does not contain any infor-
mation about the TPS and is, by itself, useless to discriminate
the localized versus unlocalized structure of quantum states.
To this end, we exploit the notion of localizable coherence
that has recently been put forward in Ref. [41]. Localizing
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coherence to two blocks of spins, we can then compute the
coherence in these two blocks as a function of their distance
d (A, B), as a coherence-connected correlation function Cd .
We show that while this quantity does depend on d within
the dynamics induced by a MBL Hamiltonian, the ergodic
dynamics induced by the ETH Hamiltonian is insensitive to
the distance between the two blocks. We finally note that
due to the projective nature of coherence measures, they are
more suitable to experimental investigation than entanglement
entropy, making our results amenable to testing beyond nu-
merical computations.

II. MEASURES OF QUANTUM COHERENCE

Quantum coherence is a notion relative to a specific basis.
A (Hermitian) operator is called incoherent if it is diagonal in
a particular basis B = {|i〉}. We call IB the set of incoherent
states in B. As an example, the Gibbs state is incoherent in
the energy eigenbasis E since it is completely diagonal in it.
Every completely dephased operator in B is also incoherent
in that basis. The set IB is given by just any probability
distribution over πi, where πi = |i〉〈i| are the projectors in
the basis B. Thus we can say that any completely dephased
operator X ∈ IB can be expressed as X = ∑

i piπi. Therefore,
a coherence measure for a state ρ is the quantity

CB,lp (ρ) := ‖ρ − DB(ρ)‖lp, (1)

where DB(ρ) = ∑
i πiρπi is the completely dephased state

and the measure is based on the lp norm. According to this
definition, a state ρ has zero coherence, CB(ρ) = 0, if and only
if ρ ∈ IB. We use two different matrix norms as measure for
coherence [23,26]. Using the l1 norm, coherence is expressed
as the sum of all the off-diagonal elements of the quantum
state, that is, CB,l1 (ρ) = ∑

i �= j |〈i|ρ| j〉|. Similarly, using the l2
norm measure we obtain CB,l2 (ρ) = ∑

i �= j |〈i|ρ| j〉|2.
Another way of measuring coherence in a basis B, which

we also employ, is through the Kullback-Leibler divergence
from the completely dephased state,

CKL
B (ρ) := S(DB(ρ)) − S(ρ), (2)

where S(ρ) indicates the entropy of the state ρ.

III. QUANTUM COHERENCE IN DISORDERED
SPIN CHAIN

In order to study the role of coherence in the ETH-MBL
transition, we consider the disordered Heisenberg spin-1/2
chain [42] described by the Hamiltonian

H =
N∑

i=1

J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Sz

i Sz
i+1

) + hiS
z
i + hxSx

i , (3)

with periodic boundary conditions. We set J = 1 in the nu-
merical computation. The static random fields hi are chosen
from a uniform distribution in [−W,W ]. A transverse constant
field hx = 0.1 is introduced to break the total Sz conservation
so that no sector with conserved quantities that break ergodic-
ity explicitly exists [37,43].

FIG. 1. Average level spacing ratio 〈ravg〉 vs the disorder strength
W for different system sizes (N identifies the number of spins in the
chain). We obtain 〈ravg〉 by first averaging over ten eigenstates near
the middle of the spectrum for each disorder realization and then
averaging over different realizations. We employed 8000 disorder
samples for N = 8, 9, 4000 for N = 10, 11, and 1000 for N = 12.

A. ETH-MBL transition point from level statistics

The model Hamiltonian in Eq. (3) without the small trans-
verse field (hx) is known to undergo an ergodic to MBL
transition for strong disorder [16,35,36]. Here, in order to
locate the transition point between the eigenstate thermal-
ization hypothesis (ETH) to many-body localization (MBL)
regimes, we diagonalize the full Hamiltonian in Eq. (3) and
calculate the energy level spacing δn

α = |En
α − En+1

α |, where
En

α is the energy of the nth eigenstate in the αth disorder
sample. The ratio of the adjacent gaps or level spacings rn

α =
min{δn

α, δn+1
α }/max{δn

α, δn+1
α } is averaged over the samples to

yield 〈ravg〉. In random matrix theory, when the statistical
distribution of level spacing follows the predictions of the
Gaussian orthogonal ensemble (GOE), 〈ravg〉 converges to
rGOE ≈ 0.53 for N → ∞. We find that, deep in the ergodic
phase, the average ratio 〈ravg〉 does approach the GOE value
(see Fig. 1). On the other hand, deep in the localized phase, it
reaches the value derived from a Poisson distribution of level
spacings, and 〈ravg〉 converges to rPoisson ≈ 0.39. Finite-size
scaling gives an estimate of the critical value of disorder to
drive the transition from ETH to MBL at W ≈ 3.5.

B. ETH-MBL transition point from quantum coherence

We now show that one can also extract information about
this transition from measures of coherence. Recently [44], it
was shown that the escape probability and dynamical con-
ductivity are connected by measures of coherence that can
effectively probe the localization transition. Since the ETH
and MBL phases are characterized by the different struc-
tures of the high-energy eigenstates, we start by evaluating
the coherence present in an eigenstate in the middle of the
spectrum. As a basis, we choose the computational (z) basis
for the tensor product of the spins as the preferred basis in
which one can observe quantum fluctuations. Here, we cal-
culate coherence using l1. The disorder-averaged normalized
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FIG. 2. Average normalized coherences: (a) 〈CB,l1 (ρ )〉 and (b)
〈CKL

B (ρ )〉 of an excited state as a function of disorder for different
chain sizes. We use the eigenstate exactly at the middle of spectrum
for each case. The data are averaged over 8000 disorder samples for
N = 8, 9, 4000 for N = 10, 11, and 1000 for N = 12, 13. The inset
shows a standard deviation of the normalized coherence as a function
of disorder for the specific eigenstates mentioned earlier.

coherence 〈Coh〉 = 〈CB,l1 (ρ)〉/(2N − 1) for different system
sizes features a crossing at a disorder value around W = 2.5
[see Fig. 2(a)]. The standard deviation of the normalized co-
herence due to sample-to-sample variations also shows critical
behavior around W = 2.5 [see the inset in Fig. 2(a)].

Next, we calculate the average Kullback-Leibler diver-
gence between the completely dephased state and a high-
energy eigenstate [see Eq. (2)]. In this case, 〈CKL

B (ρ)〉 does
not reveal any crossing point for different system sizes [see
Fig. 2(b)]. However, similarly to 〈CB,l1 (ρ)〉 in the inset of
Fig. 2(a), the standard deviation does show a well-defined
peak, but in this case the peak is centered at W = 3.2 for the
system sizes we investigated. Although a peak is much easier
to follow and employ for finite-size scaling analyses than a
line crossing (Fig. 1), larger systems would nevertheless be
for an accurate estimate of the transition point location.

C. Coherence after a quantum quench

Now consider a situation away from equilibrium, e.g., a
quantum quench. After an initial preparation, we let the state
evolve unitarily under the Hamiltonian in Eq. (3) for different
strengths of the disorder W . In the ergodic phase, the long-
time evolution should take the state to equilibrate as a thermal
ensemble of the eigenstates of the Hamiltonian. Since these
are very delocalized in the eigenbasis of the local spins—that
is, in the computational basis—we expect that evolution under
the ETH Hamiltonian will have more of both coherence and
decoherence power than that of the MBL Hamiltonian. We
prepare the initial state as either (i) the maximally coherent
state |�〉 = d−1/2 ∑d

i=1 |i〉 (in the computational basis), in
which case the time evolution will decohere the state, or (ii) an
incoherent state, that is, any basis state in the computational
basis. We use two different incoherent states to make sure that
the behavior of coherence is independent of the initial energy
of the system. The results are shown in Fig. 3. We see that
the dynamics induced by the ETH and MBL Hamiltonians are
strikingly different in terms of the coherence and decoherence
power. The ETH Hamiltonian decoheres in a more efficient
way a very coherent state, and, at the same time, it is capable
of building up more coherence from an incoherent state.

Hence from studying the dynamics of quantum coherence
for different initial states, we confirm quite clearly that the
MBL phase retains the memory of the initial state [45–47].

IV. LOCALIZABLE COHERENCE

In a quantum many-body system the Hamiltonian is the
sum of local terms, and local terms have support on local
Hilbert spaces, e.g., the spins. The total Hilbert space H =
⊗iHi is the tensor product of the local Hilbert spaces. In other
words, quantum many-body systems create a tensor product
structure. Following Ref. [41], we want to quantify the coher-
ence that is localizable in a subsystem S comprising a subset
of all the spins. For this purpose, we adopt the bipartition H =
HS ⊗ HR (“system” and “rest”) with dim(H) = d = dS dR.
We then localize coherence in the subsystem S by performing
a measurement on R. The latter step consists of the following.
Let BR := {|i〉}dR

i=1 be some preferred basis in the subsystem,
where ωi := |i〉〈i| form a complete set of rank-one projectors
over HR. A projective measurement on HR transforms a
density matrix ρ to a tensor product state of the form

ρ ′
i = TrR(ρ IS ⊗ ωi )

Tr(ρ IS ⊗ ωi )
⊗ ωi. (4)

Each ρi is obtained with the probability pi = Tr(ρ IS ⊗ ωi ).
One can then trace out the system R without having the state
decohere and compute the coherence in S in any basis of the
system BS , now described by

ρ ′
S,i = TrR ρ ′

i = TrR(ρ ωi )

Tr(ρ ωi )
. (5)

Finally, the average coherence in the postmeasurement states
of the system can be defined as

Cavg(ρ) :=
dR∑

i=1

pi CBS (ρ ′
S,i ). (6)
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FIG. 3. Time evolution of the average normalized coherence
〈CB,l1 (ρ )/(2N − 1)〉 starting from (a) the maximal coherent state
|�〉 = 1√

d

∑d
i=1 |i〉 in the computational basis, (b) the state |�〉 =

|↑↑ · · · ↑〉, and (c) the state |�〉 = |↑↓↑↓ · · ·〉. Here, N = 12 and
200 disorder realizations are employed.

The calculation of the above quantity is carried out using ma-
trix product states (MPS) [48]. The protocol of measurement
on MPS was first discussed by Popp and co-workers [49]
in the context of localizable entanglement. Here, we extend

that formalism and calculate the average local coherence for a
particular subsystem.

We again consider the disordered Heisenberg spin-1/2 in
Eq. (3) as a model Hamiltonian. We prepare the initial state
in an incoherent state and let it evolve. For the time-evolved
state, we calculate the localizable coherence in a subsystem
consisting of two blocks (A, B), each consisting of two spins
placed at a distance d (A, B) from each other. Our goal is
to show that whereas the ergodic delocalized phase should
be insensitive to d (A, B), in the MBL phase the localizable
coherence should be higher when the two blocks are closer
together. In order to localize coherence in the (A, B) blocks,
we perform projective measurements in the rest of the system.
Let us describe the procedure for the projection in the MPS
formalism. Here, we consider two blocks to be separated by
three spins, d (A, B) = 3, but we can use similar methods
for other separations. The exact quantum state of the N-spin
system is represented by the so-called MPS,

|�〉 =
∑

xN =↑,↓
· · ·

∑

x1=↑↓
MxN

N · · · Mx1
1 |xN · · · x1〉. (7)

Here, we will consider the localized coherence between two
blocks each consisting of two spins and separated by dis-
tance d (A, B) = 3. Block A consists of matrices M

xN/2−2

N/2−2 and

M
xN/2−1

N/2−1. Block B consists of matrices M
xN/2+2

N/2+2 and M
xN/2+3

N/2+3.
We calculate all possible projectors on the rest of the sys-
tem which is given by the tuple {s} = {xN , xN−1, . . . , x1} −
{xN/2−2, xN/2−1} − {xN/2+2, xN/2+3}, consisting of N − 4 spins.
A pure state after any projection can be written as

|φ{s}〉 = 〈{s}|�〉 (8)

=
∑

xN/2−2=↑,↓

∑

xN/2−1=↑,↓

∑

xN/2+2=↑,↓

∑

xN/2+3=↑,↓
R · M

xN/2+3

N/2+3

× M
xN/2+2

N/2+2 · Q · M
xN/2−1

N/2−1 M
xN/2−2

N/2−2 · P

× |xN/2+3, xN/2+2〉|xN/2−1, xN/2−2〉, (9)

where the three auxiliary matrices R, Q, and P are defined as
follows:

R =
∑

{xN ,...,xN/2+4}
MxN

N · MxN−1
N−1 · · · M

xN/2+4

N/2+4, (10)

Q =
∑

{xN/2+1,xN/2}
M

xN/2+1

N/2+1 · M
xN/2

N/2 , (11)

and

P =
∑

{xN/2−3,...,x1}
M

xN/2−3

N/2−3 · · · Mx1
1 . (12)

R, Q, and P are computed by carrying out the matrix multipli-
cations for each tuple {xN , . . . , xN/2+4} = s1, {xN/2+1, xN/2} =
s2, and {xN/2−3, . . . , x1} = s3, respectively. There are 2N−4

total possible combinations for s1, s2, and s3 combined, each
of which corresponds to a different projector. The probability
of a specific projector is then given by

Pr({s}) = 〈φ{s}|φ{s}〉 = |〈{s}|�〉|2, (13)
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and the density matrix corresponding to the projected pure
state is

ρ({s}) = 1

Pr({s})
|φ{s}〉〈φ{s}|. (14)

The average local coherence of the two blocks is then com-
puted according to the expression

Cl2 (avg) =
2N−4∑

i=1

Pri({s}) × Cl2 (ρi({s})). (15)

To obtain the correlation of local coherence among these
two-spin blocks one needs to subtract the effect of these
individual blocks. An effective way to do that is to calcu-
late the local coherence of the two-spin blocks in different
locations of the disordered spin chain, while considering the
appropriate set of projective measurements on the respective
Hilbert spaces, and then take an average over the results.
One then subtracts the calculated average coherence of the
individual blocks from the local coherence of the two two-spin
blocks to define Coh(d ) as localizable coherence, namely,

Coh(d) = Cl2 (avg) − 1

4

4∑

i=1

Cl2 (pi ). (16)

Here, Cl2 (pi ) refers to the coherence of the individual two-spin
blocks in several different locations along the spin chain.

In order to compute the time evolution after the quan-
tum quench we utilize the time-evolving block decimation
(TEBD) method [50,51]. For the TEBD, we have used a
second-order Suzuki-Trotter decomposition with a time step
δt = 0.1 and open boundary condition. We let the bond di-
mension increase to the maximum (D = 2N/2), which in the
case of Fig. 4 is 128, during time evolution. The time evolution
reveals an important feature of the local structure of the wave
function in the ETH or MBL phase. In ETH the many-body
wave function is extended, resulting in distance-independent
behavior of the average local coherence between different
blocks, which is clearly shown in Fig. 4(a). In contrast, in
MBL we can see that the average local coherence between
two blocks decreases with distance when they are farther apart
than the localization length [see Fig. 4(b)]. Considering these
results, we can say that the maximum local coherence of two
blocks is higher in ETH than in the MBL phase. Since all the
coherence has been measured in the computational basis, the
lower local coherence in MBL indicates the localized structure
of the wave function in the Hilbert space.

V. CONCLUSIONS AND OUTLOOK

In this paper, we show that measures of coherence are
effective in distinguishing the ergodic (ETH) and many-body
localized (MBL) phases and their dynamics after a quantum
quench. In particular, we show that the standard deviation of
the coherence and the entropy of coherence for a high-energy
eigenstate mark the localization transition. We also show that
the time evolution of the coherence characterizes the different
dynamics of the two phases. We then utilize a notion of
correlation of coherence based on the localizable coherence
introduced in Ref. [41], to show that the ergodic phase is

FIG. 4. Average localizable coherence after a quantum quench
with (a) the ETH Hamiltonian (W = 1) and (b) the MBL Hamilto-
nian (W = 10). The quantity 〈Coh(d )〉 is computed for two blocks
A and B of two spins each at different distance d (A, B) = 3, 5, . . ..
The total number of spins is N = 14. The initial state is the product
state |↓↓ · · · ↓〉. The l2 norm of coherence is evaluated in the compu-
tational basis. The results represent an average over 480 disordered
samples. In case of the MBL Hamiltonian (b) we perform the quench
for a longer time to specify the nature of distance dependence of the
average localizable coherence over a longer timescale.

insensitive to the distance between the subsystems, while it
decays for the localized phase.

We conclude that localizable coherence can be a use-
ful instrument in the investigation of quantum many-body
systems. For example, one could look at the fluctuations
of this quantity as a probe for scrambling and the onset
of chaotic behavior in a closed quantum system [52–55].
Moreover, one can think of studying in this way topolog-
ical phases, as the coherence localizable in the topological
degrees of freedom should be more robust after a quan-
tum quench [56] compared to the one localizable to local
topologically trivial subsystems. Finally, as coherence is a
more experimentally accessible quantity [57–59] compared
to other quantities used to probe into quantum many-body
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dynamics such as entanglement entropy [60,61], these results
should be of wide interest to the community of quantum
many-body physics.
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