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Abstract— This paper presents a novel energy shaping-based
integral action for mechanical systems with unknown dissipative
forces and matched disturbances. The proposed approach
builds on the simultaneous interconnection and damping as-
signment method and takes advantage of the representation
of the dissipative forces in the port-Hamiltonian dynamics. We
consider dissipative forces that cannot be written in the classical
dissipation structure of the port-Hamiltonian systems. We show
that the proposed design ensures the stability of the equilibrium
and is robust against dissipative force uncertainty, and rejects
constant matched disturbances. Two case studies are presented,
and simulation results show the closed-loop performance.

I. INTRODUCTION

Energy shaping is a well-established passivity-based con-
trol (PBC) technique for the stabilisation of mechanical
systems. The method’s main idea is to use a state-feedback
control to shape the energy function of the system and
assign a minimum at the desired equilibrium. The closed
loop preserves the physical structure of the system, and thus
stability can be ensured. The injection of additional damping
is in general needed for asymptotic stability (see [1] for a
detailed survey on the topic). In many cases, the total energy
function of the system needs to be shaped. This task requires
solving the so-called kinetic energy matching equation (KE-
ME) and the potential energy matching equation (PE-ME),
which are a set of partial differential equations (PDE) [2]. A
considerable amount of research effort has been dedicated
to simplifying or avoiding the task of solving the PDE
resulting from the interconnection and damping assignment
(IDA) method, see e.g. [3] and [4]. In that direction, the
use of gyroscopic forces in the target dynamics introduces
an additional degree of freedom that helps to simplify the
solution of the KE-ME [5]. A more general class of forces
was first proposed in [6] and later considered in [7] and
[8]. The dissipative forces allow obtaining a larger class of
controllers for mechanical systems. The method in [8], unlike
the two-step IDA-PBC approach, performs the energy shap-
ing and damping injection steps together by using dissipative
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forces in a process called simultaneous interconnection and
damping assignment passivity-based control (SIDA-PBC).
PBC methods enjoy specific robustness properties as they
aim at avoiding cancellation. However, disturbances and
friction forces might result in the degradation of the closed-
loop performance or instabilities [7], [9], which motivates the
development of methods for robust passivity-based control
design. In this paper, we present a method to add integral ac-
tions (IA) to SIDA-PBC controllers for mechanical systems
robust against dissipative forces and matched disturbances.

The objective of adding an IA to the passive output of port-
Hamiltonian (pH) systems preserving the interconnection
structure was first proposed in [10]. The addition of IA to
outputs that are not necessarily passive as an outer loop
to enhance the robustness of IDA-PBC controllers against
disturbances was proposed in [11], and other fundamental
properties discussed in [12]. A nonlinear PID-like controller
for underactuated pH mechanical systems was presented
in [9], and it was shown to ensure the stability of the
desired equilibrium and compensate for disturbances. The
previous work utilises a state transformation that preserves
the pH form in the new states. An alternate method for TA
control design that does not rely on state transformation was
proposed in [13]. The method was extended in [14] by relax-
ing several previously needed assumptions and considering
modelling uncertainties in the dynamics.

The main contributions of the paper are as follows.

o We consider IA for mechanical systems with distur-
bances and implicit dissipative forces, and provide a
formal stability proof of the desired equilibrium in the
presence of uncertainties. This complement the result in
[14], where friction forces in the form R(q)q that can
be explicitly written in the standard dissipation matrix
structure are considered.

e We also show that the IA design can be applied for
SIDA-PBC control, where the dissipative forces can be
written in implicit form. Previous works considered IA
for control system designed using IDA-PBC, where the
damping has explicit form ( [9]-[11], [14], [15]).

The outline of the paper is as follows. A summary of the
SIDA-PBC technique is presented in Section II. The problem
formulation and the proposed design are presented in Section
III. In Section IV, the control design is applied to two control
benchmarks, and the simulation results of the closed loop are
shown. Conclusions are presented in Section V.



II. SIMULTANEOUS INTERCONNECTION AND DAMPING
ASSIGNMENT PASSIVITY-BASED CONTROL

In this section, we consider a mechanical system described
in pH form with friction forces which can be written as
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where ¢ € R™ and p € R" are the configuration and
momenta vector, respectively; v € R™ is the control input
vector; G € R"™ ™ s the input matrix with rank m;
Onxn, In € R™ ™ are zero and identity matrices, respec-
tively, of proper dimensions; F.(¢) € R" is the vector of
friction forces; H : R?® — R is the total energy function
given by

1
H(g,p) = §pTM(Q)’1p + V(q); 2)

where M(q) = M%(q) € R™ ™" is the positive definite
inertia matrix; and V(¢) € R™ — R is the potential

energy. We also define the column vectors 0, H := %—ZI and
OpH = %—’Z

Remark. We consider friction forces described in implicit
form, that is the function F,.(¢) = F,.(M ~*(q)p) cannot be
written as R(q)q, with R = RT > 0, for example Coulomb
frictions modelled by arctan(q).

The problem of stabilising a desired equilibrium point
(¢,p) = (¢*,0,x1) can be solved using SIDA-PBC by
finding state-feedback control law such that the closed-loop
dynamics can be written as follows

p _Md(Q)Mil(q) Onxn (3)
hH(q,p)|  [Clg:p)]’
with the new total energy function given by
Lopyra
Ha(g,p) = 5p" My~ (9)p + Vala), ©)

2

where My(q) = MJT(q) € R™ " is the positive definite
desired inertia matrix, V3(q) : R™ — R is the desired closed-
loop potential energy such that ¢* = arg min V(q), i.e., Vy
has a strict minimum at ¢*, and C(q,p) € R™ is the vector
of desired dissipative forces that satisfies

p" My (¢)C(q,p) < 0. ()

The control law that renders the closed loop in the form (3)
exists if the following matching equations are satisfied

GH{0,(p" M~"p) — MaM ™19, (p" M ")

. 6)
C9F () +2C(q.p)} =0,

GH{0,V — MgM~10,V,} = 0. (7)

Then, the control law u = ¥(q, p) that stabilises the desired
equilibrium (¢*,0,,x1) is obtained as

U(q,p) = (GTG)'G"{9,H — MyM~*(9,Hy

8
Clap)+ 0,V — Moo, v).

Moreover, the desired equilibrium is asymptotically stable
if the maximum invariant set included in & = {(¢,p) €
R” x R*|p"M;*(¢)C(q,p) = 0} under the dynamics (3)
is (¢*,0,x1). A possible selection of the desired dissipative
forces is [7]

C(g.p) = —GK,(q,p)G" M 'p+ F.(4), 9)

where K, € R™*™ is a positive definite symmetric matrix.
As done in [7], the matrix K, can be selected to satisfy (5),
even under uncertainty in the friction forces. Moreover, the
dissipative force C' can satisfy

p"M;'Clq,p) < —p" My 'RaM;'p< 0. (10)

for some R; > 0. As discussed in [7], this condition
is related to strongly dissipative systems, and it was also
considered in [14].

III. SIDA-PBC WITH DISTURBANCE

In this section, we consider the effect of matched dis-
turbances in the mechanical system (1), which can then be
written as

-1 o Jleg)-

P _én Onxn apH<Q7p) Fr(q> (11)
+ {G(q)] (u+d),

where d € R™ is the disturbance.
The dynamics (11) in closed loop with the controller u =
U(g,p) + v can be written as

=g M SoMu@] [ttter)

O’I’L 0n><m
* {C(Q,p)} N [G(q)] (v +d),
(12)
where v € R™ is additional term in the control law that
will be used for the outer loop controller to compensate the
disturbance.

In general, the action of the disturbance can shift the
equilibrium or, even worse, produce instabilities. To prevent
that undesirable behaviour, we propose the design of a
dynamic controller

v =®(q,p,()
{ =M(q,p.C)

where (* € R™ is the controller state, ® : R™ x R” x R™ —
R™ and IT : R™ x R™ x R™ — R™ are smooth functions
to be designed such that the dynamics of the system (12) in
closed loop with the controller (13) has an asymptotic stable
equilibrium at (¢, p,¢) = (¢*,0,(*), for some ¢* € R™, and
a constant disturbance d.

13)



In this paper, we assume that the input matrix has the form
G = [Omxn—m Im}T, which simplifies the notation. The
transformation proposed in [14] can be used to render the
input matrix in the desired form, but the notation becomes
complicated and for clarity we made the assumption on G.
We also consider uncertainty in the friction force F).(¢) and
follow the approach in [7] so that the matrix K, is selected
to satisfy (10). Note that due to the uncertainty in F.(¢), the
matrix C(q,p) is not perfectly known.

A. Controller design

In general, the model of the friction forces F,.(¢) presents
uncertainties and thus the dissipative forces C'(¢,p) as de-
fined in (9) also present uncertainties. In this section, we
present an integral controller that compensates for unknown
disturbances and is robust against friction uncertainties.

Since the friction forces are not known exactly, the vector
of dissipative forces cannot be computed. Instead, we define
the estimated dissipative force vector as follows

C(q,p) = —GK,G"M;'p + E(¢), (14)

where F,. is an estimation of the friction forces. We also
define the dissipative force error vector as

C(q,p) = C(a,p) — Cla,p) = Fr(q) — F(q)

Assumption 1: The vector of friction forces is F,.(¢) =
[Fr1(d1) Fraldo) -+ Frn(dn)]” and it satisfies

15)

5z,mznqz Bi,main

& — < Fa(i) < =2 6)
)\i,maa: + 4q; Ai,min + q;
where )\i,miny )\i,maz7 ﬁi,miny 6i,ma:}c > 0and i = 17 N

representing each coordinate.

This assumption has been considered in [7] and introduces
the upper and lower bounds of the friction forces. Then,
we define the i-th nominal friction force Fm- = Bi g

where Bl and 5\1 are the nominal coefficients such that the
nominal friction force is within the bounds in (16). As
shown in Figure 1, both the actual friction force and the
nominal force are within the force bounds. As the functions
representing the forces are bounded, we can obtain a bound
for the force error as follows

€; .
Fri(4)| = |Fri(di) — Fri(di)| £ —=—=ld:|, (17)
VO + 4}
for some ¢;,0; > 0, and thus
Fri| = |Fri— Fral < vildil (18)

with v; = 3—7

Remark 3.1: The result in this paper also applies for
systems with additional viscous friction forces. Indeed, if the
viscous coefficient can be bounded, then we can formulate
the nominal forces that satisfy the error bound (18), which
will be used later in the paper. In general, we can consider
friction forces such that the corresponding nominal force
functions satisfy (18).
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Fig. 1. Friction force, nominal friction force and uncertainty band.

In the following proposition, we present a controller
that stabilises the desired equilibrium point, rejects constant
disturbances and is robust against uncertainties in the friction
forces.

Proposition 3.1: Consider the system (12) in closed loop
with the controller

v=K Ki(¢—G"p), (19)
where ( is the controller state whose dynamics are
¢ =—G" MM~ 9,Hy— K1 G" My 'p+G"C(g,p), (20)

and K7, Ky € R™*™ > ( are controller gains. Then, the
closed-loop dynamics can be written in the pH form

q OTLXTL M_lMd M_lMdG

Pl = 7MdM71 0 GK;

- T -1 T

¢ GT MM KiG K o
0, W 0
W\ +| Clap) |,
oW G"C(q,p)

with the closed-loop energy function W defined as

W = %pTijlp—&-%(C—a—GTp)TKI(C—a—GTp)—i-Vd(q),
(22)
with a = — K I_IK 1 1d, and that has a strict minimum at the
desired equilibrium.
Proof: Tt is sufficient to show that the dynamics (12)
and (21) match. We first consider the first row of (12)

g=M""p
=M"'Mq[M]'"p— GK;({—a—GTp)]
+ M 'M;GK (¢ —a—GTp)
=M~ Ms0,W + M~ M,GO:W,
which matches the first row of (21). Following a similar
procedure, we use the momentum equation in (12) as follows
p=— MM 0,Hs+ C(q,p) + Gv + Gd
=— MgM~'0,Hy + C(gq.p) + GK1K1(C — GTp)
—GK1Kra
=— MyM™9,H;+ C(q,p) + GK1 K1 (( — GTp — a)
=— MM~ 'o,W + GK,0;W + C(q,p),



which is equivalent to the momentum equation in the closed-
loop dynamics (21). Finally, the controller dynamics (20) can
also be rewritten as follows

(=-G"MM~'9,H,; — K,:G"M;'p+ G"C(q,p)
= - G"MyM~'9,Hy — K:GT" M 'p+ GTC(q, p)
+ KK (C—a—-GTp) - K1K[ (¢ — a—GTp)
=—G"M M '9,Hy — K1GT[M]'p — GK;
x((—a—-G"p)] — K1K;(( —a—G"p)

+G"C(q,p)
=-G"MyM~O,W — K1GTO,W — K 0. W
+G"C(q,p),

which matches the last row of (21). The matching of the
equations shows that the closed-loop dynamics can be written
in the form (21) as we wanted to prove. |
Notice that the point (¢,p,{) = (¢*,0,¢*), with * =
le_lKl_ld, is an equilibrium of the closed loop (21).
Moreover, as we will show in the next section, this equi-
librium is asymptotically stable.

B. Closed-loop stability

In this section, we analyse the stability properties of the
equilibrium (g*,0,¢*) of the closed loop (21). To achieve
that objective, we consider the energy function (22) as a
Lyapunov candidate and we compute the derivative of W
with respect to time along the trajectory solutions of (21).
We use the properties of the pH form of the closed loop
and the fact that ,W = M;'p — GO;W. Then, the time
derivative of W can be computed as follows

W=[M'"p—GK(C—a-GTp)]" p
+(¢—a—=GTp)"Ki{+ 0] Va g
= — I WKW + 0L WC(q,p) + O WGTC(q,p)
== O/ WKW +p" M Clg,p)
- ofwa" [C(q,p) - C(q,p)]
< —FWEOW —p" My "RaMy ' p
- 8CTWGTC~'(q,p)
<[] [ ) [Fae”]
- oW 0 K oW
— 8?WGTC~’(q,p)
(23)
When the friction forces are exactly know, then
W < —[|M " p||,, = 10cW I, <0, (24)
which ensures stability of the equilibrium. Asymptotic stabil-

ity can be readily shown using invariance principle arguments
[16]. In the presence of friction force uncertainty, we can use

(18) to bound the friction forces error C in (23) as follows

- AT r
J _ Md_lp Rd 0 Md_lp T T -
o1 1T _
< _[Mi'p] [Ra 0 } {Md 1p:|

- I 8<W | L 0 Kl 8<W
+OfWGTTM ™ MM p

_ M) (R @] [M;'p
- L 3<W | _(I)T K1 8¢W
(25)
where & = %MdelI‘TG and T’ = diag(y1,- - ,7yn), With

v; defined in (18). Using Schur’s lemma and noting that
R4 > 0, we can select the gain K that should satisfy

K —®"R;'® >0

and ensure stability of the equilibrium. Asymptotic stability
of the equilibrium follows directly using invariance principle
arguments [16].

IV. CASE STUDIES

In this section we apply the proposed control design to two
benchmarks, namely the ball and beam and the two-links
manipulator. The former is an underactuated mechanical
system while the later is fully actuated. The performance
of the controller is evaluated in simulations.

A. The ball and beam
The ball and beam system is shown in Fig. 2. The main
dynamics of the system can be written in form (11) with
input matrix G = [1 O]T, inertia matrix
M(q) = diag(1, L +¢7), G = ey,
and the potential energy

V(g) = gq1 singa,
where ¢ is the position of the ball, ¢ is the angle of the

beam, and L is the length of the beam [2]. In addition, we

consider the effect of Coulomb friction forces
Fr,i = ﬁz arctan Qz (26)

with i = 1, 2.
Following the SIDA design in [7], we can obtain a
dynamics in the form (12) with the desired mass matrix

V2(L2 +¢2) 2 1
M, = !
s = V(LR +q)H]
and the desired potential energy
1 Qi 2
Vi = g(1 — cos + K — ——arcsinh ()} ,
a=9( q2) P {% NG 7

where Kp is a positive constant to assign the minimum at
the desired equilibrium.

The nonlinear damping injection takes the form (see the
design details of the SIDA controller in [7])

1

2 2
=K - s @7
Ud P1+(L2+q%) 102] (27)




Fig. 2. A schematic of the ball and beam system where q1 is the position
of the ball and g2 is the deviation of the beam from the fixed world frame
represented in green.

where
L2+ ¢2)?
Ku(g,p) > (2 - L 5
(p1v/ L2+ qF — V2p2)

X [,Blmax arctan(ql) (p1 \/m _ p2)

) 2
+ Bomaq arctan(gs) (\/% - pl)} )
1

(28)
To implement the integral action controller (19),(20), we
consider a nominal friction coefficient 3; € (Bmin, Bmaz)>
so that (16) is satisfied. The goal is to stabilise the system at
q* = (0,0). The length of the beam is 1m and the friction
coefficients are 5, = 2 = 10, Bl = Bg = 9. The controller
gains are Kp = 10, K,(q,p) is selected as in [7] , K1 =
23.5 and K7 = 0.1. The initial conditions for the simulations
are ¢1(0) = 0.5 m, ¢1(0) = 0.5 m/s, ¢2(0) = 0.1 rad and
g2 = 0 rad/s. For comparison purposes, we consider the ball
and beam in closed loop with the standard SIDA controller
and the proposed SIDA with integral action. Also, a torque
disturbance on the beam of 20 N is used in the simulations.
Figure 3 shows the time history of the ball position and beam
angle. The scenario shows a very good performance of the
SIDA controller when there are no disturbances. However,
the closed-loop performance deteriorates significantly under
the presence of the disturbance and the ball might fall from
the beam as shown in Figure 3-(a). On the other side, the
SIDA-IA controller can stabilise the desired ball position
and the beam angle, and reject the disturbance as shown
in Figure 3-(b). The velocity of the ball and angular velocity
of the beam converge to zero in all scenarios as shown in
Figure 4. The state of the controller and the control torque
commanded by the SIDA-IA are shown in Figure 5. Notice
that the control input compensates for the disturbance, and
the controller state reaches ¢(* = —K; 'K 'd as expected.

B. The two link manipulator

As a second example, we consider a fully actuated planar
elbow manipulator shown in Figure 6. The dynamics model
can be written in the form (11) with inertia matrix

a1 + as + 2b COS(QQ)
a2 + a3 cos g2

a2 + as cos q2
a2,

M(q) =

where a1, as and as are constant parameters of the model
and V(q) = 0 (see [17] for details of the model). We also
consider friction forces F,.; = 3; arctan(¢;), with ¢ = 1,2,

¢ [m]

@ [m]

—— SIDA without disturbance
—— SIDA with disturbance

time [s] !

time [s] " '

(a)
30
25
‘ —— SIDA-IA with disturbance
20
E 15
E 10
5
0
-5
3 6 8 1 2 3 6 8 1
time [s] time [s]
(®)

Fig. 3. Time histories of the ball position and beam angle using (a) standard
SIDA controller and (b) the proposed SIDA controller with IA.
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5 10 15 0 5 . 10 15
time [s] time [s]
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40 ‘ —— SIDA-IA with disturbance
w
~
P
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Fig. 4. Time histories of the ball velocity and beam angular velocity using
(a) standard SIDA controller and (b) the proposed SIDA controller with IA.
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5
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4 6
time [s]
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Fig. 5. Time histories of the controller state and control input of the SIDA
controller with IA.

and link angles ¢; and g2. Since the manipulator is fully
actuated, then G = I5. The goal is to stabilise a desired pose,



Fig. 6. A schematic of the two link manipulator. g1 and g2 are the deviation
of the first and the second link from the fixed world frame represented in
green, respectively.

which in this case is ¢* = (10,15) deg. We simulate the
manipulator in closed loop with the standard SIDA controller
and the proposed SIDA controller with TA (19),(20). We use
the model parameters in [17] and the friction coefficients
81 = B2 = 0.02, 81 = /3’2 = 0.01. The controller gains are
K, = diag(1.51,1.51) and K; = diag(1.45,1.45).

Figure 7 shows the time history of the link positions errors.
The SIDA controller performs well without disturbances,
but it suffers from significant steady-state error under the
action of disturbances and friction uncertainty. The proposed
SIDA controller with integral action can achieve the set point
without steady-state error and acceptable transient response,
which shows the robustness properties of the closed loop
against friction uncertainty and disturbances.

o \\ —— SIDA without disturbance
—— SIDA with disturbance
5y g s
=, =
= 30 — @ 0 @
| |
o - o 5
= o
-10
0 2 [ 6 8 0 0 2 7 6 8 7
time [s] time [s]
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10 14 ‘ —— SIDA-IA with disturbance ‘
8 12
= =
g 6 Q
=, =,
s, S
| |
SH S
-2
-4
0 2 4 6 8 [ 2 L 6 8 T
time [s] time [s]
(b)
Fig. 7. Time histories of link position errors using (a) standard SIDA

controller and (b) the proposed SIDA controller with IA.

V. CONCLUSIONS

This paper presented an integral action controller for
mechanical systems with matched constant disturbances and

dissipative forces represented in implicit pH form. We show
that the controller is robust against uncertainty in the dissi-
pative forces and compensate for constant disturbances. The
proposed control design was applied to the ball and beam and
a two-link manipulator. The case studies show that the TA
design can be applied to fully actuated and underactuated
systems. The simulations show the controller performance
and its robustness and disturbance rejection properties.
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