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all details in the proofs. They worked on regularity for p-Laplacian systems and wrote one of the first
apers on the ∞-Laplacian. Emmanuele set very high expectations and, at the same time, offered his
ontinuous support. He was very generous with his time. Bianca met him at several conferences and was
lways impressed by the clarity and accessibility of his talks. Diego and András never had the honor of
eeting Emmanuele, but learned and continue to learn a lot from his papers and books.
Riposa in pace, Emmanuele.

2. Introduction

Solutions to a large class of elliptic and parabolic equations can be characterized by asymptotic mean
value properties (see for example [4,11]). Consider the case of p-harmonic functions for 1 < p < ∞. A
smooth function with non-vanishing gradient satisfies at a point x ∈ Rn the p-harmonic equation

n∑
i,j=1

{
δij + (p− 2)

uxi
(x)uxj

(x)
|∇u(x)|2

}
uxixj

(x) = 0,

f and only if

u(x) = α

2

(
sup

Bε(x)
u+ inf

Bε(x)
u

)
+ β−

∫
Bε(x)

u(y) dy + o(ε2), (2.1)

where α = p−2
n+p and β = n+2

n+p . For general viscosity solutions the same characterization prevails provided
hat we interpret (2.1) in the viscosity sense.

The expansion (2.1) suggests the consideration of solutions uε to the Dynamic Programming Principle
DPP)

uε(x) = α

2

(
sup

Bε(x)
uε + inf

Bε(x)
uε

)
+ β−

∫
Bε(x)

uε(y) dy, (2.2)

where Ω ⊂ Rn is a bounded domain, the function uε :Ω → R and Bε(x) ⊂ Ω . Suppose that g : ∂Ω → R is
continuous. In order to consider (2.2) for all points x ∈ Ω and for all 0 < ε ≤ 1, consider the ε-boundary
trip

Γε = {x ∈ Rn \ Ω : dist(x,Ω) ≤ ε}.

e extend the function g continuously to a function G to this boundary strip and consider the problem{
uε(x) = α

2

(
supBε(x) uε + infBε(x) uε

)
+ β −

∫
Bε(x) uε(y) dy, x ∈ Ω ,

uε(x) = G(x), x ∈ Γε.
(2.3)

Since we are requiring that uε = G in Γε, the expression (2.2) is now well defined for x ∈ Ω . When the
omain Ω is Lipschitz, one can solve the Dirichlet problem (2.3) and obtain a family {uε}0<ε≤1 of functions
uch that uε → u uniformly in Ω , where u is the unique viscosity solution to the Dirichlet problem⎧⎪⎨⎪⎩∆N

p u =
n∑

i,j=1

{
δij + (p− 2)

uxi
uxj

|∇u|2

}
uxixj

= 0, in Ω

u = g, in ∂Ω .

(2.4)

e note that viscosity solutions of the problem (2.4) are also weak solutions, when the normalized p-
aplacian is replaced by the variational p-Laplacian, div

(
|∇u|p−2∇u

)
= 0, [8]. For a mean value property

hat applies directly to the variational p-Laplacian see [18].
The nonlinear mean value expression in the right-hand side of (2.2) is a tug-of-war with noise mean,

uggested by connections with probability developed in [16,17].
Let ΩE = Ω ∪ Γ1 and B(Ω), B(ΩE) be the class of bounded real measurable functions defined on Ω and
, respectively.
E

2
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Definition 2.1. We say that an operator A : B(ΩE) → B(Ω) is an average operator if it satisfies the
following properties:

• (Stability) inf{y∈ΩE} ϕ(y) ≤ A[ϕ](x) ≤ sup{y∈ΩE} ϕ(y),∀x ∈ Ω ;
• (Monotonicity)If ϕ ≤ ψ in ΩE then A[ϕ] ≤ A[ψ] in Ω ;
• (Affine invariance) A[λϕ+ ξ] = λA[ϕ] + ξ,∀λ > 0,∀ξ ∈ R.

efinition 2.2. We say that a family of averages {Aε}ε>0 satisfies the asymptotic mean value property
AMVP) for the p-Laplacian if for every ϕ ∈ C∞(ΩE) such that ∇ϕ ̸= 0, we have

Aε[ϕ](x) = ϕ(x) + c ε2 (∆N
p ϕ(x)

)
+ o(ε2)

or some constant c > 0 independent of ε and ϕ, and o(ε2) can be taken uniformly for all x ∈ Ω .

Associated to an average operator Aε, we have a dynamic programming principle (DPP) at scale ε given
y {

uε(x) = Aε[uε](x) in Ω ,
uε(x) = G(x) on Γ1.

(2.5)

ater in Section 3 we will discuss existence and uniqueness for the DPP (2.5) associated to the natural
-means in the Heisenberg group.

We will say that a function u ∈ B(ΩE) is a subsolution (resp. supersolution) of (2.5) in Ω with boundary
atum G, if u ≤ G (resp. u ≥ G) on Γ1 and u(x) ≤ Aε[u](x) (resp. u(x) ≥ Aε[u](x)) for x ∈ Ω .

Consider the following conditions on the family of averages {Aε}ε>0:

niform Stability:

For all ε > 0 there exists uε ∈ B(ΩE), a solution of (2.5) with a
bound on ∥uε∥L∞(ΩE) uniform in ε.

(US)

niform Boundedness:

For all ε > 0 there exists uε ∈ B(ΩE), a solution of (2.5), and
inf
Γ1
G ≤ uε(x) ≤ sup

Γ1
G for all x ∈ Ω . (UB)

omparison Principle:

Let u1
ε and u2

ε be a subsolution and a supersolution of (2.5)
with boundary data G1 and G2 respectively.
If G1 ≤ G2 on Γ1, then u1

ε ≤ u2
ε in ΩE .

(CP)

heorem 2.3 (Convergence Of General Mean Approximations in the Euclidean Case, 1 < p ≤ ∞, [19]). Let
⊂ Rn be a bounded domain and g ∈ C(∂Ω). Let the family of averages {Aε}ε>0 satisfy the AMVP with

respect to the p-Laplacian. Let also {uε}ε>0 be a sequence of solutions of the corresponding DPP (2.5), where
G is a continuous extension of g to Γ1. Then, we have that

uε → u uniformly in Ω as ε → 0,

• when the domain Ω is of class C2 and the family of averages {Aε}ε>0 satisfies (US), or
• when the domain Ω is Lipschitz and the family of averages {Aε}ε>0 satisfies the uniform boundedness
(UB) and the comparison principle (CP) properties,
3
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where u is the unique solution of the Dirichlet problem{
−∆pu = 0 in Ω
u = g on ∂Ω ,

(2.6)

The proof of this theorem for C2 domains is based on an extension of the method in [2], once we have
he strong uniqueness theorem for the p-Laplacian (Proposition 3.2 in [19]). The key observation is that the
onvergence of approximations that satisfy the asymptotic mean value property, the uniform boundedness
roperty (UB), and the comparison principle (CP) depends only on the strong uniqueness principle for the
imit operator, which is the p-Laplacian in this case.

To apply the Barles–Souganidis method in smooth domains of the Heisenberg group H, we need to
stablish the strong uniqueness principle for the normalized p-Laplacian in the Heisenberg group ∆N

H,p. In [13]
e were able to establish it only when the domain Ω = B, the Euclidean unit ball in R3. Thus, we concluded

he convergence of general mean approximations only in this case.
For more general domains in H an obstruction to the application of this method is the presence of

characteristic points. In the current paper, we pursue a different approach that does not rely on the strong
uniqueness principle. First, we use good properties of the fundamental solution of the p-Laplacian to establish
convergence in smooth ring domains with p-harmonic boundary data. Second, we set up a boundary iteration
suggested by the proof of sufficiency for the Wiener condition of boundary regularity. These steps are
independent of each other. We will establish them for the case of the natural p-means in the Heisenberg
group.

The notion of natural p-means in general topological measure spaces was introduced in [7]. Let X be a
compact topological measure space endowed with a positive Radon measure ν. Given a function u ∈ Lp(X)
and 1 < p ≤ ∞, there exists a unique real value µX

p (u) such that

∥u− µX
p (u)∥p = min

λ∈R
∥u− λ∥p . (2.7)

We will call µX
p (u) the natural p-mean of u in X. Note that the above definition extends to the case p = 1,

provided that u is assumed to be continuous on X. In this case µX
1 (u) is the median med(u) on X, which is

the unique solution λ of the equation

ν({y ∈ X :u(y) ≥ λ}) = ν({y ∈ X :u(y) ≤ λ}).

Existence, uniqueness, and several useful properties of the natural p-means were studied in [7], where the
AMVP for the natural p-means is established in the Euclidean case.

While for general p there is no explicit formula for µX
p (u), for the cases p = 1, 2, and p = ∞ we have:

µX
1 (u) = med(u),
µX

2 (u) = −
∫

X
u(y)dν, and

µX
∞(u) = 1

2 (ess infy∈X u(y) + ess supy∈X u(y)).

onsider the family of natural p-mean operators {µp(u, ε)}0<ε<1 defined on functions u ∈ B(ΩE) as follows.
or x ∈ Ω ⊂ Rn and Bε(x) the Euclidean ball of radius ε centered at x, we set

µp(u, ε)(x) = µBε(x)
p (u). (2.8)

bserve that for any u ∈ Lp(ΩE) the function x ↦→ µp(u, ε)(x) is continuous in Ω . This property is not
hared by the tug-of-war means of type (2.2).

We can now rephrase Theorem 3.2 in [7]:

4
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Theorem 2.4. The family of natural p-mean operators {µp(·, ε)}0<ε<1 satisfies the asymptotic mean value
roperty relative to the p-Laplacian; that is, for every ϕ ∈ C∞(ΩE) such that ∇ϕ ̸= 0, we have

µp(ϕ, ε)(x) = ϕ(x) + ε2

2(n+ p)∆
N
p ϕ(x) + o(ε2), as ε → 0, (2.9)

where o(ε2) can be taken uniformly for all x ∈ Ω .

Here ∆N
p is the operator defined in (2.4).

The uniform stability (US) property, the uniform boundedness (UB) property, and the comparison
rinciple (CP) of the natural p-means in the Euclidean space were established in [13]. Thus, Theorems 2.3
nd 2.4 can be combined to get the following theorem.

heorem 2.5 (Convergence Of Natural p-Mean Approximations in the Euclidean Case, [13]). Assume
p ∈ (1,∞], Ω ⊂ Rn is a bounded Lipschitz domain and g ∈ C(∂Ω). For 0 < ε ≤ 1 and Aε = µp(·, ε),
let uε be the solution to the DPP (2.5), where G is a continuous extension of g to Γ1. Then, we have

uε → u uniformly in Ω as ε → 0,

here u is the unique solution of the Dirichlet problem (2.6).

In a recent paper, Chandra, Ishiwata, Magnanini, and Wadade [6] have also proved the convergence of
he natural p-means in the Euclidean case. Their approach and our approach differ in the treatment at the
oundary, but the main results are essentially the same in the case of Rn.

Recall that for the first Heisenberg group, H = (R3, ∗), the group operation is given as

(x1, x2, x3) ∗ (y1, y2, y3) =
(
x1 + y1, x2 + y2, x3 + y3 + 1

2(x1y2 − x2y1)
)
.

he vector fields
X1 = ∂x1 − x2

2 ∂x3 , X2 = ∂x2 + x1

2 ∂x3 and T = ∂x3

form a basis of the associated Lie algebra. We denote the horizontal gradient of a smooth function u by
∇Hu = (X1u)X1 + (X2u)X2, the horizontal Laplacian by

∆Hu = X2
1u+X2

2u,

the horizontal p-Laplacian by

∆H,pu = X1(|∇Hu|p−2
X1u) +X2(|∇Hu|p−2

X2u),

nd the normalized horizontal ∞-Laplacian by

∆H,∞u = ⟨D2,∗
H u

∇Hu

|∇Hu|
,

∇Hu

|∇Hu|
⟩,

where D2,∗
H u denotes the symmetrized Hessian (D2,∗

H u)ij = (XiXj +XjXi)/2. For a smooth function u, with
on-vanishing horizontal gradient, we define the normalized p-Laplacian as

∆N
H,pu = |∇Hu|2−p

∆H,pu = (p− 2)∆H,∞u+ ∆Hu .

he Korányi smooth gauge, given by ( 2 2 2 2) 1
4 ,
|x|H = |(x1, x2, x3)|H = (x1 + x2) + 16x3

5
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induces the left-invariant metric
dH(x, y) = |x−1 ∗ y|H.

The Korányi ball with center x0 and radius r will be denoted by

BH
r (x0) = {x ∈ H | dH(x0, x) < r}.

he Heisenberg group H is unimodular and its Haar measure is the Lebesgue measure in R3. We also have
family of anisotropic dilations (ρλ)λ>0, that are group isomorphisms

ρλ(x) = ρλ(x1, x2, x3) = (λx1, λx2, λ
2x3). (2.10)

The homogeneous dimension of H is Q = 4.
The natural p-means in the Heisenberg group H were studied in [13]. Suppose that Ω ⊂ H is a bounded

domain. Fix 0 ≤ ε < 1 and consider the ε-boundary strip given by

ΓH
ε = {x ∈ H \ Ω : distH(x,Ω) ≤ ε}.

Define ΩE = Ω ∪ ΓH
1 and denote by B(ΩE) and B(Ω) the set of real-valued bounded Lebesgue measurable

unctions on ΩE and Ω , respectively. We define the natural p-mean average operator in the Heisenberg group,

µH
p ( · , ε) : B(ΩE) −→ B(Ω),

iven by
µH

p (ϕ, ε)(y) = µBH
ε (y)

p (ϕ) for all ϕ ∈ B(ΩE) and y ∈ Ω ,

where µBH
ε (y)

p (ϕ) is defined as in (2.7), using as Radon measure ν the Lebesgue measure on X = BH
ε (y).

Let us now describe the DPP associated to the natural p-means in H. Let G : ΓH
ε → R be a continuous

unction and consider the solutions (in the point-wise sense) of the following boundary value problem{
uε(x) = µH

p (uε, ε)(x) if x ∈ Ω ,
uε(x) = G(x) if x ∈ ΓH

ε .
(2.11)

The stability and monotonicity of the natural p-means in H was established in [13], as well as the following
AMVP with respect to the p-Laplacian

Lemma 2.6 ([13]). For 1 < p < ∞ define the constant

cp = 2
(p+ 2)(p+ 4)

(Γ ( p
4 + 3

2 )
Γ ( p

4 + 1)

)2
,

where Γ is the Euler Gamma function. Let u be a smooth function in ΩE with ∇Hu ̸= 0 in ΩE. Then, we
have the expansion

µH
p (u, ε)(x0) = u(x0) + cp ε

2∆N
H,pu(x0) + o(ε2) as ε → 0

for all x0 ∈ Ω .

When p = ∞, the lemma also holds with c∞ = limp→∞ cp = 1/2. We remark that this lemma has been
obtained independently and in the case of general Carnot groups in [1].

To show convergence, we first study the case when the boundary data is itself the restriction of a
p-harmonic function with non-vanishing gradient. For tug-of-war means

T (u, ε)(x) = α

2

(
sup uε + inf

B (x)
uε

)
+ β−

∫
uε(y) dy ,
Bε(x) ε Bε(x)

6
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this was first done using probability in [12] in Rn. The proofs of our results in this paper are analytic and
do not rely on probabilistic techniques.

To go from continuous to semi-discrete, we build sub - and super-solutions of the DPP (2.11) from
solutions to the continuous problem by using the following perturbation lemma.

Lemma 2.7 (Perturbations For Natural p-Means, p ≥ 2). Let Ω ′ be an open set containing Ω , and let U be
function such that ∆N

H,pU = 0 and ∇HU ̸= 0 in Ω ′. Then, there exist ε̂ > 0, s ≥ 4 and q0 ∈ H such that,
enoting v(x) = |q−1

0 ∗ x|sH , we have

U + εv is a subsolution of (2.11)

nd
U − εv is a supersolution of (2.11)

n Ωε for all 0 < ε < ε̂.

For tug-of-war means the Perturbation Lemma above is valid for 1 < p < ∞, and it is due to Lewicka [9,14]
in Rn and to [10] in H. The key to proving this lemma in H is a strengthening of the expansion in ε of
µH

p (u, ε)(x0) that we are able to prove for p ≥ 2

Proposition 2.8. Let p ≥ 2 and u be a smooth function in ΩE with ∇Hu ̸= 0 in ΩE. Then, there exist
C > 0 and ε̂ > 0 such that

|µH
p (u, ε)(x0) − u(x0) − cp ε

2∆N
H,pu(x0)| ≤ Cε3

for all 0 < ε < ε̂ and x0 ∈ Ω . In particular, the constants C and ε̂ are uniform in x0 ∈ Ω and depend only
n p and the derivatives of u.

Note that we have replaced o(ε2) by O(ε3) when p ≥ 2. We remark that the new argument in the proof
f this Proposition can also be used to give an alternative proof of the second order expansion in Lemma 2.6
n the case 1 < p < 2, different than those in [1,7].

From Proposition 2.8 the convergence when the boundary data is itself the restriction of a p-harmonic
unction with non-vanishing gradient follows.

roposition 2.9. Let Ω ′ be an open set containing Ω . Let U be a function such that ∆N
H,pU = 0 and

∇HU ̸= 0 in Ω ′ and let uε be the solution of (2.11) with boundary datum U , for ε > 0 sufficiently small. Then

uε −→ U uniformly in Ω

This proposition gives convergence in arbitrary domains Ω in the special case when the boundary values
re the restriction of a p-harmonic function with non vanishing gradient in a slightly larger domain. To study
he convergence of solutions to the DPP (2.5) when ϵ → 0 with arbitrary continuous boundary values, we
efine the following boundary regularity condition.

efinition 2.10. We say that a domain Ω ⊂ H satisfies the exterior H-corkscrew condition if there exists
δ̄ > 0 and µ ∈ (0, 1) such that for every δ ∈ (0, δ̄) and y ∈ ∂Ω there exists a ball BH

µδ(z) strictly contained
in BH(y) \ Ω .
δ

7
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It is known that domains with C1,1 boundary in the Euclidean sense satisfy the exterior H-corkscrew
ondition (see [5], Theorem 14 for domains in the Heisenberg group and [15], Theorem 1.3 for the more
eneral case of domains in step 2 Carnot groups). This regularity is optimal in the sense that for every
∈ [0, 1) there exist domains with C1,α boundary in the Euclidean sense that do not satisfy the condition

in Definition 2.10 (see Example 8.2 in [10]).
For domains satisfying the exterior H-corkscrew condition we first prove the following boundary estimate.

heorem 2.11. Let Ω be an open, bounded subset of H satisfying the exterior H-corkscrew condition in
efinition 2.10 and G ∈ C(ΓH

1 ). For 2 ≤ p < ∞ let uε be the solution of (2.11) in Ω with boundary value G
n ΓH

ε , for 0 < ε < 1. Given η > 0 there exist δ0 = δ0(η, µ, p) and ε0 = ε0(η, δ, µ) such that

|uε(x) −G(y)| ≤ η,

or all y ∈ ∂Ω , x ∈ BH
δ0

(y) ∩ Ω and ε ≤ ε0.

Once we have Theorem 2.11, we are ready to state our main result.

heorem 2.12 (For The Range 2 ≤ p < ∞). Let Ω be an open bounded subset of H satisfying the exterior
-corkscrew condition and let ΓH

ε be its outer ε-boundary, for 0 < ε < 1. Let g ∈ C(∂Ω), G ∈ C(ΓH
1 )

e a continuous extension of g and uε be the solution of the DPP (2.11) with boundary datum G. Then uε

onverges to u uniformly on Ω as ε → 0, where u is the solution to the Dirichlet problem{
−∆N

H,pu = 0 in Ω

u = g on ∂Ω .

The plan of the paper is as follows. In Section 3 we present various properties of the natural p-means in
. The proofs of Lemma 2.6 and of Proposition 2.8 are in Section 4, while the proofs of the perturbation
emma 2.7 and Proposition 2.9 are in Section 5. The proof of the key boundary continuity estimate
heorem 2.11 is in Section 6, which is the most technical section of the paper, and the proof of the main

esult is in Section 7.
The major technical difference between the results in [13], this article, and [6] is that in the latter the

PP is modified at points close to ∂Ω . As a consequence the solution of the DPP exists and is continuous
rovided that Ω satisfies a regularity condition implied by the exterior sphere property. Thus, we both prove
onvergence of slightly different approximations to p-harmonic functions. In our case, we get existence of
ossibly discontinuous solutions of the DPP for a general bounded domain Ω , but need boundary regularity
o prove convergence.

Finally, we note that the validity of Proposition 2.8 for 1 < p < 2 would imply that Theorem 2.12 also
olds for 1 < p < 2. However, our current proof of Proposition 2.8 requires p ≥ 2.

. Natural p-means in H

We now collect several results on the natural p-means in H that we will need later. For all u, v ∈ B(ΩE),
< ε ≤ 1 and y ∈ Ω , the following properties hold:

• Continuity in the Lp-norm (Theorem 2.4 in [7]):⏐⏐⏐∥u− µH
p (u, ε)(y)∥Lp(BH

ε (y)) − ∥v − µH
p (v, ε)(y)∥Lp(BH

ε (y))

⏐⏐⏐ ≤ ∥u− v∥Lp(BH
ε (y)).

H Ω .
In particular, the function y ↦→ µp (u, ε)(y) is continuous in
8
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• Monotonicity (Theorem 2.5 in [7]):

if u ≤ v a.e. on BH
ε (y), then µH

p (u, ε)(y) ≤ µH
p (v, ε)(y).

• Affine invariance (Proposition 2.7 in [7]): for c, α ∈ R it holds

µH
p (αu+ c, ε)(y) = αµH

p (u, ε)(y) + c.

• Rescaling (Corollary 2.3 in [7]): Let x ∈ Ω . Defining uε,x(z) = u(x+ εz) for z ∈ BH
1 (0), we have

µp(u, ε)(x) = µp(uε,x, 1)(0).

• Integral characterization (Theorem 2.1 in [7]): For 1 < p < ∞, µH
p (u, ε)(y) is the unique solution of∫

BH
ε (y)

⏐⏐u(z) − µH
p (u, ε)(y)

⏐⏐p−2 (
u(z) − µH

p (u, ε)(y)
)

dz = 0,

with the convention that 0p−20 = 0 if 1 < p < 2.

All the properties above extend to the case p = 1 if we assume that u and v are continuous on ΩE .
Existence and uniqueness of the solution of the DPP (2.11) can be proved as in the Euclidean case.

Solutions are automatically continuous in the interior (see Lemma 5.6 and Theorem 3.4 in [13]):

Lemma 3.1. Let 1 < p ≤ ∞. There exists a unique uε ∈ B(Ωε) that satisfies (2.11). Moreover, we have that
uε ∈ C(Ω).

Note, however, that uε might not be continuous on Ω .
Next, we provide a version of the comparison principle which will be needed later. This is a slight

odification of Theorem 4.3 in [13].

emma 3.2. Let uε ∈ B(Ωε) be a subsolution of (2.11) in Ω with boundary datum F , and vε ∈ B(Ωε) be a
upersolution of (2.11) in Ω with boundary datum G. Then

uε ≤ vε + sup
ΓH

ε

(F −G) on Ωε.

roof. Let ϕε = uε − vε be defined on Ωε. Note that ϕε ≤ F −G on ΓH
ε and therefore supΓH

ε
ϕε ≤ supΓH

ε

F −G). Assume by contradiction that

Mε := sup
Ω
ϕε > sup

ΓH
ε

(F −G).

ote that this implies supΩε
ϕε = supΩ ϕε = Mε. By definition of Mε, there exists a sequence xn ∈ Ω such

hat ϕε(xn) converges to Mε. We can assume that, up to a subsequence, xn converges to some x0 ∈ Ω .
assing to the limit in the inequality

ϕε(xn) ≤ µH
p (uε, ε)(xn) − µH

p (vε, ε)(xn) ,

e obtain
Mε ≤ µH

p (uε, ε)(x0) − µH
p (vε, ε)(x0),

ecause the function x → µH
p (f, ε)(x) is continuous in Ω for f ∈ Lp(Ωε). Therefore,

µH
p (uε, ε)(x0) ≥ µH

p (vε, ε)(x0) +Mε

H (3.1)

= µp (vε +Mε, ε)(x0).

9
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Using the notation h(u, λ) = |u− λ|p−2(u− λ), we have that h is increasing in u for fixed λ, and decreasing
in λ for fixed u. Therefore, in Ωε, we have

h
(
uε, µ

H
p (uε, ε)(x0)

)
≤ h

(
uε, µ

H
p (vε +Mε, ε)(x0)

)
≤ h

(
vε +Mε, µ

H
p (vε +Mε, ε)(x0)

)
,

because uε − vε ≤ Mε on Ωε. We can rewrite the previous inequality as

h
(
uε, µ

H
p (uε, ε)(x0)

)
− h

(
vε +Mε, µ

H
p (vε +Mε, ε)(x0)

)
≤ 0

in Ωε. The integral characterization of the natural p-means implies that∫
BH

ε (x0)
h
(
uε, µ

H
p (uε, ε)(x0)

)
− h

(
vε +Mε, µ

H
p (vε +Mε, ε)(x0)

)
= 0,

and therefore

h
(
uε, µ

H
p (uε, ε)(x0)

)
− h

(
vε +Mε, µ

H
p (vε +Mε, ε)(x0)

)
= 0 a.e. in BH

ε (x0).

Since s → |s|p−2
s is injective, we obtain

uε − µH
p (uε, ε)(x0) = vε +Mε − µH

p (vε +Mε, ε)(x0) = 0 a.e. in BH
ε (x0),

which rewrites as

uε − vε = Mε + µH
p (uε, ε)(x0) − µH

p (vε +Mε, ε)(x0).

Recalling (3.1), we get uε − vε ≥ Mε = supΩε
(uε − vε) a.e. in BH

ε (x0), hence

uε − vε = Mε a.e. in BH
ε (x0).

The previous argument shows that if x ∈ Ω̄ is such that ϕε(x) = Mε, then ϕε = Mε a.e. in BH
ε (x). Since

Ω is bounded and connected, it is possible to find a finite chain of balls {BH
ε (xi)}N

i=0 starting from x0, such
that xi+1 is a point in BH

ε (xi) with ϕε(xi+1) = Mε for all i = 0, . . . , N − 1 and BH
ε (xN ) ∩ ΓH

ε ̸= ∅. This
means that ϕε = Mε = supΩ ϕε a.e. on BH

ε (xN ) ∩ ΓH
ε , contradicting ϕε ≤ F −G on ΓH

ε . □

4. Taylor expansions

The goal of this section is to prove Proposition 2.8. The case p = 2 follows directly from the Taylor
expansion of u around x0, so that we focus on the case p > 2.

First, we include details of the proof of Lemma 2.6 in the relevant case for our analysis p > 2, because
similar arguments will be used later to prove the stronger version Proposition 2.8. We pay particular
attention to the dependence of the estimate on x0 ∈ Ω .

roof. Let p > 2 and denote h(s) = |s|p−2
s. Let x0 ∈ Ω and 0 < ε < 1. Define uε,x0(z) = u(x0 ∗ ρε(z)) for

ll z = (z1, z2, z3) = (zh, z3) ∈ B, where B = BH
1 (0) denotes the Korányi ball centered at the origin with

adius 1. The Heisenberg Taylor expansion gives

uε,x0(z) = u(x0) + ε⟨∇Hu(x0), zh⟩ + ε2Tu(x0)z3 + 1
2ε

2⟨D2
Hu(x0)zh, zh⟩ +O(ε3),

here the constant in O(ε3) is uniform in x0 ∈ Ω and depends on the L∞(Ω) norm of the second and third
erivatives of u. Therefore, by the affine invariance and monotonicity of the natural means, it is enough to
how the expansion for the quadratic function

qε,x (z) = u(x0) + ε⟨∇Hu(x0), zh⟩ + ε2Tu(x0)z3 + 1
ε2⟨D2u(x0)zh, zh⟩.
0 2 H

10



A. Domokos, J.J. Manfredi, D. Ricciotti et al. Nonlinear Analysis 223 (2022) 113058

a
c

w

w

B

w

a

M

w

f
o

T

1. First order term. Let

vε,x0(z) = qε,x0(z) − qε,x0(0)
ε

= ⟨∇Hu(x0), zh⟩ + εTu(x0)z3 + 1
2ε⟨D

2
Hu(x0)zh, zh⟩ ,

nd note that vε,x0 converges uniformly on B to the function vx0(z) = ⟨∇Hu(x0), zh⟩ as ε → 0. As a
onsequence,

µH
p (qε,x0 , 1)(0) − qε,x0(0)

ε
= µH

p (vε,x0 , 1)(0) −→ µH
p (vx0 , 1)(0) = 0,

here the last equality is due to∫
B

h(vx0(z)) dz =
∫

B

|⟨∇Hu(x0), zh⟩|p−2⟨∇Hu(x0), zh⟩ dz = 0,

hich holds by symmetry of the integrand on B.
2. Second order term. Let

δε(x0) =
µH

p (qε,x0 , 1)(0) − qε,x0(0)
ε2 =

µH
p (vε,x0 , 1)(0)

ε
.

y the integral characterization of the natural means we have

0 =
∫

B

h(vε,x0(z) − µH
p (vε,x0 , 1)) dz

=
∫

B

h

(
⟨∇Hu(x0), zh⟩ + εTu(x0)z3 + 1

2ε⟨D
2
Hu(x0)zh, zh⟩ − εδε(x0)

)
dz

=
∫

B

h(vx0(z)) dz + ε

∫
B

(∫ 1

0
h′(F (z, x0, ε, t)) dt

)
ψ(z, x0, ε) dz,

(4.1)

here we used a first order Taylor expansion and denoted

ψ(z, x0, ε) = Tu(x0)z3 + 1
2 ⟨D2

Hu(x0)zh, zh⟩ − δε(x0) (4.2)

nd
F (z, x0, ε, t) = ⟨∇Hu(x0), zh⟩ + tεψ(z, x0, ε).

anipulating (4.1), we can explicitly compute

δε(x0) =

∫
B

∫ 1

0
h′(F (z, x0, ε, t)) dt

(
Tu(x0)z3 + 1

2 ⟨D2
Hu(x0)zh, zh⟩

)
dz∫

B

∫ 1

0
h′(F (z, x0, ε, t)) dtdz

,

hich implies the uniform bound

|δε(x0)| ≤ ∥Tu∥L∞(Ω) +
D2

Hu


L∞(Ω)

or all 0 < ε < 1 and x0 ∈ Ω . Since p > 2, by the dominated convergence theorem, up to a subsequence, we
btain that

δε(x0) −→

∫
B

(
Tu(x0)z3 + 1

2 ⟨D2
Hu(x0)zh, zh⟩

)
h′(⟨∇Hu(x0), zh⟩) dz∫

B

h′(⟨∇Hu(x0), zh⟩) dz
=: δ0(x0).

his integral can be explicitly computed [1,7] to obtain

δ (x ) = c ∆N u(x ). □
0 0 p H,p 0

11
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We show now the proof of Proposition 2.8.

Proof. Using the notation in the proof of Lemma 2.6, it is enough to show that the quantity

δε(x0) − δ0(x0)
ε

is uniformly bounded in 0 < ε < 1 and x0 ∈ Ω .
To this end, in (4.1) use a second order Taylor expansion to get

0 =
∫

B

h′(⟨∇Hu(x0), zh⟩)ψ(z, x0, ε) dz

+ ε

∫
B

(∫ 1

0
h′′(F (z, x0, ε, t)) dt

)
ψ2(z, x0, ε) dz.

herefore,

δε(x0) − δ0(x0)
ε

=

∫
B

(∫ 1

0
h′′(F (z, x0, ε, t)) dt

)
ψ2(z, x0, ε) dz∫

B

h′(⟨∇Hu(x0), zh⟩) dz
.

First, we establish a lower bound on the denominator. Let Rx0 be a rotation in the horizontal plane
uch that Rτ

x0∇Hu(x0) = |∇Hu(x0)|(1, 0) = (|∇Hu(x0)|, 0). Observe that B is invariant under the change of
ariables z = Rx0y, so ∫

B

h′(⟨∇Hu(x0), zh⟩) dz = (p− 1)
∫

B

|⟨∇Hu(x0), zh⟩|p−2 dz

= (p− 1)|∇Hu(x0)|p−2
∫

B

|y1|p−2 dy

≥ cp min
Ω

|∇Hu|p−2
,

because 0 <
∫

B
|y1|p−2 dy < ∞ for p > 2.

Now we establish an upper bound on the numerator. Note that

ψ2(z, x0, ε) ≤ 4
(

∥Tu∥L∞(Ω) +
D2

Hu


L∞(Ω)

)2

for all 0 < ε < 1, z ∈ B, and x0 ∈ Ω . Since h′′(s) = (p − 1)(p − 2)|s|p−4
s, it is enough to estimate the

integral ∫
B

∫ 1

0
|⟨∇Hu(x0), zh⟩ + tεψ(z, x0, ε)|p−3 dtdz.

After performing the change of variables z = Rx0y, where Rx0 is the same rotation as above, the integral
becomes ∫

B

∫ 1

0

⏐⏐⏐y1|∇Hu(x0)| + tεψ(Rx0y, x0, ε)
⏐⏐⏐p−3

dtdy

= |∇Hu(x0)|p−3
∫

B

∫ 1

0
|y1 + tεΨ(y, x0, ε)|p−3 dtdy,

where we denoted

Ψ(y, x0, ε) = |∇Hu(x0)|−1
ψ(Rx0y, x0, ε)

= |∇Hu(x0)|−1
(
Tu(x0)y3 + 1 ⟨Rτ

x0D
2
Hu(x0)Rx0yh, yh⟩ − δε(x0)

)
.
2

12
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Observe that

|Ψ(y, x0, ε)| ≤
2 ∥Tu∥L∞(Ω) +

D2
Hu


L∞(Ω)

minΩ |∇Hu|
= cΨ

or all y ∈ B, 0 < ε < 1 and x0 ∈ Ω .
For fixed ε, t ∈ [0, 1] and x0 ∈ Ω , consider the change of variables ζ = Φε,t,x0(y) = Φε(y), given by{

ζ1 = y1 + εtΨ(y, x0, ε)
ζi = yi i = 2, 3

for y ∈ B.
We claim that there exists ε̂ > 0 such that for all 0 < ε < ε̂ the map Φε : B −→ Φε(B) is a diffeomorphism

ith minB JΦε ≥ 1
2 . More exactly, ε̂ can be taken to be

ε̂ = 1
2

(
∥Tu∥L∞(Ω) +

D2
Hu


L∞(Ω)

minΩ |∇Hu|
+ 1
)−1

,

o it is independent of x0 ∈ Ω . Indeed, the Euclidean Jacobian of the transformation is

JΦε(y) = I3×3 + εt

⎛⎝∇yΨ(y, x0, ε)
0
0

⎞⎠ ,

hich implies

|JΦε(y)| = |1 + εt∂y1Ψ(y, x0, ε)| ≥ 1
2

or all y ∈ B, 0 < ε < ε̂ and x0 ∈ Ω , because

∥∂y1Ψ(·, x0, ε)∥L∞(Ω) ≤
∥Tu∥L∞(Ω) +

D2
Hu


L∞(Ω)

minΩ |∇Hu|
.

oreover, for all 0 < ε < ε̂ and η, ξ ∈ B we have

|Φε(ξ) − Φε(η)| ≥ |ξ − η| − εt|Ψ(ξ, x0, ε) − Ψ(η, x0, ε)| ≥ 1
2 |ξ − η|,

ecause |Ψ(ξ, x0, ε) − Ψ(η, x0, ε)| ≤ ∥∇yΨ(·, x0, ε)∥L∞(Ω) |ξ − η|. This concludes the proof of the claim.
Now, for y ∈ B, ζ ∈ Φε(B) we have |ζ2| = |y2| ≤ 1, |ζ3| = |y3| ≤ 1 and |ζ1| = |y1 + εtΨ(y, x0, ε)| ≤

|y1| + cΨε ≤ 1 + cΨε, therefore∫
B

|y1 + εtΨ(y, x0, ε)|p−3 dy =
∫
Φε(B)

|ζ1|p−3|JΦε(Φ−1
ε (ζ))|−1 dζ

≤ 2
∫
Φε(B)

|ζ1|p−3
,dζ

≤ 2
∫

{|ζ1|≤1+cΨ ε}
|ζ1|p−3 dζ1

= 4(1 + cBε)p−2,
ince p > 2. □

13
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5. Convergence in the case of p-harmonic data

In this section we prove Lemma 2.7 and Proposition 2.9.
In Lemma 2.7 we show that we can obtain supersolutions and subsolutions of the DPP (2.11) by small

erturbations of p-harmonic functions with non-vanishing horizontal gradient. This will be used as a first
tep towards proving convergence of the approximation scheme to the appropriate solution of the Dirichlet
roblem for the p-Laplace equation, in the case its boundary datum is p-harmonic.

First we show the proof of Lemma 2.7.

roof. Up to a left translation, we can assume that Ω does not intersect the cylinder

{(x1, x2, x3) ∈ H | x2
1 + x2

2 < 1},

o we can choose q0 = 0 and v(x) = |x|sH. From the calculations in the proof of Theorem 12.1 in [10] there
xist s ≥ 4 and ε̂ such that

∆N
H,p(U + εv) ≥ sε in Ω

or all 0 < ε < ε̂. From the expansion in Proposition 2.8, there exists C > 0 such that

(U + εv)(x) ≤ µH
p (U + εv, ε)(x) − cpε

2∆N
H,p(U + εv)(x) + Cε3

≤ µH
p (U + εv, ε)(x) − ε3(cps− C)

≤ µH
p (U + εv, ε)(x)

for all x ∈ Ω and 0 < ε < ε̂, provided we choose s > C/cp and further restrict ε̂.
Analogous computations give ∆N

H,p(U − εv) ≤ −sε in Ω , which, again by Proposition 2.8, implies
U + εv)(x) ≤ µH

p (U + εv, ε)(x) for all x ∈ Ω and an appropriate choice of s. □

Next comes the proof of Proposition 2.9.

roof. By Lemma 2.7, there exist ε̂ > 0, s ≥ 4 and q0 ∈ H such that, denoting v(x) = |q−1
0 ∗ x|sH we have

hat U+εv is a subsolution and U−εv is a supersolution of (2.11) in Ωε for all 0 < ε < ε̂. By the comparison
principle in Lemma 3.2 we get

U + εv ≤ uε + ε sup
ΓH

ε

(v)

and
uε ≤ U − εv + ε sup

ΓH
ε

(v)

on Ωε, for all 0 < ε < ε̂. Therefore,

|uε − U | ≤ −εv + ε sup
ΓH

ε

(v) ≤ 2ε sup
Ω1

v

on Ω , so
∥uε − U∥L∞(Ω) ≤ CΩε,

where C = 2 sup v. This uniform bound concludes the proof. □
Ω Ω1

14
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6. Boundary estimate

In this section we prove Theorem 2.11.

Proof. Fix η > 0. We prove the upper bound uε(x) ≤ G(y)+η, the proof of the lower one being analogous.
y uniform continuity, there exists δ ∈ (0, δ̄) such that

G(x) ≤ G(y) + η

2 for all y ∈ ∂Ω , x ∈ BH
5δ(y) ∩ ΓH

ε and 0 < ε < 1. (6.1)

Introducing the notations

Nε(y) = Nε,δ(y) := sup
BH

5δ
(y)∩ΓH

ε

G and Mε := sup
ΓH

ε

G, (6.2)

nequality (6.1) rewrites as

Nε(y) ≤ G(y) + η

2 for all y ∈ ∂Ω and 0 < ε < 1. (6.3)

Set ξ = 4−p
p−1 and

θ =
1 − 1

2

(
µ

2−µ

)ξ

− 1
2
(

µ
2
)ξ

1 −
(

µ
2
)ξ

∈ (0, 1). (6.4)

Note that θ depends only on µ and p. For k ≥ 0 define

δk = δ

4k−1 (6.5)

nd
Mε

k(y) = Nε(y) + θk(Mε −Nε(y)). (6.6)

We have the following

Claim Let εk > 0 and suppose that for all ε ∈ (0, εk) we have

uε ≤ Mε
k(y) in BH

δk
(y) ∩ Ω .

Then, there exists εk+1 = εk+1(η, µ, δ, p) ∈ (0, εk) such that

uε ≤ Mε
k+1(y) in BH

δk+1
(y) ∩ Ω

for all ε ∈ (0, εk+1).
Using the claim above, since uε ≤ Mε = Mε

0 in Ωε for all ε ∈ (0, 1), we can find ε1 > 0 such that
uε ≤ Mε

1 (y) in BH
δ1

(y) ∩ Ω for ε ≤ ε1. We now repeat this process, and after k0 iterations we find εk0 > 0
such that uε ≤ Mε

k0
(y) in BH

δk0
(y) ∩ Ω for ε ∈ (0, εk0). Choosing k0 ∈ N such that

k0 > logθ

⎛⎜⎝η2
⎛⎝sup

ΓH
1

G− inf
ΓH

1

G+ 1

⎞⎠−1
⎞⎟⎠

e have
Mε

k0(y) −Nε(y) = θk0(Mε −Nε(y)) ≤ η

2 , (6.7)

for all y ∈ ∂Ω , because Mε ≤ supΓH
ε
G and Nε(y) ≥ infΓH

ε
G. Combining with (6.3) we get

uε ≤ G(y) + η in BH
δk0

(y) ∩ Ω ,

for all ε ∈ (0, ε ).
k0

15
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To conclude, we now provide a sketch of the proof of the claim. The key properties of having radial
fundamental solutions in annular domains for ∆N

H,p with non-vanishing horizontal gradient, together with
he comparison principle for solutions of (2.11), the uniform convergence in Proposition 2.9 and the fact that
genuine triangle inequality holds for the Korányi norm, allow us to adapt the proof of Lemma 4.4 of [19]

o the current setting with minor modifications.

roof of claim:

. Since Ω satisfies the exterior H-corkscrew condition, there exists a sequence of balls BH
µδk+1

(zk) strictly
ontained in BH

δk+1
(y) \ Ω for all k ∈ N. To simplify the notation, let N = Nε(y) and Mk = Mε

k(y). The
following boundary value problem⎧⎪⎨⎪⎩

−∆N
H,pUk = 0 in BH

δk
(zk) \BH

µδk+1
(zk)

Uk = N on ∂BH
µδk+1

(zk)
Uk = Mk on ∂BH

δk
(zk)

has the radial solution

Uk(x) =

⎧⎪⎨⎪⎩
ak

|z−1
k ∗ x|ξH

+ bk if p ̸= 4

ak log(|z−1
k ∗ x|H) + bk if p = 4

,

or suitable coefficients ak and bk. Denote by Ω̃ the annulus BH
δk

(zk)\BH
µδk+1

(zk). Choosing εk+1 sufficiently
small, for 0 < ε < εk+1 we let Uε

k be the solution of the problem (2.11) in Ω̃ with boundary value Uk. Since
∇HUk ̸= 0 in Ω̃ε, Proposition 2.9 implies that Uε

k converges uniformly to Uk in Ω̃ .

. Consider now BH
δk/2(zk). Due to its radial nature, we have that Uk ≥ αMk + βN on BH

δk/2(zk), for
ppropriate coefficients satisfying α+ β = 1. By hypothesis, αuε + βN ≤ αMk + βN on the ε-boundary of
H
δk/2(zk) ∩Ω . Using the fact that Uε

k is uniformly close to Uk and the comparison principle for solutions of
2.11), given γ > 0 we get that

αuε + βN ≤ Uk + 2γ on BH
δk/2(zk) ∩ Ω , (6.8)

or ε ∈ (0, εk+1) sufficiently small.

. Now consider BH
δk+1

(y). Because a genuine triangle inequality holds for the Korányi gauge, we have
BH

δk+1
(y) ⊂ BH

δk/2(zk) (so (6.8) holds in this ball) and BH
δk+1

(y) ⊂ BH
(2−µ)δk+1

(zk). We have that Uk ≤
β′N + α′Mk on BH

(2−µ)δk+1
(zk) for suitable coefficients satisfying α′ + β′ = 1. Combining with (6.8), in

BH
δk+1

(y) ∩ Ω and for ε ∈ (0, εk+1) we have

uε ≤ β′ − β

α
N + α′

α
Mk + 2γ

α
= N + θ(Mk −N) = Mk+1,

ith an appropriate choice of γ. Keeping track of the coefficients, whose expressions can be explicitly
computed, we find that θ turns out to be as in (6.4). □

. The proof of Theorem 2.12

Recall the notion of viscosity solutions of the p-Laplace equation

N
− ∆H,pv = 0 in Ω . (7.1)
16
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Definition 7.1. Let Ω ⊂ H be open and bounded. A bounded upper semicontinuous function v : Ω −→ R
s a viscosity subsolution of (7.1) if for every x0 ∈ Ω and for every ϕ ∈ C2(Ω) such that v − ϕ has a strict
aximum at x0, v(x0) = ϕ(x0) and ∇Hϕ(x0) ̸= 0, it holds

−∆N
H,pϕ(x0) ≤ 0.

A bounded lower semicontinuous function v : Ω −→ R is a viscosity supersolution of (7.1) if for every
0 ∈ Ω and for every ϕ ∈ C2(Ω) such that v−ϕ has a strict minimum at x0, v(x0) = ϕ(p0) and ∇Hϕ(x0) ̸= 0,

t holds
−∆N

H,pϕ(x0) ≥ 0.

Finally, a viscosity solution of (7.1) is a function which is both a viscosity subsolution and a viscosity
upersolution of (7.1).

We now study the convergence of uε as ε goes to zero, where uε is the solution of (2.11) with boundary
alue G ∈ C(ΓH

1 ). For x ∈ Ω define

u(x) : = lim sup
ε→0+
q→x

uε(q),

u(x) : = lim inf
ε→0+
q→x

uε(q)
(7.2)

ote that u is upper semicontinuous and u is lower semicontinuous.

heorem 7.2. Let u and u be as in (7.2). Then u is a viscosity subsolution and u is a viscosity supersolution
f −∆N

H,pu = 0 in Ω .

Proof. We give a proof for u, the one for u being analogous. Take x0 ∈ Ω and a test function ϕ ∈ C2(Ω)
ith ∇Hϕ(x0) ̸= 0 that touches u at x0 from above, i.e. u(x0) = ϕ(x0) and ϕ − u has a strict minimum at
0. By definition of u there exist εn → 0+ and xn → x0 such that

uεn(xn) −→ u(x0). (7.3)

ix BH
r (x0) ⊂ Ω so that ∇Hϕ ̸= 0 on this set. By definition of infimum, for every n ∈ N there exists

xn ∈ BH
r (x0) such that

ϕ(xn) − uεn(xn) ≤ inf
BH

r (x0)
(ϕ− uεn) + ε3

n. (7.4)

By possibly passing to a subsequence, we can assume xn −→ x0 for some x0 ∈ BH
r (x0). We get

ϕ(x0) − u(x0) = lim inf
ε→0+
q→x0

(ϕ(q) − uε(q))

≤ lim inf
n→∞

(ϕ(xn) − uεn(xn))

≤ lim inf
n→∞

(
inf

BH
r (x0)

(ϕ− uεn) + ε3
n

)
≤ lim inf

n→∞

(
ϕ(xn) − uεn(xn) + ε3

n

)
= ϕ(x0) − u(x0),

here we used (7.3) and (7.4) respectively in the third and second lines. As a consequence x0 = x0, because
− u has a strict minimum at x0. Note that inequality (7.4) rewrites as

u (x) − u (x ) ≤ ϕ(x) − ϕ(x ) + ε3 for all x ∈ BH(x ).
εn εn n n n r 0

17
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For n large enough, we have εn < r/2 and xn ∈ BH
r/2(x0) so that BH

εn
(xn) ⊆ BH

r (x0). Therefore

µp(uεn , εn)(xn) − uεn(xn) ≤ µp(ϕ, εn)(xn) − ϕ(xn) + ε3
n

= cε2
n∆

N
H,pϕ(xn) + o(ε2

n),

where we used Lemma 2.6. We remark that the proof of this Lemma shows that the error in the above
expansion is uniform on the set where ϕ has nonvanishing horizontal gradient. Since ∇Hϕ ̸= 0 on BH

r (x0),
such error is independent of xn. By definition of uεn we get

0 ≤ ∆N
H,pϕ(xn) + o(1),

hich, after taking the limit as n → ∞, concludes the proof for u. □

We finalize now the proof of Theorem 2.12.

Proof. By Theorem 2.11, for y ∈ ∂Ω we have

lim sup
Ω∋x→y

u(x) ≤ G(y) ≤ lim inf
Ω∋x→y

u(x).

sing the comparison principle for viscosity solutions of the p-Laplace equation in H (see [3]), we get u ≤ u

in Ω . Since trivially u ≥ u, we have that u = u := u is a viscosity solution of −∆N
H,pu = 0 in Ω . Moreover, u

ttains the appropriate boundary value and therefore, by a compactness argument, Theorem 2.12 follows. □
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