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Thermalization of topological entropy after a quantum quench
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Topologically ordered quantum phases are robust in the sense that perturbations in the Hamiltonian of the
system will not change the topological nature of the ground-state wave function. However, in order to exploit
topological order for applications such as self-correcting quantum memories and information processing, these
states need to be also robust both dynamically and at finite temperature in the presence of an environment. It is
well known that systems like the toric code in two spatial dimensions are fragile in temperature. In this paper,
we show a completely analytic treatment of the toric code away from equilibrium, after a quantum quench of
the system Hamiltonian. We show that, despite being subject to unitary evolution (and at zero temperature), the
long-time behavior of the topological entropy is thermal, therefore vanishing. If the quench preserves a local
gauge structure, there is a residual long-lived topological entropy. This also is the thermal behavior in presence of
such gauge constraints. The result is obtained by studying the time evolution of the topological 2-Rényi entropy
in a fully analytical, exact way.
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I. INTRODUCTION

The development of quantum many-body physics in re-
cent years has opened the doors—both theoretically and
experimentally—to the exploration of new quantum phases
of the matter [1,2] and the behavior away from equilibrium of
quantum systems with many particles [3–6].

Novel quantum phases of matter that feature quantum or
topological order (TO) cannot be described by the usual
theory of symmetry and symmetry breaking and therefore
are not characterized by a local order parameter [2,7–10].
They possess topological degrees of freedom and excita-
tions described by a topological quantum field theory [11].
Moreover, they possess a long-range pattern of entanglement
dubbed topological entropy (TE) that serves as nonlocal order
parameter for these phases [12–24]. The topological entropy
is associated with both the existence of a robust qubit [25–27]
and of anyonic excitations. These topological characteristics
make these states robust against a model noise based on local
interactions, as it is very reasonable for the environment.
For this reason, they are believed to be of great advantage
for the implementation of quantum information processing,
a paradigm dubbed topological quantum computing (TQC)
[11,28–31].

On the other hand, coherent quantum dynamics has recently
become accessible to experimental inquiry and study, in
systems realized by means of ultracold atom gases in optical
lattices [3–5]. The flexibility in engineering interactions in
optical lattices makes them a very interesting way to implement
Hamiltonians featuring topological order. The dynamics is
obtained through the protocol of quantum quench [32]. The
Hamiltonian of the system H (λ) depends smoothly on a set
of external parameters λ that are easy to control, like some
coupling strength or strength of external fields. The system is
initially prepared in the ground state of H (λ0) for some value
λ0 of the external parameters that at time t = 0 are suddenly
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switched to the quench value λ1. The initial state will then
evolve unitarily by means of the evolution generated by H (λ1)
[33–37].

The main goal of this paper is the study of the resilience of
TO away from equilibrium. At equilibrium, TO is a property
of the ground-state wave function of a Hamiltonian, here the
toric code Hamiltonian HT C [31]. If we apply a perturbation
to this Hamiltonian, we get a new ground state. Is the new
ground state still topologically ordered? If yes (for a certain
range of the perturbation strength), then TO is the property
of a whole phase. Now this is indeed the case. If we perturb
HT C with any local perturbation λV (that is, a Hamiltonian
that is the sum of local operators each of norm smaller than
|λ|), we still have TO within a finite value of λ, after which a
quantum phase transition happens. So TO is robust under static
perturbations of the Hamiltonian. This kind of robustness has
been shown in a number of papers [17,24,38–46]. Moreover,
the robustness under static perturbations has recently been
amenable to numerical study on large systems using two-
dimensional density-matrix renormalization group methods
[47,48]. It has been found that regardless of how the system
is perturbed, the topological phase is robust for some finite
strength of the perturbation. This means not only that the gap
is robust until a critical value is reached (this has also been
proven analytically in some remarkable papers [49–51]), but
also that all the topological features are robust. They are indeed
properties of the phase. In particular, it has been shown that
the TE is robust.

Static here means that we prepare the system in the
ground state of the new Hamiltonian so that we are always
at equilibrium, namely in the ground state. However, one can
imagine a different scenario. We do prepare the system in the
ground state of the toric code HT C , but immediately after the
Hamiltonian changes to the perturbed one. It is the scenario of
a sudden quantum quench. The prepared state is no longer
the ground state of the new Hamiltonian, and therefore it
is a state away from equilibrium and will undergo unitary
evolution under the new Hamiltonian. The question we ask is,
therefore, will TO be present in the wave function away from
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equilibrium? As we can see, the two types of robustness are
very different.

To answer this question, we study the time evolution of the
TE in the toric code after a quantum quench. The motivation
for this study is threefold. First of all, if TO should be robust
against perturbations in the Hamiltonian, this has to hold also
for time varying stray magnetic fields, which would place the
system away from equilibrium. The second motivation comes
from the general relationship between quench dynamics and
thermalization in a closed quantum system. In recent years,
there has been a flourishing of results (see, e.g., Refs. [52–57]
and Ref. [6] for extended references) about the foundations of
quantum statistical mechanics. It has been understood that, if
dynamics is complex enough—which is a generic situation—
then a closed quantum system will make local observables
thermalize, as the rest of the system can act as a thermal bath for
the subsystem, although everything is away from equilibrium.
One has then to analyze whether nonlocal order parameters
like the TE in topological phases also thermalize. Finally, this
kind of study gives us a handle to deal with the problem of finite
temperature from a different point of view. If one can show
that a system is robust against a quantum quench, then this
would hint to the fact that the system may display robustness
also at finite temperature.

The main result of the paper is that TO after a quantum
quench will equilibrate to the thermal value at finite temper-
ature [58–61]. That is, zero if no symmetry is imposed or
half of the initial value if the gauge structure is preserved.
Therefore, in two dimensions (2D), TO in the toric code will
not survive a quantum quench. It is important to realize that
TO is destroyed even in the case of a small quench, when the
evolving Hamiltonian still possesses TO, in the sense that its
ground state is topologically ordered. In other words, static
and dynamic perturbations have a very different effect, and
while the TO in HT C is robust under a static perturbation, a
sudden quench will destroy it.

In dealing with the dynamics of a system with TO after
a quantum quench there are several subtleties to consider.
Generically, if the system dynamics is complex enough,
every local subsystem can see the rest of the system as an
environment and thermalize locally, in spite of the fact that the
global evolution is unitary. However, topological order comes
from the presence of a nonlocal order and nonlocal patter
of entanglement. Therefore, local thermalization does not
necessarily imply whether topological degrees of freedom or
topological observables do indeed thermalize. After all, one of
the goals of using topological states of the matter for quantum
computation is to have some topological observables that do
not decohere or thermalize while typical local observables will.
So one cannot just borrow the local thermalization picture
and draw conclusions. One needs to calculate. This issue
has been explored in the past by some of us [62] and other
authors [34,63,64]. The complexity of dealing with the time
evolution of a quantum system, is, of course, formidable.
Numerical analysis is limited to very small system sizes.
In Ref. [65] it was indeed found that TO and TE would
not survive certain quenches that would break the gauge
symmetry, but because of very small system sizes the results
were not conclusive. From the analytical side, previous results
relied on the simplification stemming from the restriction to

a gauge-preserving quench [62]. In this case, it was shown
that the topological entropy computed from a subsystem with
spins only on the boundary but no bulk, which we call a thin
subsystem, in the 2D toric code is robust. In Ref. [34], the
effect of the breaking of integrability was shown to be unable
to create topological order, together with a volume law for
entanglement, thus suggesting that quantum quenches would
be like thermalization for the toric code.

In this paper, we attack the problem of a quantum quench
of the 2D toric code without requiring that it preserves any
symmetry of the system, including the gauge structure. We
present a fully analytical solution of the problem by developing
and extending to the time domain a technique presented in
Ref. [66]. The technique also allows us to study the TE
associated with a subsystem with a bulk instead of a thin
subsystem. We show that the presence of the bulk is very
important and that in the time evolution the difference between
thin and thick subsystems is critical, whereas in the case
of static perturbations both subsystems yield similar results.
In order to perform a fully analytical treatment, we choose
the quench so that the system is completely integrable in
free fermions, dubbed the “τ picture” [67–69]. Let us here
point out another subtle issue. One would think that if the
evolving Hamiltonian is fully integrable, there should be no
thermalization at all. Indeed, as a whole the system does
not thermalize. There is an extensive number of conserved
quantities in the so-called τ picture. However, that does not
mean that every observable must not thermalize. Here we show
that the TE will thermalize even after an integrable quench. We
study the integrable quench in order to obtain a fully analytic
solution. We see that in 2D topological properties like TE are
even more fragile than local degrees of freedom. A fortiori,
though, under a nonintegrable quench, no degree of freedom,
topological or not, will be conserved. In order to apply
these techniques in the nonintegrable case, one could resort
to perturbation theory following the lines of Refs. [62,70].
Moreover, one can pair the same technique with numerical
techniques to study systems with disorder.

II. TOPOLOGICAL RÉNYI ENTROPY AFTER
A GAUGE-BREAKING QUANTUM QUENCH

We start with the toric code model (TCM) introduced by
Kitaev [31]. The Hamiltonian for this model defined on a
square lattice with N × N sites with spins- 1

2 on the bonds is
given by

HT C = −
∑

s

As −
∑

p

Bp, (1)

where the star operators As ≡∏i∈s σ x
i and the plaquette

operators Bp ≡∏i∈p σ z
i belong to stars (s) and plaquettes

(p) on the lattice containing four spins each (see Fig. 1). The
total Hilbert space is the 22N2

-dimensional Hilbert space H of
the spins on the bonds. Notice that the subspace Hgauge ⊂ H
obtained by projecting onto the subspace with all the As = +1
is the gauge invariant Hilbert space of the Z2 quantum lattice
gauge theory [2] whose dimension is 2N2+1. In the following,
we say that the gauge structure or gauge symmetry is preserved
if the perturbation commutes with all the As and therefore the
system stays in the same space Hgauge.
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FIG. 1. A N × N square lattice with periodic boundary condition
and spins- 1

2 live on the edges. Examples of star operator located on
lattice site (s) and the plaquette operator located on dual lattice site
(p) are shown. There are two types of open strings corresponding to
two types of excitations. It also shows the horizontal edges (along the
direction h) and the vertical edges (along the direction v). We arrange
fields in the +z direction with magnitude of λz on the horizontal
edges and fields in the +x direction with λx on the vertical edges.

The model in Eq. (1) features topological order in the
ground state. If we add a perturbation V (λ) that is the sum
of local operators, for a finite range of λ topological order
is preserved [17,24,39,40,42–46]. On the other hand, if the
system is put in contact with a heat reservoir and we wait for
thermalization to happen (or if we do prepare the system in the
Gibbs state), the topological order is destroyed. How do we
detect topological order in a system? It is very remarkable that
topological order is detected and consists in a particular pattern
of entanglement in the wave function. Entanglement is the
most defining property of quantum mechanics. If something is
genuinely quantum, that is, it cannot be simulated or explained
with just classical concepts, one needs to take in account
entanglement [71,72]. For this reason, quantum order or
quantum phases of matter must have some nontrivial patterns
of entanglement [14,15], and a big part of the recent effort
in condensed-matter theory and quantum field theory resides
in the calculation of entanglement. However, as measured
by the von Neumann entropy, entanglement is a formidable
quantity to compute and measure. It requires the knowledge
of all the eigenvalues of the reduced density matrix. So it
requires perfect knowledge of the wave function, which is a
very hard task from the analytical, numerical and experimental
point of view. If one wants to use entanglement properties
as an order parameter, one should look for quantities that
are, in principle, measurable; that is, they are the expectation
value of some Hermitian operator, and the Hermitian operator
must not explicitly depend on the wave function itself. What

choices do we have? We can consider the generalization of
the von-Neumann entropy to a family of entropies known as
α-Rényi entropies, defined as

SAB
α ≡ 1

1 − α
log2 Tr

[
ρα

A

]
(2)

associated to the reduced density matrix ρA = TrBρ after a
tensor product structure of the Hilbert space H = HA ⊗ HB .
In the case of α = 2, though, we can find a very useful
interpretation of the Rényi entropy,

SAB
2 = − log2 Tr

[
ρ2

A

] = − log2 P, (3)

where P is the purity of the state ρA. Now this quantity is a
simple function of an observable. We need to first prepare two
copies of ρ → ρ ⊗ ρ ∈ (HA ⊗ HB) ⊗ (H ′

A ⊗ H ′
B). Then,

considering the two copies of ρA, namely ρ⊗2
A , one has

P = Tr
[
ρ2

A

] = Tr[SAρ⊗2], (4)

where SA is the swap operator between the two copies of
ρA [73]. Here is a simple proof. An arbitrary state ρ in
H can be written as ρ =∑iAiBjAjB

αiAiB
jAjB

|iA,iB〉〈jA,jB |,
where |iA〉 and |iB〉 are the bases in HA and HB , re-
spectively. The coefficient αiAiB

jAjB
satisfies the Hermitian

constraint αiAiB ∗
jAjB

= αjAjB
iAiB and normalization condition∑

iAiB
αiAiB

iAiB = 1. Actually, ρ is a tensor of type (2,2), and we
use the Einstein summation convention for simplicity, namely,
ρ = αiAiB

jAjB
|iA,iB〉〈jA,jB |. Then ρ⊗2 = αiAiB

jAjB
αkAkB

lAlB

|iA,iB〉〈jA,jB | ⊗ |kA,kB〉〈lA,lB |. Note that SA “swaps” the
two copies’ component in HA and H ′

A as SA|iA,iB〉〈jA,jB | ⊗
|kA,kB〉〈lA,lB | = |kA,iB〉〈jA,jB | ⊗ |iA,kB〉〈lA,lB |. In the end
we calculate the trace and finally get Tr[SAρ⊗2] =
αiAiB

kAiB αkAkB
iAkB

. We can see that the swap operator actually
“swaps” the contraction indexes of the tensor. It is easy to
verify that the result is the same when we calculate Tr[ρ2

A].
So the 2-Rényi entropy simply reads SAB

2 = − log2 P =
− log2 Tr[SAρ⊗2].

Now, the von Neumann entropy is the unique measure of
bipartite entanglement that quantifies [71,74] the conversion
into Bell pairs that one can obtain from a state, which
is important for quantum information processing protocols.
However, as far as properties of the phase are concerned in
condensed matter, the Rényi entropy is as good. It marks
quantum phase transitions in the same way, and, when
entanglement characterizes a phase, SAB

2 does it as well. In
particular, it has been shown [75] that TE measured by the
Rényi entropy detects TO in exactly the same way. The fact that
the 2-Rényi entropy is the expectation value of an observable
also makes it possible to conceive realistic scenarios for
its measurement [76–79]. This is important as the search
of quantities that can be measured for detecting topological
order is one of the most important topics in the field. So the
topological part of the 2-Rényi entropy is a possible candidate,
together with other measures; see Refs. [80,81].

Following Refs. [14,15], the topological Rényi entropy is
defined as the linear combination of four Rényi entropies
associated with four different regions (1), (2), (3), and (4)
(see Fig. 2):

ST
α ≡ −S(1)

α + S(2)
α + S(3)

α − S(4)
α . (5)
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R

FIG. 2. Illustration of the subsystems A (red dashed lines) and B (black solid lines) in the four cases that are applied to calculate the
topological entropy with extension R = 11 and thickness r = 3. rm = R − 2r is the side length of the “hole” belonging to the subsystem (1).

The size of the subsystem is characterized by two linear
dimensions: the extension R and the thickness r . The size of the
“hole” in the subsystem (1) is characterized by rm = R − 2r .

For the toric code model HT C , the topological entropy reads
ST

α = 2, for every α [75]. As mentioned above, for a finite
range of λ, the system stays in the topological phase, and
accordingly, the value of ST

2 (λ) in the new ground state of the
Hamiltonian

H (λ) = −
∑

s

As −
∑

p

Bp + V (λ) (6)

is preserved in the limit of R,r,rm → ∞ [17,24,39,40]. On
the other hand, for every finite temperature β, the value of
ST in the thermal state ρ = Z−1e−βHT C goes to zero in the
thermodynamic limit. However, if one freezes one of the
series of quantum numbers As or Bp (i.e., if one enforces
a gauge symmetry), the value of ST goes to one half of the
full value, namely ST (gauge) = 1, signaling a classical form
of topological order in the system [58–60].

In this paper, we want to understand the dynamics of ST

after a quantum quench. The protocol of the quantum quench
is simple. We prepare the system in the state �(0) being in the
ground state of HT C , and then, at t = 0, we suddenly switch
on the term V (λ) in H (λ). The wave function of the system
will then evolve unitarily as

|�(t)〉 = e−iH (λ)t |�(0)〉. (7)

Taking the trace over the degrees of freedom in B of the
above state, we can obtain the time evolution ρA(t) of the
partial state. We set on studying the presence of topological
order after a quantum quench by studying then the quantity
ST

2 (t) = ST
2 [ρA(t)]. In order to find a fully analytical solution

of this problem, we need to find a perturbation V (λ) of the toric
code such that the model is still completely integrable. In this
way, one can study exactly both the ground-state manifold and
the time evolution after a quantum quench as the perturbation
V (λ) is switched on [40,62]. Again, we want to highlight
that using an integrable model is the right thing to do if one
wants to prove fragility. If we found that TE is robust under
an integrable quench, we could suspect that thermalization
fails to happen just because of the many conserved quantities.
However, if TE thermalizes under an integrable quench, it
will thermalize even more so if the evolving Hamiltonian is
nonintegrable. In particular, let us see how the toric code with

a certain arrangement of the external fields can be mapped into
a system of free fermions [66,82]. We write V (λ) as the sum
of external fields on the bonds, with a special arrangement:
the field in the +z direction with magnitude of λz on the
horizontal (h) edges and the field in the +x direction with λx

on the vertical (v) edges. In this model, there are 2N2 spins on
the edges of an N × N square lattice with periodic boundary
conditions (see Fig. 1). The Hamiltonian for the model then
reads

H (λ) = −
∑

s

As −
∑

p

Bp − λz

∑
i∈h

σ z
i − λx

∑
i∈v

σ x
i . (8)

Notice that when one of the λx,λz is zero, the system preserves
one of the two local Z2 gauge symmetries [H (λz),Bp] =
[H (λx),As] = 0 for every s,p. One of the main goals of
this paper is to find results when no gauge symmetry is
imposed on the system, namely λx �= 0,λz �= 0. After exact
diagonalization, one can obtain an analytic expression for
|�(t)〉. Moreover, one can calculate analytically all the many-
spin correlation functions as a function of time. This is a key
point to obtain what we want. Indeed, from the technical point
of view, the main result is that we can compute the topological
2-Rényi entropy as a function of time t , and quench strengths
λ = (λx,λz) for the time evolution after a quantum quench,
namely,

ST
2 (t,λ) = log2

[
P (1)(t,λ)P (4)(t,λ)

P (2)(t,λ)P (3)(t,λ)

]
, (9)

where P (t,λ) is the purity of the evolved subsystem A, namely,

P (t) = TrA{TrB[e−iH (λ)t |�(0)〉〈�(0)|eiH (λ)t ]}2. (10)

The mapping into free fermions mentioned above proceeds
from a first mapping of the physical spins on the links, which
we call the “σ picture,” to some effective spin on the sites,
of both the initial lattice and the dual lattice (i.e., the sites
of the plaquettes). This picture is called here the “τ picture,”
H (λ). This mapping brings the model H (λ) into the sum of
the Ising chains in transverse field over 2N different lines,
namely, N rows on the lattice, and N rows on the dual lattice.
The eigenspace of H (λ) in the τ picture is a tensor product
over the different chains. At this point, we show that P (t)
can be calculated exactly by sum of correlation functions
[62,66,83,84]. The details of the mapping and the solution
in terms of correlation functions are shown in the Appendix.
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The main result of this paper is obtaining a closed formula
for the 2-Rényi topological entropy after a quantum quench.
This is given by substituting the following expression for the
purity of the state ρA into Eq. (10):

P (t) = CP

∑
∂g̃∈∂G′

A

∑
g̃∈G′

A

z̃∈ZA

|〈g̃∂g̃z̃〉�(t)|2
∑
h̃∈H ′

A

x̃∈X′
A

|〈x̃∂x̃(∂g̃)h̃〉
(t)|2

×
∑

∂ḡ∈∂G′
B

(−1)∂ḡ∂x̄(∂ḡ)∩z̃h̃. (11)

In the above formula, �(t) ⊗ 
(t) describes the time evolution
of the system (� and 
 refer to the quantum numbers
on two different sublattices: In Fig. 1, they correspond to
the lattice and the dual lattice, respectively). The operators
g̃,z̃,h̃,x̃,∂g̃∂x̃(∂g̃) and ∂ḡ∂x̄(∂ḡ) represent string operators
operating with the Pauli algebra on the spins in the lattice, in
either subsystem A or subsystem B. The phase factor takes into
account whether such operators commute or anticommute. As
we can see, the evaluation of this formula requires just the
knowledge of correlation functions. As the system H (λ) is
integrable, all these quantities can be obtained analytically.
Notice that for t = 0, this is the topological entropy in any
given eigenstate of the system. The derivation of Eq. (11) is far

from being trivial, and it requires several pages of calculations.
The full derivation is presented in the Appendix, where it
appears as Eq. (A54).

The formula Eq. (11) holds for every size N of the system
and R,r for the subsystem. As one can see, though, the number
of correlation functions to compute grows exponentially with
the size of the subsystem A. For example, for a subsystem of
the type (1) with R,r (see Fig. 2), the number of correlation
functions to compute scales as 22R+2r . Each correlation
function can be expressed as a Pfaffian; the computation of
a Pfaffian can be reduced to the computation of a determinant
whose maximum dimension is 2(R + 1) [83,84]. Although
the number of correlation functions to compute is exponential,
this calculation can be effectively carried over also for large
R,r by using parallelization on high performance computing
clusters.

III. RESULTS AND DISCUSSION

In this section, we show the results obtained from the
computation of Eqs. (9) and (11).

Let us first show the effect of a static perturbation. This
amounts to compute Eq. (10) in the instantaneous ground state
(t = 0) as λ is varied. In Fig. 3 we can see the effect of a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

S 2T

(d)

FIG. 3. Topological Rényi entropy ST
2 in static case as a function of fields λx and λz with different system sizes: (a) R = 5, r = 1,

N = 100; (b) R = 8, r = 2, N = 160; (c) R = 11, r = 3, N = 220. (d) Illustration of ST
2 with Hamiltonian preserving Z2 gauge symmetry

(λz = 0,λx = λ, dashed lines) and breaking gauge symmetry (λz = λx = λ, solid lines). Various colors represent distinct system sizes: red,
R = 5, r = 1, N = 100; green, R = 8, r = 2, N = 160; blue, R = 11, r = 3, N = 220; purple, R = 14, r = 4, N = 280.
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perturbation in the ground state. After the critical point λ = 1,
topological order is destroyed and TE vanishes. As the system
size (both r and rm) increases, the transition becomes sharper.
As we can see, the presence of the gauge structure makes TO
more resilient, and the TE vanishes in a smoother way. If gauge
structure is destroyed, the transition is much sharper. The result
in the presence of gauge symmetry is in complete accordance
with earlier results [40], both numerical and analytical.

Of course, the main goal of this work is to show what hap-
pens for the time evolution. While static perturbations can be
effectively studied by numerical methods, the time evolution
is too complex to be effectively simulated numerically, and
that is where an analytic treatment is needed. Moreover, we
are interested in a generic quench such that every symmetry
(including the gauge symmetry) can be destroyed. This is
indeed the case as long as one of the λx,λz is nonvanishing.

In Fig. 4, we show the fate of TE measured by ST
2 in the

thermodynamic limit N → ∞ at infinite times t → ∞ for
different subsystem sizes R,r . The result is fully analytical.
We see that, as gauge symmetry is broken, the TE vanishes in
the limit of large subsystem size. Some residual TE survives

for small subsystem sizes and moderate λ. However, as we
discuss later, the value of λ such that ST

2 vanishes is pushed
back as subsystem size increases. On the other hand, if the
gauge symmetry is preserved (meaning either λz,λx = 0), then
ST

2 = 1 for large subsystem sizes, which is half of the full value
in the toric code. This is the main result of the paper: After
a quantum quench, at large times the system has the same
topological entropy as in the thermal state. As it was shown
in Refs. [26,58,59,61], if gauge symmetry is present, then the
thermal state possesses a classical topological order with half
the value of the full topological entropy. This corresponds to
the existence of a protected classical bit of information [26].
On the other hand, if no gauge symmetry is preserved, in
the thermodynamic limit all the TE disappears, corresponding
to no possible information stored in a protected way in the
system [26]. Therefore, the main message is, after a quantum
quench, topological order thermalizes. It is remarkable that
this happens even when the quench is integrable. This means
that even though the system does not fully thermalize, as there
are many conserved local quantities, the evolution is complex
enough to destroy the topological order and the topological

0.0 0.2 0.4
0.0

0.5

1.0

1.

2.

S 2T

0.0 0.2 0.4
0.0

0.5

1.0

1.

2.

S 2SST
(a) (b)

(c) (d)

FIG. 4. Topological Rényi entropy ST
2 in the quantum quench case as a function of fields λx and λz with different subsystem sizes in

thermodynamic limit (N → ∞) and infinite time limit (t → ∞): (a) R = 5, r = 1; (b) R = 8, r = 2; (c) R = 11, r = 3. (d) Illustration of
ST

2 with quench Hamiltonian preserving Z2 gauge symmetry (λz = 0, λx = λ, dashed lines) and breaking gauge symmetry (λz = λx = λ,
solid lines). Various colors represent distinct subsystem sizes (rm,R,r), where rm = R − 2r . In quantum quench case, ST

2 , as a function of the
subsystem size, depends mostly on rm but is not sensitive to r: red (3,5,1); green (4,8,2); blue (5,11,3); purple (6,14,4); cyan (7,13,3); brown
(8,14,3); orange (9,13,2); gray (10,14,2); black (11,15,2). Inset in panel (d): polynomial fit (dotted line) of λ∗, at which point ST

2 (λ∗,t → ∞) < ε,
as a function of 1/rm with fixed r = 2. We sample rm as (5, 6, 7, 8, 9, 10, 11) and choose ε = 10−3.
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(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

FIG. 5. Illustration of (a),(b) topological Rényi entropy and (c) Loschmidt echo after a quantum quench in finite time and with finite system
size. In each plot, 16 distinct curves from top to bottom correspond to the different λ = λx = λz from 0 to 1.5 in intervals of 0.1. The subsystem
and system size are (a1) R = 5, r = 1, N = 100; (a2) R = 5, r = 1, N = 200; (b1) R = 8, r = 2, N = 100; (b2) R = 8, r = 2, N = 200;
(c1) N = 100; and (c2) N = 200. We can see that the revival time of TE and LE is proportional to the system size N and is also dependent on
λ, which means t∗ ∼ N/v(λ). v(λ) is the speed of signals in the system given by the Lieb-Robinson bounds as v ∼ λ. The time average value
of TE for each λ is equal to TE of the dephased state, which converges to the value for thermodynamic limit (N → ∞) and t → ∞ limit. We
can also find that, as the size of the subsystem gets larger, TE is smaller with the same quench Hamiltonian H (λ). After a quench, TE is almost
completely destroyed when (a) λ > 0.8 and (b) λ > 0.7, which is compatible to the situation of N → ∞ and t → ∞.

observables of the system. It is then quite natural to foresee
the same scenario for a nonintegrable quench, when there are
not even local conserved quantities, and one would expect at
large times to reach the Gibbs state locally.

As we mentioned above, it is important to address the
question of the finite size for the subsystem. To this end,
we show in Fig. 4(d), a one-dimensional cross section of the
previous graph for clarity. We find that TE measured by ST

2
depends on subsystem size mostly through rm, the size of
the hole of subsystem (1). Indeed, keeping rm constant and
changing r only results in a variation of ST

2 of the order of 10−3

when rm � 5. This fact is compatible with the thermal behavior
of the TE in Ref. [59], where it was shown that, at finite
temperature, TE is an explicit function of r2

m and temperature.
We want to evaluate what is the minimum value of λ that
destroys TE for a given size rm. We define a thermalization
point λ∗ where ST

2 (λ∗,t → ∞) < ε and find that as subsystem
size increases, λ∗ becomes smaller. In the inset of Fig. 4(d),
we plot the polynomial fit of function λ∗(1/rm) with fixed
r = 2. Setting ε = 10−3, we sample rm as (5, 6, 7, 8, 9, 10,
11), and the corresponding λ∗ is (0.69, 0.60, 0.53, 0.47, 0.42,
0.38, 0.35). The fit function is λ∗ = 4.22 1

rm
− 3.76 1

r2
m

+ O( 1
r3
m

),
which estimates the asymptotic behavior of λ∗ getting closer
to zero as rm gets larger.

So far, we have presented the results for the limit of infinite
time (and in the thermodynamic limit), as the correlation
functions in Eq. (11) have a compact analytic form in the

limit t → ∞ (see the Appendix). However, we are interested
also in understanding how fast thermalization is. We know
that at infinite time, TE is completely destroyed (or halved
with gauge symmetry) for the infinite subsystem, or it sets to
a finite value for the finite subsystem if the quench parameter
λ is not too large. We ask ourselves at what characteristic
time teq this would happen. To this end, we just need to
evaluate the time-dependent correlation functions in Eq. (11).
The results are displayed in Fig. 5, where we show the time
evolution of ST

2 (t) for a subsystem of size (a) R = 5, r = 1 and
(b) R = 8, r = 2 for different values of the quench strength
λ = λx = λz. We can clearly see that after a very short
time TE thermalizes. Moreover, TE acquires some revivals
at later times, well before the recurrence time (that is double
exponential in the system size; see Ref. [85]). One can already
see that the time scale for thermalization depends on the size
of the subsystem R,r , although we do not have enough points
to make an estimate. However, the structure of the revivals
for different system sizes and strengths of the quench λ is
much clearer. Revivals are expected when the wave packet
is partially reformed after signals in the system recombine
[86,87]. As the speed v of signals in the system is given by
the Lieb-Robinson bound as v ∼ λ [86–92], we can see that
the time t∗ at which the revival on the profile of ST

2 (t) is
reached scales like λ−1. Revivals in the full wave function
|�(t)〉 are detected by the Loschmidt echo (LE), defined as
Lt := |〈�(t)|�(0)〉|2 [93]. We show the behavior of LE in
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panel (c) of Fig. 5. As one can see, TE and LE display the
same time structure of revivals. Since Lt is very difficult to
detect for an extended system, as it rapidly (exponentially)
shrinks to zero with system size [93], it is actually desirable to
find better observables to detect the structure of revivals. As we
can see in Fig. 5, the topological Rényi entropy does detect the
same revival times for a much larger set of system sizes, while
the Loschmidt echo becomes featureless for stronger quenches
in larger systems; see Fig. 5(c2) for the system with N = 200
spins. It is very interesting that one can use ST

2 as a probe
of both the thermalization and the witness of the system still
being away from equilibrium. Thermalization under unitary
evolution is, in fact, thermalization in probability, meaning
that the probability of observing a value different from the
typical value goes to zero in the thermodynamic limit. We
notice here that, in order to completely lose revivals in the TE,
one also needs the thermodynamic limit of the subsystem. The
same limits is also needed to get rid of the finite size effects in
TE, as one can see in Fig. 4.

At this point, some more comments are in order regarding
some other subtleties about the geometry of the subsystem.
In the case where the subsystem is “thin,” that is, consisting
only of boundary, we find a residual topological entropy TE.
However, the addition of a bulk makes it disappear (or reduce
to its half value in case of gauge symmetry). In Ref. [62]
it was demonstrated that, for the thin subsystem, the full
value ST

2 = 2 was preserved. We find the same result with the
formula presented here if we apply it to the thin subsystem,
so the two results agree. Anyway, now we see that we have
two ways of measuring ST that yield two different results. If
ST is measured in a subsystem with bulk, we find thermal
behavior, while, on the other hand, if the subsystem is thin,
we find a more robust behavior. We are thus in a quandary:
Which of the two ways is the right way to detect topological
order? At zero temperature and for static perturbations the two
ways give comparable results. Instead, these two subsystems
give completely different results in the dynamical behavior.
This is explained by the fact that TE defined as in Eq. (5)
is equal to “quantum conditional mutual information” [94];
however, this is only true when the subsystem has a bulk.
When we compute TE in the ground state, this is not crucial,
because area law holds, so even in the thin subsystem case
the boundary term of entanglement entropy is canceled out
and therefore we can extract TE. On the other hand, in the
case of quantum quench, high-energy eigenstates are involved
and entanglement area law needs not to hold in general.
However, “quantum conditional mutual information,” i.e., TE
for a subsystem with bulk, is still a good measurement of
“long-range” correlation for a state without entanglement area
law. As it was argued in Ref. [62], the topological entropy
associated with a subsystem with bulk is associated with the
existence of protected information in the system and with
the confinement-deconfinement transition for the topological
quasiparticles [95]. So we believe that this is the quantity of
merit to detect topological order in a wave function.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we presented a fully analytical treatment of the
time evolution of the topological Rényi entropy ST

2 in the two-

dimensional toric code after an integrable quantum quench.
The main result of the paper is that ST

2 quickly reaches a
thermal value. Therefore, even though the quench is integrable,
the dynamics is complex enough to make the topological
order thermalize. In two spatial dimensions, this amounts to
destroying the topological order. In this work, dynamical and
thermal stability of topological order are unified for the model
under consideration. The technical result has been obtained
by mapping the calculation of TE in the sum of many-point
correlation functions. This result and the associated technique
point to several directions for further study. First, we believe
that the unification of dynamical and thermal features can be
generalized. It is thus conceivable that if topological order
survives a quantum quench, then it would be also thermally
stable, and vice versa. This opens the way to studying thermal
stability of other models that feature topological order, like
the toric code in higher dimensions [25,26,96]. Moreover,
the technique established here can be directly extended to
the case of a quench with weak or strong disorder [97,98].
In one-dimensional spin chains, weak disorder may cause
Anderson localization for free fermionic systems while strong
disorder together with interactions may cause many-body
localization (MBL) in the interacting case [97,99–102]. Very
little is known about MBL in 2D and nothing about whether
MBL is possible together with TO. In the presence of disorder,
the system would be not fully integrable, but still amenable
to analytical treatment, as we can still map the system to
free fermions and then proceed numerically to diagonalize an
N × N matrix [103,104] (as opposed to an exponentially large
matrix). Moreover, one can use unitary perturbation theory
[70] in combination with our technique. In this way, we can
explore directly if there is many-body localization in presence
of topological order [105,106] and if localization does protect
it after a quantum quench or in temperature.
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APPENDIX

1. Mapping to Ising chains

The ground-state manifold L of the TCM is fourfold
degenerate. Each ground state is the uniform superposition
of closed strings. These closed strings can be arranged in four
sectors according to contractible and noncontractible loops on
the torus. The four-dimensional algebra L(L ) is generated
by two pairs of topological operators (Wx

1 ,Wz
1 ) and (Wx

2 ,Wz
2 ).

Wα
a is defined as

Wα
a =

∏
j∈γ α

a

σ α
a , α = x,z a = 1,2. (A1)

Each γ α
a is a noncontractible curve along the toric on the lattice

or the dual lattice (see Fig. 1). The external fields generate
excitations described by open strings. Therefore, when the
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FIG. 6. Illustration of notations of sites (crosses) and links (red
and blue bold segments) with row and column index. The physical
spins live on the links (σ picture), while the effective spins live on the
sites (τ picture). Site notation si

j with odd (even) row index belongs
to lattice (dual lattice).

fields are turned on, the ground state is a superposition of both
closed and open strings.

Because of the arrangement of the fields in horizontal and
vertical lines, the Hamiltonian Eq. (8) can be reduced into two
mutually commutative parts, H = H1 + H2, where

H1 = −
∑

s

As − λz

∑
i∈h

σ z
i ,

H2 = −
∑

p

Bp − λx

∑
i∈v

σ x
i . (A2)

As it is easy to verify, the two satisfy [H1,H2] = 0. For clarity,
We use the symbol si

j to denote the site of the lattice or

dual lattice at row i and column j , and symbol 〈j,j + 1〉i
to denote the bond located between si

j and si
j+1. Especially,

when i = 2k − 1 is odd, s2k−1
l belongs to the lattice; when

i = 2k is even, s2k
l belongs to the dual lattice (see Fig. 6).

Noticing that {As2k−1
l

,σ z

〈l,l+1〉2k−1} = 0 and {As2k−1
l+1

,σ z

〈l,l+1〉2k−1} =
0, we can introduce the effective spins τ z

s2k−1
l

≡ As2k−1
l

and

τ x

s2k−1
l

≡∏j�l σ
z

〈j−1,j〉2k−1 living on the lattice sites, so we

have σ z

〈l,l+1〉2k−1 = τ x

s2k−1
l

τ x

s2k−1
l+1

. Then H1 can be mapped to the

effective spin form:

H̃1 = −
N∑

k=1

K̂2k−1 ≡ −
N∑

k=1

(
N∑

l=1

τ z

s2k−1
l

+ λzτ
x

s2k−1
l

τ x

s2k−1
l+1

)
.

(A3)

Similarly, H2 can be mapped into H̃2 by carrying out the
procedure of Bs2k

l
≡ τ z

s2k
l

and σx

〈l,l+1〉2k ≡ τ x

s2k
l

τ x

s2k
l+1

, where the

effective spins τ z

s2k
l

and τ x

s2k
l

live on the dual lattice sites. H̃2 is

written explicitly as

H̃2 = −
N∑

k=1

K̂2k ≡ −
N∑

k=1

(
N∑

l=1

τ z

s2k
l

+ λxτ
x

s2k
l

τ x

s2k
l+1

)
. (A4)

Adding H̃1 and H̃2 up, we finally get the Hamiltonian
represented by the effective spins:

H̃ = −
2N∑
i=1

K̂i ≡ −
2N∑
i=1

⎡
⎣ N∑

j=1

τ z

si
j

+ λ(i)τ x

si
j

τ x

si
j+1

⎤
⎦,

λ(i) = λz, i is odd,

λ(i) = λx, i is even. (A5)

Equation (A5) shows that each term K̂i is an Ising chain.
Since the chains on different lines i are not coupled, namely
[K̂m,K̂n] = 0, each Ising chain can be independently exactly
solved by means of usual techniques involving Jordan-Wigner
transformation, a Fourier transformation, and finally a Bo-
goliubov transformation [82,84]. Moreover, the eigenstate of
Eq. (A5) has the tensor product form,

|�〉 = ⊗2N
i=1|�i〉, (A6)

in which |�i〉 is the eigenstate of the ith Ising chain. From
now on, we call the representation in terms of the effective
spin operators τ z

s ,τ x
s the τ picture. The τ spins live on the sites

of the lattice and the dual lattice, while the original σ picture
represents the physical spins living on the bonds of the lattice
(see Fig. 6). What we need to pay attention to is that there is
one constraint in each Ising chain caused by periodic boundary
condition. It corresponds to the constraints in σ picture:

N∏
j=1

σ z
〈j−1,j〉2k−1 = 1,

N∏
j=1

σx
〈j−1,j〉2k = 1, k = 1,2, . . . ,N. (A7)

Notice that the operators wz
k =∏N

j=1 σ z

〈j−1,j〉2k−1 and wx
k =∏N

j=1 σx

〈j−1,j〉2k are the topological operators in TCM, which

means Wz
2 and Wx

1 . From now on, whenever the operator Wx
1

(Wz
2 ) occurs, we mean that it is just an arbitrary wx

k (wz
k). They

all commute with H , so we have 2N conserved quantities. If
we denote the whole Hilbert space as H (σ picture) which
dimension is 22N2

, we can choose the sector

H ′ = {|�〉 ∈ H | wz
k|�〉 = |�〉, wx

k |�〉 = |�〉,
k = 1,2, . . . ,N}, (A8)

whose dimension is 22N2−2N . In this sector, both
∏N

j=1 As2k−1
j

and
∏N

j=1 Bs2k
j

equal to identity. We can write these constraints
in the τ picture as

N∏
j=1

τ z

s2k−1
j

= 1,

N∏
j=1

τ z

s2k
j

= 1, k = 1,2, . . . ,N. (A9)
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These constraints, together with the periodic boundary condi-
tion, give the corresponding sector H ′ in the τ picture.

2. Derivation of the formula for the purity

In this section, we find a general formula to compute the
purity for a generic state in H ′ that is factorizable in the
product on different lines i as in Eq. (A6). In this way, this
formula can be used to compute the purity of every eigenstate
of the Hamiltonian Eq. (8) or of the time evolution, including
the one induced by a sudden quantum quench.

First, we need to choose a reference state which is a vector
in L and also in H ′. As it is immediate to verify, the following
state is a vector in L :

|0′〉 ≡ |G|−1/2
∑
g∈G

g|⇑〉, (A10)

where |⇑〉 is the state with all spins pointing up in the z basis,
namely σ z

i |⇑〉 = |⇑〉, ∀ i. G is the group generated by the
N2 − 1 independent star operators As . The state Eq. (A10) is
the simultaneous eigenstate of Wz

1 and Wz
2 with eigenvalue 1.

However, it is not the the vector in the sector H ′. It is more
convenient to choose, as reference state, the following state in
H ′ (also in L ):

|0〉 = 1 + Wx
1√

2
|0′〉 = (2|G|)−1/2

∑
g∈G

g
(
1 + Wx

1

)|⇑〉.

(A11)

This state belongs to a different topological sector, which is
the eigenstate of Wx

1 and Wz
2 with eigenvalue 1. Any state in

H ′ can be written as

|�〉 =
∑
x∈X

∑
z∈Z

b(xz)zx|0〉. (A12)

The group X(Z) has the tensor product form X = ⊗N
k=1Xk

(Z = ⊗N
k=1Zk). One defines strings of x type as the strings

running on the dual lattice and connecting the centers of
plaquettes, and acting as σ̂ x on all the spins intersected by
the string. Likewise, the strings of type z act like σ̂ z on all the
spins traversed by strings running on the links of the lattice and
connecting the sites of the lattice (see Fig. 1). The elements
of each Xk(Zk) are the open strings of x(z) type, mod {1,Wx

1 }
({1,Wz

2 }), lying on the 2kth [(2k − 1)th] row. The number of
open strings’ end points is even, so the number of independent
open strings is [

∑[N/2]
m=1 ( N

2m)]2N = 22N2−2N , which conforms to
the dimension of H ′.

As we noticed above, in the view of the τ picture, |�〉
and |0〉 have tensor product form: |�τ 〉 = |�1〉 · · · |�2N2〉 and
|0τ 〉 = |01〉 · · · |02N2〉. Let us introduce the following notation
for |ψ〉 and |φ〉 as

|�τ 〉 :

{|ψ〉 = |�1〉|�3〉 · · · |�2N2−1〉,
|φ〉 = |�2〉|�4〉 · · · |�2N2〉, (A13)

and

|0τ 〉 :

{|0ψ 〉 = |01〉|03〉 · · · |02N2−1〉,
|0φ〉 = |02〉|04〉 · · · |02N2〉. (A14)

The following orthonormality conditions can be easily proven
in the τ picture,

〈0|xz|0〉 = 〈0ψ |τ (x)|0ψ 〉〈0φ|τ (z)|0φ〉
= δz,1Z

δx,1X
, ∀ x ∈ X, ∀ z ∈ Z, (A15)

and

b(xz) = 〈0|xz|�〉 = 〈0ψ |τ (x)|ψ〉〈0φ|τ (z)|φ〉 ≡ b(x)b(z),

(A16)

where τ (x) [τ (z)] is the operator mapped from the σ picture
to the τ picture. Combining Eqs. (A10), (A11), and (A12), we
get

|�〉 = (2|G|)−1/2
∑
x∈X

∑
g∈G

∑
z∈Z

b(xz)zxg
(
1 + Wx

1

)|⇑〉.

(A17)

Now we introduce a new group Y for the convenience of the
later derivation, which is defined as

Y = X × G × {1,Wx
1

}
. (A18)

The generators of Y are constituted by all the generators of
X, G, and Wx

1 apparently, but we can also give a different
description that will become useful later. As one can easily
verify, the group can be generated by two types of operators
which live on either even lines or odd lines. (1) The generators
on the (2k)th line are σx

〈i,i+1〉2k , with i = 1,2, . . . ,N . (2) The
generators on the (2k − 1)th line are σx

〈i,i+1〉2k−1σ
x

〈i+1,i+2〉2k−1 ,
with i = 1,2, . . . ,N − 1. Notice that the periodic boundary
condition is applied. Thus, the order of Y is 22N2−N , which
is, of course, identical to |X| × |G| × |{1,Wx

1 }| = 22N2−N . So
for any x ∈ X and g ∈ G × {1,Wx

1 } we have the following
relationships:

∀ x,g ∃ y ∈ Y, such that y = xg,

b(xz) = b(gxz) = b(yz), (A19)

where we used Eq. (A16) and the fact that g|0〉 = |0〉. By
combining Eqs. (A18) and (A19), we rewrite Eq. (A17) as

|�〉 = (2|G|)−1/2
∑
z∈Z

∑
y∈Y

b(yz)zy|⇑〉. (A20)

Note that whether the operators z and y commute or not
depends on the common links they shared. If they share even
(odd) links, they commute (do not commute). The parity of
the shared links number is denoted as z ∩ y, namely,

zy = yz(−1)z∩y. (A21)

Together with the fact that z|⇑〉 = |⇑〉, Eq. (A20) turns out to
be

|�〉 = (2|G|)−1/2
∑
z∈Z

∑
y∈Y

(−1)y∩zb(yz)y|⇑〉. (A22)

Now let us write the corresponding density operator. It reads

ρ = (2|G|)−1
∑

z,z′∈Z

∑
y,y ′∈Y

b̄(z′y ′)b(yz)

× (−1)y∩z+y ′∩z′ |yAyB〉〈y ′
Ay ′

B |, (A23)
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where we have adopted the notation y|⇑〉 = yA|⇑A〉 ⊗
yB |⇑B〉 = |yAyB〉. The reduced density operator to subsystem
A is obtained by tracing over the B part:

ρA = (2|G|)−1
∑

z,z′∈Z

∑
y,y′∈Y

b̄(z′y ′)b(yz)

× (−1)y∩z+y ′∩z′ |yA〉〈y ′
A|〈yBy ′

B〉. (A24)

Since we are summing over all the elements of the group,
we can relabel the elements in the sum as y ′ = yỹ to rewrite
Eq. (A24) as

ρA = (2|G|)−1
∑

z,z′∈Z

∑
y,ỹ∈Y

b̄(z′yỹ)b(yz)

× (−1)y∩z+yỹ∩z′ |yA〉〈yAỹA|〈ỹB〉. (A25)

Note that 〈ỹB〉 is nonzero only when ỹB = 1B . We now
introduce the subgroups YA ∈ Y and YB ∈ Y :

YA ≡ {y ∈ Y |y = yA ⊗ 1B}, (A26)

YB ≡ {y ∈ Y |y = 1A ⊗ yB}. (A27)

Finally we get the reduced operator in form of

ρA = (2|G|)−1
∑

z,z′∈Z

∑
y∈Y

ỹ∈YA

b̄(z′yỹ)b(yz)

× (−1)y∩z+yỹ∩z′ |yA〉〈yAỹA|. (A28)

Let us now make a remark about the topological sector used
in this derivation. The state |�〉 we are interested in is a state
away from equilibrium after quantum quench; that is, |�〉 =
e−iH (λ)t |�(0)〉. The initial state |�(0)〉 is a ground state of toric
code Hamiltonian H (λ = 0), which we prepared at t = 0. In
the derivation, the state |�(0)〉 (also |�〉) is constrained to the
sector H ′, which is the eigenspace of Wx

1 = 1 and Wz
2 = 1,

that is |�(0)〉 = |0〉. However, topological entropy is not af-
fected by this restriction. Following Ref. [13], we can show that
the reduced density matrix ρA = TrB[|�〉〈�|] is independent
on the topological sector, and thus there is no loss of generality
in fixing it. Indeed, by denoting the following four states
|ξij 〉,i,j = 0,1 as a basis in the ground-state manifold L ,

|ξij 〉 = (Wz
1

)i(
Wx

2

)j |0〉, (A29)

we see that they satisfy Wx
1 |ξij 〉 = (−1)i |ξij 〉 and

Wz
2 |ξij 〉 = (−1)j |ξij 〉. An arbitrary state in L can be written as

|ξ̃〉 =
1∑

i,j=0

αij |ξij 〉, (A30)

where
∑1

i,j=0 |αij |2 = 1. After the same procedure showed in
Eq. (A12), we can get the corresponding |�̃ij 〉 and also |�̃〉 as

|�ij 〉 =
∑
x∈X

∑
z∈Z

b(xz)zx|ξij 〉 (A31)

and

|�̃〉 =
1∑

i,j=0

αij |�ij 〉, (A32)

where Wx
1 |�ij 〉 = (−1)i |�ij 〉 and Wz

2 |�ij 〉 = (−1)j |�ij 〉.
The reduced density matrix of |�̃〉 is

ρ̃A =
1∑

i,j,k,l=0

αijα
∗
klTrB[|�ij 〉〈�kl|]. (A33)

We can thus prove that TrB[|�ij 〉〈�kl|] = δij,klTrB
[|�00〉〈�00|] = ρA. A similar proof was showed in Ref. [13],
where the fact that contractible loops cannot generate noncon-
tractible loop was used. Noticing that contractible loops and
independent open strings also cannot generate noncontractible
loops, the proof can be directly generalized. We therefore have

ρ̃A = ρA. (A34)

|�̃〉 belongs to the space H̃ , which is defined as

H̃ =
⎧⎨
⎩|�〉 ∈ H |

N∏
j=1

As2k−1
j

|�〉 = |�〉,

N∏
j=1

Bs2k
j
|�〉 = |�〉,k = 1,2, . . . ,N

⎫⎬
⎭. (A35)

Paying attention to the global constraint of
∏

s As = 1 and∏
p Bp = 1, we have dim(H̃ ) = 4dim(H ′). Also we have

H ′ ⊂ H̃ and L ⊂ H̃ (note that L /⊂H ′).
Now we move on to the calculation of the purity of ρA,

which is P = Tr[ρ2
A], following directly as

P = (2|G|)−2
∑

z1,z2∈Z

z′
1,z

′
2∈Z

∑
y1,y2∈Y

ỹ1,ỹ2∈YA

b̄(z′
1y1ỹ1)

× b(y1z1)b̄(z′
2y2ỹ2)b(y2z2)

× (−1)y1∩z1+y1ỹ1∩z′
1+y2∩z2+y2ỹ2∩z′

2

×〈y1Aỹ1Ay2A〉〈y2Aỹ2Ay1A〉. (A36)

Note that the term 〈y1Aỹ1Ay2A〉〈y2Aỹ2Ay1A〉 imposes two
constrains, (1) ỹ1 = ỹ2 and (2) y2 = y1ỹ1ȳ, where ȳ ∈ YB .
Thus, the purity formula can be simplified as

P = (2|G|)−2
∑

z1,z2∈Z

z′
1,z

′
2∈Z

∑
y∈Y

ỹ∈YA

ȳ∈YB

b̄(z′
1yỹ)b(yz1)b̄(z′

2yȳ)b(yỹȳz2)

× (−1)y∩z1+yỹ∩z′
1+yỹȳ∩z2+yȳ∩z′

2 . (A37)

For further simplification, we rewrite the last term as

(−1)y∩z1+yỹ∩z′
1+yỹȳ∩z2+yȳ∩z′

2

= (−1)ỹ∩z′
1+ỹ∩z2 (−1)y∩z1z

′
1z2z

′
2 (−1)ȳ∩z2z

′
2 . (A38)

The above equality can be easily proven by the fact that

y1 · · · ykz1 · · · zl = z1 · · · zly1 · · · yk(−1)g1···gk∩z1···zl ,

y1 · · · ykz1 · · · zl = z1 · · · zly1 · · · yk

k∏
i=1

l∏
j=1

(−1)yi∩zj . (A39)

The first equation is deduced as we commute the (y1 · · · yk)
and (z1 · · · zl) as two operators while in the second equation
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we commute each yi and zj at a time. Now, recalling that
b̄(z′

1yỹ)b(yỹȳz2) is equal to 〈�|z′
1yỹ|0〉〈0|yỹȳz2|�〉, we have

b̄(z′
1yỹ)b(yỹȳz2)(−1)ỹ∩z′

1+ỹ∩z2

= 〈�|z′
1yỹ|0〉〈0|yỹȳz2|�〉(−1)ỹ∩z′

1+ỹ∩z2

= 〈�|ỹz′
1y|0〉〈0|yȳz2ỹ|�〉, (A40)

where we have employed that every two elements in group Y

commute. Combining this equation, Eq. (A37) is simplified to
be

P = (2|G|)−2
∑

z1,z2∈Z

z′
1,z

′
2∈Z

∑
y∈Y

ỹ∈YA

ȳ∈YB

〈�|ỹz′
1y|0〉〈0|yz1|�〉

× 〈�|z′
2yȳ|0〉〈0|yȳz2ỹ|�〉

× (−1)y∩z1z
′
1z2z

′
2 (−1)ȳ∩z2z

′
2 . (A41)

Notice that the above formula is written in the σ picture. In the
following section, we obtain the exact state |�〉 in the τ picture.
Therefore, in order to proceed to further calculation, we first
need to map this formula from the σ picture to the τ picture. We
know how to map the group Z to the τ picture as we discussed
earlier, but how about the group Y ? One has to remember that Y
is generated by two types of operators. Again, the first type of
operators are generated by σx

〈i,i+1〉2k , with i = 1,2, . . . ,N and

k = 1,2, . . . ,N . These operators form a group X′, which is ho-
momorphic to the group X. Notice that both X and X′ are con-
stituted by tensor products of even lines, and the homomorphic
mapping from X′ to X in each row is 2 to 1 since X is a group
containing only open strings while X′ contains open strings and
a noncontractible closed string in each line. In H ′, this non-
contractible closed string acts as the identity operator. The ho-
momorphic mapping from X′ to X is 2N to 1 since the number
of even lines is N . So the order of X′ is |X′| = 2N2

while |X| =
2N2−N . Clearly X′ can be mapped to the τ picture. The second
type is the operators generated by σx

〈i,i+1〉2k−1σ
x

〈i+1,i+2〉2k−1 , with
i = 1,2, . . . ,N − 1 and k = 1,2, . . . ,N . In order to map them
to the τ picture, we relabel them by the operators which belong
to the group G and form the group G′ = Y/X′. Precisely, G′ =
G × {1,Wx

1 }/∏N
k=1{1,wx

k }. The description in the τ picture is
more clear: G′ has the tensor product form G′ = ⊗N

k=1G
′
k and

each G′
k is generated by 2N−1 independent τ z

s2k−1
j

with constraint∏N
j=1 τ z

s2k−1
j

= 1 in the (2k − 1)th row. Or we can say that G′ is

generated by the open strings of τ z operators lying on the odd
lines. So |G′| = 2N2−N and |Y | = |G′||X′| = 22N2−N , which
coincide with the former discussion. Finally, the group Y can
be written as

Y = G′ × X′. (A42)

The next step is to rewrite YA and YB . This part is a
little difficult because of the constraints on the boundaries of
subsystems A and B, which are shown in Fig. 7. One can verify
that the relationships shown in Table I hold. In this table, the
groups G′, G′

A, G′
B, ∂G′

A, and ∂G′
B are all subgroups of G.

x̃(∂g̃) and ∂x̄(∂ḡ) are the functions of ∂g̃ and ∂ḡ, respectively.
Moreover, G′

A(⊂ G′) is generated by all the independent star
operators that act solely on subsystem A, while G′

B(⊂ G′) is

generated by all the independent star operators that act solely
on subsystem B. The generators of ∂G′

A and ∂G′
B are shown

in Fig. 7. They depend upon the shape of the subsystem A and
we choose subsystem (2) to illustrate and one can get them for
subsystems (1), (3), and (4).

Now we can map the spin operators in formula of purity
Eq. (A41) to the τ picture. From now on, we do not distinguish
the notations of all the groups concerned in the two pictures.
The purity written in the τ picture finally reads:

P =
∑

∂g̃∈∂G′
A

∂ḡ∈∂G′
B

P1(∂g̃,∂ḡ)P2(∂g̃,∂ḡ), (A43)

where, recalling |ψ〉 and |φ〉 defined in Eq. (A13), we have

P1(∂g̃,∂ḡ) =
∑

z1,z2∈Z

z′
1,z

′
2∈Z

∑
g∈G′
g̃∈G′

A

ḡ∈G′
B

(2|G|)−2〈ψ |g̃∂g̃z′
1g|0ψ 〉〈0ψ |gz1|ψ〉

× 〈ψ |z′
2gḡ∂ḡ|0ψ 〉〈0ψ |gḡ∂ḡz2g̃∂g̃|ψ〉

× (−1)g∩z1z
′
1z2z

′
2 (−1)ḡ∩z2z

′
2 (−1)∂ḡ∩z2z

′
2 (A44)

and

P2(∂g̃,∂ḡ) =
∑
x∈X′
x̃∈X′

A

x̄∈X′
B

〈φ|x̃∂x̃(∂g̃)x|0φ〉〈0φ|x|φ〉〈φ|xx̄∂x̄(∂ḡ)|0φ〉

× 〈0φ|xx̄∂x̄(∂ḡ)x̃∂x̃(∂g̃)|φ〉. (A45)

There are two points to notice. (i) The phase term does
not appear in P2 because of the fact that x and z live in even
and odd rows, respectively, so they always commute. (ii) The
notation g ∩ z in P1 means the parity of the number of common
sites shared by g and z in the τ picture. Remember that g ∩ z

is the parity of common links in the σ picture as we have
introduced before. The above expression can be simplified.
Let us start with P1. First, notice the fact that for any g ∈ G,
we have g|0ψ 〉 = |0ψ 〉, so the g type of operators in Eq. (A44)
are absorbed by |0ψ 〉:

〈ψ |g̃∂g̃z′
1g|0ψ 〉〈0ψ |gz1|ψ〉〈ψ |z′

2gḡ∂ḡ|0ψ 〉
× 〈0ψ |gḡ∂ḡz2g̃∂g̃|ψ〉

= 〈ψ |g̃∂g̃z′
1|0ψ 〉〈0ψ |z1|ψ〉〈ψ |z′

2|0ψ 〉〈0ψ |z2g̃∂g̃|ψ〉.
(A46)

Next we work on the last phase term in Eq. (A44). We can
prove the equation∑

g∈G′
R

(−1)g∩z =
{|G′

R| z ∈ ZR̄,

0 z /∈ ZR̄,
(A47)

where ZR̄ is defined as ZR̄ ≡ {z ∈ Z|∀ g ∈ GR,zg = gz}. The
proof goes as follows. If ∃ a ∈ G′

R , such that az = −za, define
quotient group Ga ≡ G′

R/{1,a}; thus, G′
R = {Ga,aGa}. Then∑

g∈G′
R
(−1)g∩z=∑g∈Ga

(−1)g∩z+∑g∈aGa
(−1)g∩z. The sec-

ond term is equal to
∑

g∈Ga
(−1)ag∩z =∑g∈Ga

(−1)g∩z

(−1)a∩z = −∑g∈Ga
(−1)g∩z, since az = −za. So

∑
g∈G′

R

(−1)g∩z = 0. If ∀ g ∈ G′
R satisfies gz = zg,(−1)g∩z = 1, so∑

g∈G′
R
(−1)g∩z =∑g∈G′

R
1 = |G′

R|. Combining Eqs. (A46)
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FIG. 7. Illustration of (a) ∂g̃∂x̃(∂g̃) operators that ∂g̃ ∈ ∂G′
A and (b) ∂ḡ∂x̄(∂ḡ) operators that ∂ḡ ∈ ∂G′

B in subsystem (2) with R = 8,
r = 2. These collective operators are denoted as the (a) green crosses with rectangle blocks and (b) blue crosses with square or rectangle blocks.
The (a) green and (b) blue solid lines on the right side are σx operators on the edges. (a) Each generator of ∂G′

A is the product of star operators
on the cross marked sites in each rectangle block. ∂x̃ is the function of ∂g̃ so that ∂g̃∂x̃(∂g̃) acts solely on A. There are two types of ∂g̃∂x̃(∂g̃)
operators in subsystem (2). (b) The generators of ∂G′

B are (i),(iv) the star operator on the cross marked site in each square block and (ii),(iii)
the product of star operators on the cross marked sites in each rectangle block. ∂x̃ is the function of ∂ḡ so that ∂ḡ∂x̄(∂ḡ) acts solely on B.
There are four types of ∂ḡ∂x̄(∂ḡ) operators in subsystem (2).

and (A47) and Eq. (A44), we get the relations z1z
′
1z2z

′
2 = 1

and z2z
′
2 = z̃ ∈ ZB̄ . We prefer to rename the group ZB̄ as ZA;

thus, Eq. (A44) is simplified as

P1(∂g̃,∂ḡ) = |G′||G′
B |

(2|G|)2

∑
z1,z2∈Z

z̃∈ZA

∑
g̃∈G′

A

〈ψ |g̃∂g̃z̃z1|0ψ 〉〈0ψ |z1|ψ〉

× 〈ψ |z̃z2|0ψ 〉〈0ψ |z2g̃∂g̃|ψ〉(−1)∂ḡ∩z̃. (A48)

Noticing the fact that
∑

z∈Z z|0ψ 〉〈0ψ |z = 1 and 2|G| =
2N |G′|, we finally get

P1(∂g̃,∂ḡ) = |G′
B |

22N |G′|
∑
z̃∈ZA

∑
g̃∈G′

A

|〈ψ |g̃∂g̃z̃|ψ〉|2(−1)∂ḡ∩z̃.

(A49)

Now let us take care of P2. Just like the group G′ defined in
odd rows, we define the corresponding group in even rows
as H ′. In the τ picture, H ′ has the tensor product form
H ′ = ⊗N

k=1H
′
k and each H ′

k is generated by 2N−1 independent
τ z

s2k
j

constrained by
∏N

j=1 τ z

s2k
j

= 1 in the (2k)th row. Now we

rewrite |0φ〉 as

|0φ〉 = |H ′|−1/2
∑
h∈H ′

h|0̃〉, (A50)

where |0̃〉 has the tensor product form |0̃〉 ≡ |0̃φ〉 = ⊗N
k=1|0̃2k〉.

It satisfies x|0̃〉 = |0̃〉 for all x ∈ X (it holds for x ∈ X′) and∏N
j=1 τ z

s2k
j

|0̃2k〉 = |0̃2k〉 for any k. Substitute the equation into

TABLE I. Decompositions of Group Y, YA, and YB .

∀ y ∈ Y ∃ g ∈ G′,x ∈ X′ such that y = gx

∀ ỹ ∈ YA ∃ g̃ ∈ G′
A,∂g̃ ∈ ∂G′

A,x̃ ∈ X′
A such that ỹ = g̃x̃∂g̃∂x̃(∂g̃)

∀ ȳ ∈ YB ∃ ḡ ∈ G′
B,∂ḡ ∈ ∂G′

B,x̄ ∈ X′
B such that ȳ = ḡx̄∂ḡ∂x̄(∂ḡ)
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Eq. (A45):

P2 = |H ′|−2
∑

h1,h2∈H ′
h′

1,h
′
1∈H ′

∑
x∈X′
x̃∈X′

A

x̄∈X′
B

〈φ|x̃∂x̃xh1|0̃〉〈0̃|h′
1x|φ〉

× 〈φ|xx̄∂x̄h2|0̃〉〈0̃|h′
2xx̄∂x̄x̃∂x̃|φ〉. (A51)

By commuting some terms we obtain

P2 = |H ′|−2
∑

h1,h2∈H ′
h′

1,h
′
1∈H ′

∑
x∈X′
x̃∈X′

A

x̄∈X′
B

〈φ|x̃∂x̃h1|0̃〉〈0̃|h′
1|φ〉

× 〈φ|h2|0̃〉〈0̃|h′
2x̃∂x̃|φ〉

× (−1)x∩h1h
′
1h2h

′
2 (−1)x̄∩h2h

′
2 (−1)∂x̄∩h2h

′
2 . (A52)

The story here is just like the P1 part. Repeating the derivation
we get

P2(∂g̃,∂ḡ) = 22N |X′
B |

|X′|
∑
h̃∈H ′

A

∑
x̃∈X′

A

|〈φ|x̃∂x̃(∂g̃)h̃|φ〉|2

× (−1)∂x̄(∂ḡ)∩h̃. (A53)

The 22N term comes form |X′| = 2N |H ′|. Combing Eqs. (A49)
and (A53), we finally get the purity formula,

P = CP

∑
∂g̃∈∂G′

A

∑
g̃∈G′

A

z̃∈ZA

|〈ψ |g̃∂g̃z̃|ψ〉|2
∑
h̃∈H ′

A

x̃∈X′
A

|〈φ|x̃∂x̃(∂g̃)h̃|φ〉|2

×
∑

∂ḡ∈∂G′
B

(−1)∂ḡ∂x̄(∂ḡ)∩z̃h̃, (A54)

where the coefficient CP = |G′
B |

|G′|
|X′

B |
|X′| can be presented as

2R+22−(#A+#∂A)|X′
A|(−1). Here #A is the number of the sites

belonging to A, and #∂A is the number of sites belonging to
the boundary of subsystems A and B. One can verify that the
coefficient CP vanishes when we calculate the topological
Rényi entropy Eq. (9). According to Eq. (A47), the last
phase term

∑
∂ḡ∈∂G′

B
(−1)∂ḡ∂x̄(∂ḡ)∩z̃h̃ selects some particular z̃h̃

out. They satisfy the condition [∂ḡ∂x̄(∂ḡ),z̃h̃] = 0 for all the
∂ḡ ∈ ∂G′

B .
Exploiting the fact that in the τ picture, state |ψ〉,|φ〉 and

the operators occurred in Eq. (A54) have the tensor product
form, we can decompose the purity as the product of each row
and write Eq. (A54) in the form

P = CP

R+2∏
k=1

∑
∂g̃2k−1∈∂G′

A2k−1

∑
z̃2k−1∈Z′

2k−1

P2k−1(∂g̃2k−1,z̃2k−1)

×
∑

h̃2k∈H ′
2k

P2k(∂x̃2k(∂g̃2k−1,∂g̃2k+1),h̃2k)

×
∑

∂ḡ2k−1∈∂G′
B2k−1

(−1)∂ḡ2k−1∂x̄2k (∂ḡ2k−1,∂ḡ2k+1)∩z̃2k−1h̃2k , (A55)

where

P2k−1(∂g̃2k−1,z̃2k−1)

=
∑

g̃2k−1∈G′
A2k−1

|〈ψ2k−1|g̃2k−1∂g̃2k−1z̃2k−1|ψ2k−1〉|2, (A56)

P2k(∂x̃2k(∂g̃2k−1,∂g̃2k+1),h̃2k)

=
∑

x̃2k∈X′
A2k

|〈φ2k|x̃2k∂x̃2k(∂g̃2k−1,∂g̃2k+1)h̃2k|φ2k〉|2.

(A57)

We illustrate how to proceed with the calculation by the case
of subsystem type (1). We start from k = 1. The components
of ∂G′

A on the first row are 11, while ∂G′
B is ∂G′

B1
. Omitting

the constant coefficient, the k = 1 component of the purity is

P (k = 1) =
∑
z̃1∈Z′

1

P1(z̃1)
∑

h̃2∈H ′
A2

P2(h̃2)
∑

∂ḡ1∈∂G′
B1

(−1)∂ḡ1∂x̄2(∂ḡ1)∩z̃1h̃2 .

(A58)

The constraint of [∂ḡ1∂x̄2(∂ḡ1),z̃1h̃2] = 0 directly gives that
the summations of

∑
z̃1∈Z′

1
and

∑
h̃2∈H ′

A2
are not inde-

pendent. Notice that ∂ḡ1∂x̄2(∂ḡ1) constitutes a group and
it is generated by τ z

s1
j

τ x

s2
j

τ x

s2
j+1

in τ picture. The fact that

[τ z

s1
j

τ x

s2
j

τ x

s2
j+1

,τ x

s1
j

τ x

s1
j+1

τ z

s2
j

] = 0 tells us that τ x

s1
j

τ x

s1
j+1

and τ z

s2
j

always

appear at the same time. Thus, h̃2 is the function of z̃1 and
Eq. (A58) is

P (k = 1) =
∑
z̃1∈Z′

1

P1(z̃1)P2(h̃2(z̃1)). (A59)

Next, we consider the k = 2, . . . ,r + 1 case in which
∂G′

A2k−1
and ∂G′

B2k−1
contain only identity 12k−1 so the

component of purity for this part is

P (k = 2, . . . ,r + 1) =
r∏

k=2

⎡
⎣ ∑

z̃2k−1∈Z′
2k−1

P2k−1(z̃2k−1)

⎤
⎦

×

⎡
⎢⎣ ∑

h̃2k∈H ′
A2k

P2k(h̃2k)

⎤
⎥⎦P2r+1(z̃2r+1).

(A60)

It is clear that every row is independent with each other.
Our aim is to get the topological Rényi entropy ST

2 =
log2(P (1)P (4)/P (2)P (3)) and we can finally find that P (k =
1, . . . ,r + 1) = P (k = 1)P (k = 2, . . . ,r + 1) for subsystem
(1) is canceled during the calculation. The parts we are really
concerned about are the rows which contain a “hole.” We can
write the purity of subsystem (1) as P (1) = PtopP

(1)
holePbottom,

where Ptop = Pbottom = P (k = 1, . . . ,r + 1)(caused by the
symmetry of the subsystem and the fields). For subsys-
tems (2) and (3) they are P (2) = PtopP

(2)
hole and P (3) =

P
(2)
holePbottom. For subsystem (4), every row contains a hole so

ST
2 = log2(P (1)

holeP
(4)/P

(2)
holeP

(3)
hole). We take subsystem (1), for
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...
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2R+2

FIG. 8. Illustration of h̃c
2k (yellow rectangle blocks with crosses) and z̃c

2k−1 (green solid lines with circular ends) in subsystem (1) with
R = 8, r = 2.

example, to calculate P
(1)
hole:

P
(1)
hole =

R+1−r∏
k=r+2

∑
∂g̃2k−1

P2r+2(∂x̃2r+2(∂g̃2r+3),h̃2r+2)

×
∑
z̃2k−1

P2k−1(∂g̃2k−1,z̃2k−1)

×
∑
h̃2k

P2k(∂x̃2k(∂g̃2k−1,∂g̃2k+1),h̃2k)

×
∑

∏R+1−r
k=r+2 ∂ḡ2k−1

(−1)∂x̄2r+2
∏R+1−r

k=r+2 ∂ḡ2k−1∂x̄2k∩h̃2r+2
∏R+1−r

k=r+2 z̃2k−1h̃2k .

(A61)

We use the the shorthand notation to denote the last phase
term: ∑

∂ḡh

(−1)∂ḡh∂x̄(ḡm)∩z̃mh̃m . (A62)

It gives a constraint in order to fulfill this term be-
ing nonzero. Showing as Figs. 7 and 8, the constraint
is caused by ∂ḡh of types (ii) and (iii). We denote∏r+2

j=1 τ z

s2k−1
j

as ∂ḡc
2k−1 (blue rectangle blocks),

∏R−r
j=r+2 τ z

s2k
j

as h̃c
2k (yellow rectangle blocks) and τ x

s2k−1
r+2

τ x

s2k−1
R+1−r

as z̃c
2k−1

(green solid lines with cross ends). Notice the follow-
ing relationship: {∂ḡc

2k−1,z̃
c
2k−1} = 0,{∂x̄(∂ḡc

2k−1),h̃c
2k−2} = 0

and {∂x̄(∂ḡc
2k−1),h̃c

2k} = 0. We can get that for k = (r +
2), . . . ,(R + 1 − r), every (h̃c

2k−2)m2k−2 (z̃c
2k−1)m2k−1 (h̃c

2k)m2k

should obey (m2k−2 + m2k−1 + m2k)mod2 = 0 ({m} = 0,1).
The number of possible configuration is 2(R−2r+1). We choose

R = 5, r = 1, for example, then the number is 16. Every Col-
umn in the Table II represents one possible configuration {m}.

We denote
∑

{z̃,h̃}constr.
as the summation of z̃,h̃ in all the

possible configurations, which satisfy the constraint. Finally,
we get

P
(1)
hole = C

(1)
hole

R+1−r∏
k=r+2

∑
∂g̃2k−1

∑
{z̃,h̃}constr.

P2r+2(∂x̃2r+2(∂g̃2r+3),h̃2r+2)

×P2k−1(∂g̃2k−1,z̃2k−1)P2k(∂x̃2k(∂g̃2k−1,∂g̃2k+1),h̃2k).

(A63)

The coefficient comes from Eq. (A47) and it is van-
ished when we calculate the topological Rényi entropy.
Together with Eq. (A56) and (A57), the final task is to
calculate the modulus square expectation values in form
of |〈ψ |τ z

m1
· · · τ z

ms
· · · τ x

n1
· · · τ x

n2t
|ψ〉|2 for each row. We are

concerned with the state |ψ〉 in two conditions: (i) the static
one, which is the ground state of the Ising Hamiltonian shown

TABLE II. All possible configurations of {m} obeying (m2k−2 +
m2k−1 + m2k)mod2 = 0 for k = (r + 2), . . . ,(R + 1 − r), with sub-
system size R = 5, r = 1.

m4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
m5 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
m6 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
m7 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
m8 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
m9 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
m10 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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in Eq. (A5) for each row; (ii) time evolution state after a
quantum quench. Both of them can be treated analytically in
free fermion representation.

3. Calculation of purity: Mapping to free fermions

As we saw in the previous section, the purity P can then be
directly calculated in terms of expectation values of strings of
τ operators. These expectation values can be computed exactly
in the case of the integrable chain [83,103]. We are concerned
with one-dimensional Ising model in the transverse field:

HIsing = −
N∑

l=1

(
τ z
l + λτx

l τ x
l+1

)
. (A64)

We take the standard procedure of Jordan-Wigner transforma-
tion to map the Hamiltonian to the free fermion representation:

τ z
l = 1 − 2c

†
l cl, τ+

l = (τ−
l )† =

l−1∏
j=1

(1 − 2c
†
j cj )cl. (A65)

Note that we map the spin-up state |↑〉 to the vacuum |0〉. So
the spin Hamiltonian transforms to the fermion Hamiltonian

HIsing =−
N∑

l=1

(c†l + cl)(c
†
l − cl) − λ

N∑
l=1

(c†l − cl)(c
†
l+1 + cl+1)

+ λ

⎡
⎣exp

⎛
⎝iπ

n∑
j=1

c
†
j cj

⎞
⎠+ 1

⎤
⎦(c†N − cN )(c†1 + c1).

(A66)

Notice that the operator identity 1 − 2c
†
j cj = (c†j + cj )(c†j −

cj ) = exp(iπc
†
j cj ) and the term exp(iπ

∑n
j=1 c

†
j cj ) is actually

the parity operator of the system, which is 1 in the subspace
we choose. Nevertheless, the last term is the correction term,
which we neglect in the large N limit. As the former formula
showed, what we are interested in are modulus square ex-
pectation values, written as |〈ψ |τ z

m1
· · · τ z

ms
· · · τ x

n1
· · · τ x

n2t
|ψ〉|2.

Defining Aj = c
†
j + cj , Bj = c

†
j − cj , it is easy to check that

τ z
j = AjBj and τ x

j τ x
j+1 = BjAj+1. Noting that A2

j = 1 and
B2

j = −1, the former equation can be written in the form
of |〈ψ | · · · As · · ·Bt · · · |ψ〉|2. Wick’s theorem tells us this
expression can be reduced to the product of two-operator
expectation values.

Applying Fourier transformation

cl = 1√
N

∑
q

eiqlcq, (A67)

the Hamiltonian is rewritten in momentum space as

H =
∑

q

(1 − λ cos q)(c†qcq − c−qc
†
−q)

− λi
∑

q

sin q(c†qc
†
−q − c−qcq)

=
∑

q

C†
qMq(λ)Cq, (A68)

where

Mq(λ) =
(

aq(λ) −ibq(λ)
ibq(λ) −aq(λ)

)
,

aq(λ) = 1 − λ cos q, bq(λ) = λ sin q, (A69)

and

Cq =
(

cq

c
†
−q

)
. (A70)

The Hamiltonian is diagonalized by the Bogoliubov transfor-
mation,

H =
∑

q

hq(λ)†
(

ωq(λ) 0
0 −ωq(λ)

)
hq(λ), (A71)

where

hq(λ) =
(

ηq(λ)
η
†
−q(λ)

)
= R†

q(λ)Cq,

Rq(λ) =
(

uq(λ) −ivq(λ)
−ivq(λ) uq(λ)

)
, (A72)

with

uq(λ) = aq(λ) + ωq(λ)√
2ωq(λ)[ωq(λ) + aq(λ)]

,

vq(λ) = −bq(λ)√
2ωq(λ)[ωq(λ) + aq(λ)]

, (A73)

and

ωq(λ) =
√

aq(λ)2 + bq(λ)2 =
√

1 − 2λcosq + λ2. (A74)

After diagonalizing the Hamiltonian, we can obtain the
exact eigenstates. Moreover, we can obtain an exact expression
for the time evolution. In the quantum quench scenario, the
state evolves as

|�(t)〉 = U (t)|�(0)〉 = e−itH (λ(t))|�(0)〉, (A75)

in which

λ(t) =
{
λ0 (t � 0),
λ (t > 0), (A76)

and the initial state |�(0)〉 is the ground state of
H (λ0), namely, ηq(λ0)|�(0)〉 = 0,∀ q. (Basically what
we are interested in is the condition of λ0 = 0 in
which the following derivation would be simplified, but
we do the derivation in general condition.) We need
to calculate the expectation value of 〈�(t)|O|�(t)〉 =
〈�(0)|eitH (λ(t))Oe−itH (λ(t))|�(0)〉 = 〈�(0)|OH (t)|�(0)〉, and
operator O we are concerned with is the product of some Aj

and Bk operators. So we need to apply the Wick’s theorem in
Heisenberg picture. First we focus on cH

q (t) whose Heisenberg
equation is

i
d

dt
cH
q (t) = U †(t)[cq,H (λ(t))]U (t)

= 2aq(λ(t))cH
q (t) − 2ibq(λ(t))cH

−q(t)†, (A77)

or more compactly,

i
d

dt
CH

q (t) = 2Mq(λ(t))CH
q (t), (A78)

where Mq(λ(t)) has the same form of Eq. (A69). Ex-
pand CH

q (t) by ηq(λ0) and η
†
−q(λ0) as CH

q (t) = Sq(t)hq(λ0);
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thus,

Sq(t) =
(

ũq(t) −ṽ∗
q (t)

ṽq(t) ũ∗
q(t)

)
, (A79)

which is unitary and obeys the constraints

ũq(t) = ũ−q(t), ṽq(t) = −ṽ−q(t). (A80)

Then we obtain equations of motion for Sq(t):

i
d

dt

(
ũq(t)
ṽq(t)

)
= 2

(
aq(λ(t)) −ibq(λ(t))
ibq(λ(t)) −aq(λ(t))

)(
ũq(t)
ṽq(t)

)
. (A81)

The solution is given by(
ũq(t)
ṽq(t)

)
= Rq(λ)

(
e−i2ωq (λ)t 0

0 ei2ωq (λ)t

)
R†

q(λ)

(
ũq(0)
ṽq(0)

)
,

(A82)

and the initial condition is given by(
ũq(0)
ṽq(0)

)
=
(

uq(λ0)
−ivq(λ0)

)
, (A83)

which comes from the identity of Sq(t = 0) = Rq(λ0), seeing
Eqs. (A72) and (A79). Substituting Eq. (A73) into (A82), the
solution can be written explicitly as(

ũq(t)
ṽq(t)

)
=
(

u0 cos 2ωt + i
(−au0+bv0

ω

)
sin 2ωt

−iv0 cos 2ωt + ( bu0+av0
ω

)
sin 2ωt

)
, (A84)

where we have applied the shorthand notations a = aq(λ), b =
bq(λ), ω = ωq(λ), u0 = uq(λ0), and v0 = vq(λ0).

It is the time to work on the operators AH
j (t) and BH

j (t). As
the standard procedure of applying Wick’s theorem, we need to
decompose the operators in two parts: AH

j (t) = a
†
j (t) + aj (t)

and BH
j (t) = b

†
j (t) − bj (t), where

aj (t) = 1√
N

∑
q

eiqj [ũq(t) + ṽq(t)]ηq(λ0),

bj (t) = 1√
N

∑
q

eiqj [ũq(t) − ṽq(t)]ηq(λ0). (A85)

Notice that aj (t) [also bj (t)] is a combination of ηq(λ0), which
are the destruction operators acting on the initial state |�(0)〉,
while a

†
j (t) [also b

†
j (t)] is a combination of η

†
q(λ0).

Actually, {ηq(λ0)} and {η†
q(λ0)} form a set of bases of

the operators in the Hilbert space, so any operator O

has a decomposition O = O− + O+, where O−|�(0)〉 = 0
and 〈�(0)|O+ = 0. A two-operator product can be writ-
ten as O1O2 = N [O1O2] + {O−

1 ,O+
2 }, where N is the

normal ordering operator and the anticommutator comes
from the Fermi statistics. So the expectation value satisfies
〈�(0)|O1O2|�(0)〉 = {O−

1 ,O+
2 }, which is known as contrac-

tion of two operators.
The following three types of contraction are concerned:

Gj−k(t) = 〈�(0)|AH
j (t)BH

k (t)|�(0)〉 = {aj (t),b†k(t)},
GA

j−k(t) = 〈�(0)|AH
j (t)AH

k (t)|�(0)〉 = {aj (t),a†
k(t)},

GB
j−k(t) = 〈�(0)|BH

j (t)BH
k (t)|�(0)〉 = −{bj (t),b†k(t)}.

(A86)

Substituting (A85), they can be written explicitly as

Gj−k(t) = 1

N

∑
q

eiq(j−k)[|ũq(t)|2 − |ṽq(t)|2

+ ṽq (t)ũ∗
q(t) − ũq(t)ṽ∗

q (t)],

GA
j−k(t) = δj,k + 1

N

∑
q

eiq(j−k)[ṽq(t)ũ∗
q(t) + ũq(t)ṽ∗

q (t)],

GB
j−k(t) = −δj,k + 1

N

∑
q

eiq(j−k)[ṽq(t)ũ∗
q(t) + ũq(t)ṽ∗

q (t)].

(A87)

Noticing that G∗
j−k(t) = Gj−k(t), so the contraction

〈BH
j (t)AH

k (t)〉 = −〈AH
k (t)BH

j (t)〉∗ = −G−(j−k).
Substituting Eq. (A84) into Eqs. (A87) and replacing j − k

with r , we can get the final contraction formulas:

Gr (t) = 1

N

∑
q

eiqr

[
a0a + b0b

(a − ib)ω0
+ icos4ωt

ab0 − a0b

(a − ib)ω0

]
,

GA
r (t) = δr,0 + 1

N

∑
q

eiqr

(−ab0 + a0b

ωω0

)
sin4ωt,

GB
r (t) = −δr,0 + 1

N

∑
q

eiqr

(−ab0 + a0b

ωω0

)
sin4ωt. (A88)

In the end, we discuss the formulas in two special cases.
(1) Static case. In this case λ0 = λ and the initial state

(eigenstate of the quench Hamiltonian) will stay unchanged.
So we have a0 = a = aq(λ) = 1 − λcosq, b0 = b = bq(λ) =
λsinq, and ω0 = ω = ωq(λ) =

√
1 − 2λcosq + λ2. It gives the

contraction formulas in static case directly:

Gr = 1

N

∑
q

eiqr

(
a − ib

ω

)

= 1

N

∑
q

eiqr

(
1 − λeiq√

1 − 2λcosq + λ2

)
,

GA
r = δr,0, GB

r = −δr,0. (A89)

The time-dependent terms vanish automatically during the
derivation in this condition.

(2) Quantum quench (N → ∞,t → ∞) case. Basically,
we consider that the initial state is the ground state of the toric
code model, which corresponds to λ0 = 0. In this case we have
a0 = 1, b0 = 0, and ω0 = 1. We are concerned with long-time
evolution in this paper, so the limit t → ∞ is reasonable.
Taking the thermodynamic limit 1

N

∑
q → ∫

dq/2π , the time-
dependent term vanishes caused by the fast oscillation of the
integrand. Thus, we can get

Gr (∞) = 1

2π

∫ π

−π

dqeiqr a

(a − ib)
. (A90)

Remembering that a = aq(λ) = 1 − λcosq and b = bq(λ) =
λsinq, so

Gr (∞) = 1

2π

∫ π

−π

dqe−iqr 2 − λ(eiq + e−iq)

2(1 − λe−iq)
. (A91)
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Changing the integral to a contour integral on the complex plane of z = eiq ,

Gr (∞) = 1

2πi

∮
dzz−r−1 −λz2 + 2z − λ

2(z − λ)
, (A92)

where the integral path is along the unit circle. Applying the residue theorem we can finally obtain the exact value of Gr (∞).
For λ < 1,

Gr (∞) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (r � 2),

−λ/2 (r = 1),

− 1
2λ2 + 1 (r = 0),

1
2λ−r (1 − λ2) (r � −1),

(A93)

and for λ > 1,

Gr (∞) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2λ−r (λ2 − 1) (r � 2),

− 1
2λ

(r = 1),
1
2 (r = 0),

0 (r � −1).

(A94)

We can also get GA
r (∞) = δr,0 and GB

r (∞) = −δr,0; thus, all types of contraction are known. The modulus square of the
expectation value |〈�(t)| · · ·As · · · Bt · · · |�(t)〉|2 can be directly calculated.
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