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We present an analytical study of the quantum phase transition between the topologically ordered toric-code-
model ground state and the disordered spin-polarized state. The phase transition is induced by applying an external
magnetic field, and the variation in topological order is detected via two nonlocal quantities: the Wilson loop
and the topological Rényi entropy of order 2. By exploiting an equivalence with the transverse-field Ising model
and considering two different variants of the problem, we investigate the field dependence of these quantities by
means of an exact treatment in the exactly solvable variant and complementary perturbation theories around the
limits of zero and infinite fields in both variants. We find strong evidence that the phase transition point between
topological order and disorder is marked by a discontinuity in the topological Rényi entropy and that the two
phases around the phase transition point are characterized by its different constant values. Our results therefore
indicate that the topological Rényi entropy is a proper topological invariant: its allowed values are discrete and
can be used to distinguish between different phases of matter.
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I. INTRODUCTION

There are states in quantum many-body physics that cannot
be described in terms of local order parameters and the Landau
paradigm of spontaneous symmetry breaking. These states
exhibit a subtler kind of order called topological order [1].
Topologically ordered states include fractional quantum Hall
liquids [2] and quantum spin liquids [3], which are at the
forefront of research in condensed matter theory. Moreover,
such states are of great interest in the field of quantum
computation because one can encode quantum information in
the topological degrees of freedom, and this way of encoding
is intrinsically robust against decoherence [4,5].

Since topologically ordered states cannot be characterized
by local order parameters, there has been an intense effort to
find nonlocal quantities that can detect topological order in a
wave function. A series of papers suggested that topological
order can be detected through a component of quantum
entanglement that contains a topological constraint. This
constraint manifests itself as a universal negative correction to
the boundary law for the entanglement entropy: the so-called
topological entropy [6–9]. Recent works have showed that this
component of quantum entanglement is indeed long ranged
and so it cannot be destroyed by time evolution with a local
Hamiltonian. Equivalently, the components corresponding
to the long-range entanglement and the usual short-range
entanglement are adiabatically disconnected [10].

These results suggest that the topological entropy is to some
extent a nonlocal order parameter for topologically ordered
phases. To make a more precise statement about the extent
of its applicability, one needs to investigate its robustness
against perturbations. If the topological entropy is to detect
topologically ordered phases, it needs to be nonzero within all
such phases. In other words, it should vanish only at quantum
phase transitions to disordered phases. If it is to distinguish
different topologically ordered phases from each other, it needs

to be constant within each phase. In other words, it should
change only at quantum phase transitions [11].

Recent numerical studies on small systems have found
evidence that the topological entropy takes discrete values [3]
and changes only at quantum phase transitions [12]. On the
other hand, analytic corrections to the topological entropy are
extremely hard to obtain because one needs to consider the
entanglement entropy of a many-body wave function [13].
Such a treatment for the topological entropy in the case of a
finite correlation length can be found in Ref. [14]. Remarkably,
it has been recently shown for an exactly solvable two-phase
system that the topological entropy is constant within the entire
topologically ordered phase [15].

Given the difficulties, it is important to find other entropic
quantities that possess a topological component capable of
detecting topological order. One potential candidate is the
Rényi entropy of order α, which is a generalization of the
usual (von Neumann) entanglement entropy. It is important
that the Rényi entropy coincides with the entanglement entropy
in the special case of α = 1. It has also been shown that the
ground-state Rényi entropies of different order α all contain the
same topological component at the fixed points of nonchiral
phases [8]. Such phases typically appear in string-net models
[16] and quantum double models [17].

In this paper, we consider the Rényi entropy of order
2 and argue that it is a good probe of topological order
because its topological component can change only at quantum
phase transitions. In particular, we apply the concept of the
topological Rényi entropy to the toric-code model (TCM) [4]
in the presence of an external magnetic field. This model is,
to paraphrase Goldenfeld [18], the Drosophila of topological
order. Although it is a simple toy model, it contains all the
elements that make topological order interesting: there is no
local order parameter, there is a topology-dependent ground-
state degeneracy that is robust against local perturbations, and
there are excitations with anyonic particle statistics. Indeed, the
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TCM is another beautiful example of the crucial role played
by toy models in statistical mechanics.

To show that the topological Rényi entropy is a good probe
of topological order, we demonstrate that the disordered and
the topologically ordered phases of the TCM with external
magnetic field are characterized by its distinct values. We also
study the Wilson loop as a probe of both topological order and
gauge structure. Concentrating on two different variants of the
problem, we establish an exact treatment in the computation-
ally simpler (exactly solvable) variant and supplement it with
perturbation theories in both variants. The results obtained
with the two methods for the two probing quantities in the two
variants are highly consistent with each other.

II. GENERAL FORMALISM

We consider the TCM with an external magnetic field in
the +z direction. The system is an N × N square lattice with
periodic boundary conditions, and 2N2 spins are located at the
edges of the lattice [4]. In general, the spins on the horizontal
(h) and the vertical (v) edges experience different magnetic
fields: λ on the horizontal and κλ on the vertical edges (κ > 0).
The Hamiltonian of the system takes the form

Ĥ = −
∑

s

Âs −
∑

p

B̂p − λ
∑
i∈h

σ̂ z
i − κλ

∑
i∈v

σ̂ z
i ,

(1)
Âs ≡

∏
i∈s

σ̂ x
i , B̂p ≡

∏
i∈p

σ̂ z
i ,

where the indices s and p refer to stars and plaquettes on
the lattice containing four spins each. For an illustration of
this, see Fig. 1. Note that the four sums in Eq. (1) all contain
N2 terms, and that only N2 − 1 star (plaquette) operators are
independent because

∏
s Âs = ∏

p B̂p = 1.
The TCM with zero external field (λ = 0) is exactly solv-

able because the stars Âs and the plaquettes B̂p all commute
with each other. The ground state is fourfold degenerate: there
are four linearly independent states with As ≡ 〈Âs〉 = +1 and
Bp ≡ 〈B̂p〉 = +1 for all s and p. These degenerate ground

FIG. 1. (Color online) Illustration of the square lattice with the
physical spins located at the horizontal (black circles) and the vertical
(white circles) edges. Examples of a star (red cross labeled s) and a
plaquette (blue square labeled p) are included.

states are distinguished by the topological quantum numbers
Z1 = ±1 and Z2 = ±1, which are expectation values for
products of σ̂ z

i operators along horizontal and vertical strings
going round the lattice. The ground state with Z1 = Z2 = +1
can be written as

|0〉 = N
∏

s

(1 + Âs)| ⇑ 〉, (2)

where N = 1/
√

2N2+1 is a normalization constant, and |⇑ 〉
denotes the completely polarized state with all spins pointing
in the +z direction (σ z

i = +1 for all i).
The TCM with finite external field (λ > 0) is not exactly

solvable because the magnetic fields σ̂ z
i do not commute with

the stars Âs . On the other hand, they commute with the
plaquettes B̂p and the topological operators Ẑ1,2; therefore
there are four independent lowest-energy sectors with Z1,2 =
±1 and Bp = +1 (∀ p). In the rest of the paper, we consider
the lowest-energy eigenstate |�(λ)〉 within the Z1 = Z2 = +1
sector. This state becomes | ⇑ 〉 in the limit of λ → ∞ and
|0〉 in the limit of λ = 0. Between the two limits, numerical
studies reveal a quantum phase transition at a critical magnetic
field λ = λC [12,19]. Since |�(λ)〉 is a ground state at the
fixed points of both limiting phases, the adiabatic theorem
guarantees that it is the unique ground state in the disordered
phase at λ > λC and one of the four degenerate ground states
in the topologically ordered phase at λ < λC .

If we consider only the states with Z1 = Z2 = +1 and
Bp = +1 (∀ p), the dimension of the effective Hilbert space is
reduced from 22N2

to 2N2−1. The states within this reduced
Hilbert space can be written as superpositions of loop
configurations on the dual lattice: in each loop configuration,
the spins on the loops have σ z

i = −1 and the remaining
spins have σ z

i = +1. This implies that the reduced model is
equivalent to a Z2 lattice gauge theory, and the phase transi-
tion at λ = λC corresponds to a confinement-deconfinement
transition [12,19]. Furthermore, since each loop configuration
can be characterized by the values of the N2 − 1 independent
stars As = ±1, it is convenient to introduce a corresponding
representation in which quasispins As are located at the stars
[20]. This quasispin representation is particularly useful in the
λ � 1 limit because |�(λ)〉 is then close to |0〉 which is a
product state with As = +1 (∀ s). Up to an irrelevant additive
constant, the Hamiltonian in Eq. (1) becomes

Ĥ = −
∑

s

Âz
s − λ

∑
〈s,s ′〉∈h

Âx
s Â

x
s ′ − κλ

∑
〈s,s ′〉∈v

Âx
s Â

x
s ′ , (3)

where 〈s,s ′〉 means that the summation is over horizontal
and vertical edges between nearest-neighbor stars s and s ′.
Note that Âz

s ≡ Âs measures and Âx
s switches the quantum

number As ; therefore the quasispin operators Âz
s and Âx

s satisfy
the standard spin commutation relations. In the quasispin
representation of Eq. (3), the TCM with external magnetic
field is equivalent to a two-dimensional (2D) transverse-field
Ising model (TFIM) in which the coupling strengths on the
horizontal and the vertical edges are different in general.

III. MEASURES OF TOPOLOGICAL ORDER

We aim to describe how the topological order in the
ground state |�(λ)〉 changes as a function of λ between the
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topologically ordered limit at λ = 0 and the disordered limit
at λ → ∞. To quantify topological order in an analytically
tractable manner, we consider two measures: the Wilson loop
and the topological Rényi entropy.

A. General properties

The Wilson loop for a region R on the dual lattice is defined
as the expectation value WR of the operator

ŴR ≡
∏
i∈∂R

σ̂ x
i =

∏
s∈R

Âz
s, (4)

where ∂R denotes the boundary of R. If the region R is
macroscopic with linear dimension D 
 1, the Wilson loop
follows a perimeter law WR ∝ exp(−βD) in the presence of
topological order and an area law WR ∝ exp(−βD2) in the
absence of topological order [12]. In this paper, we assume
that the region R is a D × D square (see Fig. 2).

The topological Rényi entropy is based on the paradigm of
quantum entanglement. The Rényi entropy of order α between
two complementary subsystems A and B ≡ A reads

SAB
α ≡ 1

1 − α
log2 Tr

[
ρ̂α

A

] = 1

1 − α
log2 Tr

[
ρ̂α

B

]
, (5)

where ρ̂A and ρ̂B are the reduced density operators for A

and B. The topological contribution to the Rényi entropy
can be extracted by taking a suitable linear combination of
Rényi entropies that are calculated for different choices of the
subsystems A and B [7]. In fact, the standard definition for the
topological Rényi entropy of order α is

ST
α ≡ −S(1)

α + S(2)
α + S(3)

α − S(4)
α , (6)

where S(m)
α = SAB

α in the four cases (m) of partitioning the
system shown in Fig. 3. The characteristic linear dimensions
are the extension D and the thickness d of the subsystem A in
all cases. To obtain a meaningful topological measure, these
dimensions need to be macroscopic (D > d 
 1).

The topological Rényi entropy ST
α is nonzero if and only

if the given state exhibits topological order [7,8]. For the
TCM with external magnetic field, ST

α = 0 for the disordered
ground state | ⇑ 〉 and ST

α = 2 for the topologically ordered

FIG. 2. (Color online) Illustration of the Wilson loop for a square
region with D = 3. The region R contains D2 stars (red crosses) and
the boundary ∂R (dashed line) contains 4D spins (yellow circles).

FIG. 3. Illustration of the subsystems A and B in the four cases
(m) that are used to calculate the topological Rényi entropy. Each
subsystem A has extension D and thickness d with D > d 
 1.

ground state |0〉. In this paper, we demonstrate that ST
α detects

the presence of topological order in the entire topologically
ordered phase at λ < λC . Note though that ST

α is independent
of α at the fixed point of a generic nonchiral phase [8]. Since
the fixed points of different topologically ordered phases do not
necessarily have distinct values of ST

α , the topological Rényi
entropy is unable to provide a complete characterization of a
topologically ordered phase.

B. Z2 lattice gauge theory

Since the TCM is perturbed with external fields σ̂ z
i that

commute with the plaquettes B̂p and the topological operators
Ẑ1,2, the ground state |�(λ)〉 belongs to the lowest-energy
sector with Z1 = Z2 = +1 and Bp = +1 (∀ p) for all values of
λ. If we consider only this sector, the gauge structure constraint
B̂p|
〉 = |
〉 is enforced on all states |
〉; therefore the model
is equivalent to a Z2 lattice gauge theory.

An arbitrary state |
〉 within the gauge theory can be
expressed as a superposition of loop configurations. Each
configuration is a finite set of closed loops on the dual lattice,
and the spins on the loops are flipped with respect to the
remaining ones. These properties motivate us to introduce a
modified definition for the topological Rényi entropy in which
the subsystem A is substituted by the boundary ∂A between A

and B in each case (m) of partitioning the system. This means
that S(m)

α = S∂A,∂A
α ≡ S∂A

α in Eq. (6). Formally, we define C as
the set of star operators acting on both subsystems A and B,
and ∂A as the set of spins that are acted upon only by stars
in C. For an illustration of this, see Fig. 4. The boundary ∂A

is always a finite set of closed loops on the real lattice: the
number of loops is n = 2 in the cases (1) and (4), while it is
n = 1 in the cases (2) and (3). Since a loop on the real lattice
and a loop on the dual lattice can intersect only at an even
number of points, there are an even number of spins flipped
on each loop of ∂A. This topological constraint ensures that
the modified ST

α has similar properties to the standard one.
For example, it is still true that ST

α = 0 for | ⇑ 〉 and ST
α = 2

for |0〉.
The calculations in the rest of the paper are immensely

simplified by using the modified definition for ST
α . Since the

group generated by the star operators acting exclusively on the
boundary subsystem ∂A contains only the identity, the reduced
density matrix ρ∂A is diagonal in the basis of the physical
spins σ z

i . Each diagonal element (ρ∂A)�� gives the probability
that |
〉 realizes a given spin configuration {�z

i = ±1} in
∂A. Equivalently, if we choose a random loop configura-
tion according to the probability distribution given by the
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FIG. 4. (Color online) Illustration of the subsystems in case (1)
with dimensions D = 6 and d = 2. Spins are either in subsystem A

(black circles) or in subsystem B (white circles). Stars in the set C

are marked by red crosses, and spins in the subsystem ∂A are marked
by blue rectangles. The boundary contains n = 2 closed loops on the
real lattice with a combined length L = 32.

state |
〉, the probability of the spin configuration {�z
i } in

∂A is P [{�z
i }] = (ρ∂A)�� . If we then choose two random

loop configurations according to the same distribution, the
probability of them having the same spin configuration in ∂A

is

P =
∑
�

P
[{

�z
i

}]2 =
∑
�

(ρ∂A)2
�� = Tr

[
ρ̂2

∂A

]
. (7)

This result motivates us to consider the topological Rényi
entropy of order 2. In terms of the probabilities P (m) in the
four cases (m) of partitioning the system, this quantity takes
the form ST

2 = log2[P (1)P (4)/P (2)P (3)].
We can now develop an intuitive understanding of the

phase transition by considering the two limiting cases. In the
topologically ordered ground state at λ � 1, the spin loops
are deconfined and all possible loop configurations are equally
probable. This means that the allowed spin configurations in
the subsystem ∂A also share the same probability: the inverse
number of allowed spin configurations. It is important that the
number of boundary loops is n = 2 in the cases (1) and (4),
while it is n = 1 in the cases (2) and (3). The cases (1) and
(4) are therefore more constrained and have fewer allowed
spin configurations in ∂A. This implies that P (1),P (4) >

P (2),P (3) and ST
2 > 0. More precisely, since the constraint

on each boundary loop reduces the number of allowed spin
configurations by a factor of 2, the topological Rényi entropy is
given by ST

2 = n(1) − n(2) − n(3) + n(4) = 2. In the disordered
ground state at λ 
 1, the spin loops are confined and only
the loop configurations with small spin loops have significant
probabilities. On the other hand, the small spin loops in these
loop configurations correspond to local disturbances (nearby
spin flips) in the spin configurations of the boundary subsystem
∂A. This means that the probability P (m) in each case (m) can
be written as a product over the small sections of the boundary
loops; therefore log2 P (m) is proportional to the length of the

boundary. Since the combined boundary length of the cases
(1) and (4) is equal to the combined boundary length of the
cases (2) and (3), the topological Rényi entropy vanishes:
ST

2 = log2[P (1)P (4)/P (2)P (3)] = 0.

C. Formula for the Rényi entropy

Now we capitalize on the simplifications described above,
and derive the Rényi entropy S∂A

2 for an arbitrary state |
〉
within the gauge theory. In the most general case, ∂A consists
of n closed loops on the real lattice, and the loops have a
combined length L. This means that they contain L spins
and L stars acting on these spins (see Fig. 4). Since there is
a constraint on each loop due to the gauge structure, only
L − n spins are independent. If we label these spins with
1 � i � L − n, the 2L−n nonzero diagonal elements of ρ∂A

give the probabilities of |
〉 realizing the 2L−n respective spin
configurations {�z

i }. Since the projection operator onto the
spin configuration {�z

i } is given by 2n−L
∏

i(1 + �z
i σ̂

z
i ), the

corresponding diagonal element reads

(ρ∂A)�� = 1

2L−n
〈
|

[
L−n∏
i=1

(
1 + �z

i σ̂
z
i

)]|
〉. (8)

When expanding the product in Eq. (8) and summing the
squares of the resulting expressions for (ρ∂A)�� , the cross-
terms cancel each other, and we obtain

Tr
[
ρ̂2

∂A

] = 1

2L−n

∑
{qi=0,1}

〈
|
[

L−n∏
i=1

(
σ̂ z

i

)qi

]
|
〉2, (9)

where the sum is over all the 2L−n configurations {qi = 0,1},
and hence over all possible products of the L − n independent
spin operators σ̂ z

i . If the edge occupied by the spin i connects
the stars si,1 and si,2, the corresponding spin operator becomes
σ̂ z

i = Âx
si,1

Âx
si,2

. In terms of the quasispin operators Âx
s , the

Rényi entropy then takes the form

S∂A
2 = (L − n) − log2

∑
{qi=0,1}

〈
|
[

L−n∏
i=1

(
Âx

si,1
Âx

si,2

)qi

]
|
〉2.

(10)

This expression has an entirely precise notation, but it is
cumbersome to use for calculating S∂A

2 . To derive a more
intuitive expression with a less precise notation, we expand
the sum in Eq. (10) around the trivial configuration {qi = 0}.
Exploiting (Âx

s )2 = 1, the Rényi entropy then becomes

S∂A
2 = (L − n) − log2

[
1 +

∑
s1,s2

〈
|Âx
s1
Âx

s2
|
〉2

+
∑

s1,s2,s3,s4

〈
|Âx
s1
Âx

s2
Âx

s3
Âx

s4
|
〉2 + · · ·

]
, (11)

where the sum inside the logarithm contains all 2L−n possible
products with an even number of quasispin operators Âx

s

chosen from each closed loop of the subsystem ∂A.
To understand how Eq. (11) works, we consider the two

limiting ground states | ⇑ 〉 and |0〉. In the first case, we
have 〈⇑ |Âx

s1
Âx

s2
· · · Âx

s2r
| ⇑ 〉 = 〈⇑ |σ̂ z

i1
σ̂ z

i2
· · · σ̂ z

iq
| ⇑ 〉 = 1 for
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all expectation values because | ⇑ 〉 has σ z
i = +1 for all

i. The sum inside the logarithm becomes 2L−n, and the
Rényi entropy S∂A

2 vanishes, as expected for a product state.
In the second case, |0〉 has Az

s = +1 for all s; therefore
〈0|Âx

s1
Âx

s2
· · · Âx

s2r
|0〉 = 0 for all expectation values. The only

exception is the trivial one: 〈0|0〉 = 1. The sum inside the
logarithm is 1, and the Rényi entropy is S∂A

2 = L − n. When
extracting the topological contribution, the terms proportional
to L cancel because L(1) + L(4) = L(2) + L(3) (see Fig. 3). On
the other hand, the cases (1) and (4) have n = 2, while the
cases (2) and (3) have n = 1; therefore the topological Rényi
entropy is finite: ST

2 = 2.

IV. PHASE TRANSITION IN THE QUASI-1D CASE

In this section, we set κ � 1 in Eq. (1): this means that the
spins on the vertical edges experience much smaller magnetic
fields than those on the horizontal edges. The magnetic fields
on the vertical edges become important only in the λ 
 1 limit,
and therefore the phase transition between topological order
and disorder at λ ∼ 1 occurs due to a competition between
the star operators Âz

s and the magnetic fields on the horizontal
edges. When investigating this phase transition, the magnetic
fields on the vertical edges can be neglected (κ → 0), and the
quasispin Hamiltonian in Eq. (3) becomes

Ĥ = −
∑

s

Âz
s − λ

∑
〈s,s ′〉∈h

Âx
s Â

x
s ′ . (12)

Since there are only Ising couplings on the horizontal edges,
this Hamiltonian is the direct sum of N independent 1D TFIM
copies along the horizontal chains of the lattice [21]. The
system is therefore exactly solvable for all values of λ.

If we consider any of the independent 1D horizontal chains
and label the N stars on the chain with 1 � l � N , the
Hamiltonian of the corresponding 1D TFIM reads

Ĥ = −
N∑

l=1

(
Âz

l + λÂx
l Â

x
l−1

)
, (13)

where the periodic boundary conditions are taken into account
by A0 ≡ AN . This Hamiltonian can be solved by following
a standard procedure [22]. We first map the quasispins Al to
fermions via the Jordan-Wigner transformation

Âz
l = 1 − 2c

†
l cl, Â−

l = (Â+
l )† = c

†
l e

iπ
∑l−1

j=1 c
†
j cj , (14)

where c
†
l and cl are standard fermionic creation and annihi-

lation operators. The translational symmetry is then exploited
by the Fourier transform

cl = 1√
N

∑
k

eiklck, (15)

where the sum is over the momenta km = π (2m − 1)/N with
1 � m � N . We finally introduce new fermionic operators via
the Bogoliubov transformation

ck = cos θkγk + i sin θkγ
†
−k, (16)

and the Hamiltonian in Eq. (13) becomes

Ĥ =
∑

k

�k(2γ
†
k γk − 1), (17)

where γ
†
k and γk correspond to independent fermionic quasi-

particles. The energies of these quasiparticles are propor-

tional to �k =
√

ε2
k + λ2 sin2 k with εk ≡ 1 − λ cos k, and the

mixing angle appearing in the Bogoliubov transformation is
θk = tan−1[λ sin k/(εk + �k)].

The ground state |�(λ)〉 of the Hamiltonian in Eq. (12) is
the direct product of N independent copies of the 1D ground
state |�0〉. The 1D ground state is defined by γk|�0〉 = 0 for all
k; therefore its two-operator expectation values in the position
representation are given by

〈c†l cl′ 〉 ≡ 〈�0|c†l cl′ |�0〉 = 1

N

∑
k,k′

e−ikl+ik′l′ 〈�0|c†kck′ |�0〉

= 1

N

∑
k

e−ik(l−l′) sin2 θk,

〈clc
†
l′ 〉 = 1

N

∑
k

e−ik(l−l′) cos2 θk, (18)

〈clcl′ 〉 = i

N

∑
k

e−ik(l−l′) sin θk cos θk,

〈c†l c†l′ 〉 = − i

N

∑
k

e−ik(l−l′) sin θk cos θk.

To calculate the Rényi entropy, we need to evaluate the
quasispin expectation values appearing in Eq. (11). These
expectation values are products of independent 1D expectation
values 〈�0|Âx

l1
Âx

l2
· · · Âx

l2r−1
Âx

l2r
|�0〉, where each pair of Âx

l

operators can be expressed in terms of the fermionic operators
as

Âx
l Â

x
l′ = (c†l + cl)

l′−1∏
j=l

(1 − 2c
†
j cj )(c†l′ + cl′). (19)

Similarly, the quasispin expectation value in the Wilson loop
for a D × D square region R becomes

WR = 〈�0|
D∏

l=1

Âz
l |�0〉D = 〈�0|

D∏
l=1

(1 − 2c
†
l cl)|�0〉D. (20)

Using the identity 1 − 2c
†
l cl = (c†l + cl)(c

†
l − cl), the qua-

sispin operator products appearing in both the Rényi entropy
and the Wilson loop can then be written as simple products of
c
†
l ± cl operators. On the other hand, the expectation values of

these products can be reduced to the two-operator expectation
values given in Eq. (18) by using Wick’s theorem [23].

The exact dependence of the topological Rényi entropy
on the magnetic field is plotted in Fig. 5. There are two
phases: a topologically ordered phase at small λ and a
disordered phase at large λ. These phases are separated by
a clear phase transition at λ = λC = 1, which coincides with
the well-known critical point of the 1D TFIM [22]. If we
gradually increase λ, the topological Rényi entropy drops to
zero around λC . This transition becomes sharper if we increase
the system size N as well as the dimensions D and d of
the subsystems; therefore we argue that ST

2 is discontinuous
in the thermodynamic limit. The topological Rényi entropy
is then constant in both limiting phases: the topologically
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GÁBOR B. HALÁSZ AND ALIOSCIA HAMMA PHYSICAL REVIEW A 86, 062330 (2012)

0.4 0.6 0.8 1.0
λ

0.0

1.0

2.0

S
2T

0.98 1.02 1.06
λ

8

6

4

2

lo
g 1

0
S

2T

a b
i

ii

iii

iv

v

FIG. 5. (Color online) Topological Rényi entropy ST
2 as a function

of magnetic field λ below (a) and above (b) the critical point at λC = 1.
Five system sizes are plotted with d = D/3 for each: N = 40 and
D = 6 (i); N = 80 and D = 12 (ii); N = 120 and D = 18 (iii);
N = 160 and D = 24 (iv); N = 200 and D = 30 (v).

ordered phase at λ < λC is characterized by ST
2 = 2, while

the disordered phase at λ > λC is characterized by ST
2 = 0.

The analogous exact behavior of the Wilson loop is
illustrated in Fig. 6. In the topologically ordered phase at λ <

λC , the reduced Wilson loop W0 ≡ W
1/D

R approaches a finite
constant in the D → ∞ limit. This implies WR ∝ exp(−βD)
and the presence of topological order. In the disordered phase
at λ > λC , W0 decays exponentially with D. This implies
WR ∝ exp(−βD2) and the absence of topological order. By
looking at the dependence W0(λ) for a sufficiently large value
of D, we can establish that the critical point separating the two
different behaviors is indeed at λC = 1. The results obtained
for the topological Rényi entropy and the Wilson loop are
therefore consistent with each other.

V. PHASE TRANSITION IN THE ACTUAL 2D CASE

In this section, we set κ = 1 in Eq. (1): this means that
the spins on the horizontal and the vertical edges experience the
same magnetic field. Up to an irrelevant additive constant, the
quasispin Hamiltonian in Eq. (3) becomes

Ĥ =
∑

s

(
1 − Âz

s

) − λ
∑
〈s,s ′〉

Âx
s Â

x
s ′ , (21)

0 20 40
D

0.0

0.5

1.0

W
0

0.9 1.0 1.1
λ

0.0
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0.4

0.6

W
0

a b

FIG. 6. (Color online) (a) Reduced Wilson loop W0 as a function
of region size D for λ = 0.9 < λC (red dashed line), λ = 1.0 = λC

(black solid line), and λ = 1.1 > λC (green dotted line). The system
size is N = 500. (b) Reduced Wilson loop W0 as a function of
magnetic field λ for system sizes N = 5D = 100 (dotted line) and
N = 5D = 500 (dashed line). The solid line is the result in Eq. (30)
for the thermodynamic limit.

and the system is equivalent to the standard 2D TFIM.
Since the Hamiltonian in Eq. (21) is not exactly solvable
in general, we use perturbation theories around the exactly
solvable limits at λ = 0 and λ → ∞. The corresponding
calculations are most efficiently performed by the method of
perturbative continuous unitary transformations (PCUT). The
general method is discussed in the literature [20,24] and we
illustrate its use by the example of our particular problem.

A. Perturbation theory at small magnetic field

In the limit of λ � 1, it is useful to work in the quasispin
representation because the unperturbed ground state |0〉 is then
a product state. The perturbation theory is based on Eq. (21),
where the second term is treated as a perturbation in the small
parameter λ � 1. Using the PCUT procedure described in
Appendix A 1, we obtain corrections to the Rényi entropy S∂A

2
for each case of partitioning in Fig. 3 and the Wilson loop WR

for a square region R. The Rényi entropy after the first three
corrections reads

S∂A
2 = (L − n) − L

ln 2

[
λ2

4
+ 63λ4

64
+ 503λ6

96
+ O(λ8)

]

− K

ln 2

[
27λ4

64
+ 737λ6

256
+ O(λ8)

]
, (22)

where the boundary ∂A contains n closed loops with a
combined length L and a total number of K corners that
are sufficiently far away from each other. The analogous
expression for the Wilson loop after the first three corrections
is

WR = exp

{
− L

[
λ2

8
+ λ4

2
+ 7697λ6

3072
+ O(λ8)

]

+K

[
3λ4

32
+ 89λ6

128
+ O(λ8)

]}
, (23)

where the square region R has a boundary length L = 4D and
a corner number K = 4.

Since K is merely an O(1) constant, the corrections
inside the exponential of Eq. (23) are linearly proportional
to the region dimension D. The Wilson loop has therefore a
functional form WR ∝ exp(−βD) that shows the presence of
topological order. Since the corrections to the Rényi entropy
are all linearly proportional to either L or K , the corrections to
the topological contribution proportional to n vanish. When
calculating the topological Rényi entropy, the corrections
proportional to L and K cancel because the combined values
of L and K in the cases (1) and (4) match those in the cases
(2) and (3) (see Fig. 3). The topological Rényi entropy is
therefore constant up to the third correction: ST

2 = 2 + O(λ8)
in the λ � 1 phase.

B. Perturbation theory at large magnetic field

In the limit of λ 
 1, it is useful to return to the physical
spin representation because the unperturbed ground state | ⇑ 〉
is then a product state. Up to an irrelevant additive constant and
an overall multiplicative factor λ−1, the 2D TFIM Hamiltonian
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in Eq. (21) becomes

Ĥ =
∑

i

(
1 − σ̂ z

i

) − λ−1
∑

s

∏
i∈s

σ̂ x
i . (24)

The perturbation theory is based on Eq. (24), where the second
term is treated as a perturbation in the small parameter λ−1 �
1. Using the PCUT procedure described in Appendix A 2, the
Rényi entropy after the first three corrections is

S∂A
2 = L

ln 2

[
λ−2

32
+ λ−4

1024
+ 115λ−6

2 359 296
+ O(λ−8)

]

− K

ln 2

[
35λ−6

4 718 592
+ O(λ−8)

]
. (25)

Since the corrections to the Rényi entropy are all linearly
proportional to either L or K , the corrections to the topological
contribution proportional to n vanish. The topological Rényi
entropy is therefore zero up to the third correction: ST

2 =
O(λ−8) in the λ 
 1 phase.

To obtain a nonzero result for the Wilson loop expectation
value 〈�(λ)|ŴR|�(λ)〉, we need to consider higher orders of
perturbation theory. Since ŴR is a product of D2 star operators
Âz

s , the first nonzero contribution to WR appears at order D2/2
in perturbation theory. At this order, ŴR links order D2/2
states to each other; therefore WR ∝ λ−D2

. This result can be
rearranged into the form WR ∝ exp[− ln(λ) D2] which shows
the absence of topological order.

C. Discussion of the phase transition

The results of the perturbation theories indicate two distinct
phases around the limits λ = 0 and λ → ∞. The phase at
λ � 1 is topologically ordered because the topological Rényi
entropy is nonzero and the Wilson loop follows a perimeter
law: WR ∝ exp(−βD). Conversely, the phase at λ 
 1 is
disordered because the topological Rényi entropy is zero and
the Wilson loop follows an area law: WR ∝ exp(−βD2).

The topological distinctness implies at least one phase
transition between the two limiting phases, and we argue that
there can only be one phase transition. Recall that the TCM
with external field is equivalent to the standard 2D TFIM
when κ = 1. In particular, the quantities ST

2 and WR that
describe topological order can be expressed in terms of the
2D TFIM correlation functions. A phase transition is therefore
possible only at the critical point of the 2D TFIM, which has
been determined by various numerical methods [25] to be at
λC ≈ 0.33. This critical field is also consistent with previous
numerical studies on the TCM with external field [12,19].

It is clear that the perturbation theories around the two limits
need to break down at λ = λC . On the other hand, the results
of the perturbation theories hold because the expansions in
Eqs. (22), (23), and (25) have particular structures: they each
contain two power series in λ that are proportional to the
boundary length L and the corner number K . It is plausible
that higher-order corrections preserve this form and only add
further terms to the respective power series. Terms that are
not linearly proportional to either L or K appear only when
the order of the perturbation theory exceeds the dimensions
D and d of the subsystems (regions). Since these dimensions
are macroscopic in the thermodynamic limit, the perturbation
theories can break down only at infinitely large orders. These

TABLE I. Estimates for the critical field λC obtained from the
power series of Eqs. (22), (23), and (25).

Estimates for λC

√
a1/a2

√
a2/a3

Equation (22) Series ∝ L 0.504 0.433
Series ∝ K 0.383

Equation (23) Series ∝ L 0.500 0.447
Series ∝ K 0.367

Estimates for λC

√
b2/b1

√
b3/b2

Equation (25) Series ∝ L 0.177 0.223
Series ∝ K

in turn become important at the radii of convergence where the
series actually diverge. If we write the power series in Eqs. (22)
and (23) as

∑∞
k=1 akλ

2k and those in Eq. (25) as
∑∞

k=1 bkλ
−2k ,

the critical field λC is given by

λC = lim
k→∞

√∣∣∣∣ ak

ak+1

∣∣∣∣ = lim
k→∞

√∣∣∣∣bk+1

bk

∣∣∣∣ . (26)

Although it is not possible to determine these limits from
a finite-order perturbation theory, we can give estimates for
the critical field by looking at the first couple of terms and
calculating analogous quantities. The resulting estimates are
summarized in Table I: they suggest 0.2 � λC � 0.5. This
range is fully consistent with λC ≈ 0.33.

The most remarkable result of this section is that the
topological Rényi entropy is constant in both limiting phases:
ST

2 = 2 in the topologically ordered phase and ST
2 = 0 in

the disordered phase. This happens because the perturbative
corrections to S∂A

2 do not contain any topological contributions
proportional to n in Eqs. (22) and (25). The topological Rényi
entropy is therefore an exclusive function of the phase: it can
change only if a phase transition takes place. We argue that
ST

2 is a good probe of topological order with the potential to
characterize topologically ordered phases.

VI. COMPARISON AND DISCUSSION

A. Perturbation theories in the quasi-1D case

Although the quasi-1D case is exactly solvable, it is
instructive to treat it with perturbation theories as well: the
results obtained this way are directly comparable with those in
the actual 2D case. Using a modified version of the PCUT
procedures described in the Appendix, we find analogous
expressions to those in Eqs. (22), (23), and (25). Without
including the detailed calculations, the Rényi entropies after
the first three corrections in the two limiting regimes are

S∂A
2 = (L − n) − L′

ln 2

[
λ2

4
+ 7λ4

64
+ 5λ6

96
+ O(λ8)

]

+ H ′

ln 2

[
5λ4

64
+ 3λ6

32
+ O(λ8)

]
(λ � 1), (27)

S∂A
2 = L′

ln 2

[
λ−2

8
+ λ−4

32
+ 47λ−6

3072
+ O(λ−8)

]

+ H ′

ln 2

[
λ−2

8
+ 7λ−4

128
+ 107λ−6

3072
+ O(λ−8)

]
(λ 
 1), (28)
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TABLE II. Estimates for the critical field λC obtained from the
power series of Eqs. (27), (28), and (29).

Estimates for λC

√
a1/a2

√
a2/a3

Equation (27) Series ∝ L′ 1.512 1.449
Series ∝ H ′ 0.913

Equation (29) Series ∝ 1 1.414 1.225
Estimates for λC

√
b2/b1

√
b3/b2

Equation (28) Series ∝ L′ 0.500 0.700
Series ∝ H ′ 0.661 0.798

where L′ is the combined horizontal length of the boundary
∂A, and H ′ is the number of horizontal sections with a
nonzero length contributing to L′. Since the corrections to
the Rényi entropies are all linearly proportional to either L′
or H ′, there are no topological corrections proportional to
n. The topological Rényi entropy takes the constant value
ST

2 = 2 + O(λ8) at λ � 1 and the constant value ST
2 =

O(λ−8) at λ 
 1.
When taking into account the first three corrections, the

reduced Wilson loop in the λ � 1 regime becomes

W0 = exp

{
−

[
λ2

4
+ λ4

8
+ λ6

12
+ O(λ8)

]}
, (29)

which indicates WR ∝ exp(−βD) and the presence of topolog-
ical order. In the λ 
 1 regime, the first nonzero contribution
to W0 appears at order D/2 in perturbation theory. This
contribution is W0 ∝ λ−D = exp[− ln(λ) D], which indicates
WR ∝ exp(−βD2) and the absence of topological order. Note
that the power series inside the exponential of Eq. (29) suggests
that W0 takes the exact form

W0 = exp

(
−

∞∑
k=1

λ2k

4k

)
= (1 − λ2)1/4 (30)

in the thermodynamic limit. This result is consistent with the
critical field λC = 1 obtained from the exact treatment.

The perturbative expansions in Eqs. (27), (28), and (29)
each contain at least one power series in λ. The critical field
λC marks the breakdown of the perturbation theories, and
it is again related to the appropriate radii of convergence.
The estimates obtained with the method of Sec. V C are
summarized in Table II: they suggest 0.5 � λC � 1.5. This
range is fully consistent with λC = 1.

B. Comparison with the actual 2D case

When discussing the phase transition in the actual 2D case,
we argued that it occurs at the critical point λC ≈ 0.33 of
the equivalent 2D TFIM and that the two limiting phases are
characterized by different constant values of the topological
Rényi entropy. The argument referred only to the perturbation
theories and the equivalence with the 2D TFIM. On the other
hand, the quasi-1D case is more versatile because an exact
solution is available. The exact treatment of the quasi-1D case
suggests a behavior that is entirely analogous to our claims for
the actual 2D case: the phase transition occurs at the critical
point λC = 1 of the equivalent 1D TFIM, and the topological
Rényi entropy is constant in the two limiting phases.

A direct comparison between the respective perturbation
theories also provides evidence that the 1D and the 2D
systems are similar in terms of their phase transitions.
The behaviors of the λC estimates and their relations to the
actual λC are entirely analogous in the two cases. First, the
estimates are all reasonably close to the actual λC . Second,
the estimates converge towards λC as the order is increased.
Third, the estimates from the λ � 1 series generally overes-
timate while those from the λ 
 1 series underestimate λC .
These similarities suggest that the phase transitions in the 1D
and the 2D cases are analogous; therefore the conclusions
drawn from the exact treatment in the quasi-1D case are
applicable to the physically more interesting actual 2D case as
well.

VII. CONCLUSIONS

In this paper, we investigated the quantum phase transition
between the topologically ordered and the disordered phases
of the TCM with external magnetic field. The variation in
topological order was probed via ST

2 : the topological Rényi
entropy of order 2. We determined the exact field dependence
of ST

2 in the computationally simpler case (quasi-1D case)
and established perturbation theories in the physically more
interesting case (actual 2D case). It was demonstrated that ST

2
takes distinct values in the two phases and has a discontinuity
at the quantum phase transition. We therefore argue that ST

2
is a good probe of topological order that can effectively
characterize topologically ordered phases.

The equivalence between the quasi-1D case of our problem
and the exactly solvable 1D TFIM is a quite remarkable tool
for obtaining exact results. So far it has provided us with an
exact treatment of the quasi-1D case and a corresponding exact
ST

2 (λ) dependence. In perspective, such an exact treatment
also makes it possible to search for critical exponents that
can reveal the topological character of the quantum phase
transition. Moreover, the exact time dependence of the system
far away from equilibrium can be studied, as for example, in
the case of a quantum quench [26,27].

It is important to point out that the Hamiltonian in Eq. (1)
preserves the Z2 gauge structure of the bare TCM for all
values of the magnetic field λ. This gauge structure justifies
the simplifying step of substituting the subsystem A by its
boundary ∂A when calculating ST

2 (thin subsystem). Indeed,
as long as the gauge structure is preserved by the perturbation,
the ground state can be expressed as a superposition of loop
configurations. For such a system, all the relevant topological
constraints are necessarily connected to the subsystem bound-
ary ∂A. For example, in our Z2 gauge theory, the topological
constraint manifests itself in the fact that there are an even
number of spins flipped on each boundary loop of ∂A. On
the other hand, considering only the boundary is the essential
simplification we need for deriving the Rényi entropy formula
in Eq. (11), which in turn makes the exact treatment in the
quasi-1D case and the perturbation theories in the actual 2D
case possible. The gauge structure also explains why the
topological Rényi entropy is conserved during a quantum
quench with a gauge-preserving Hamiltonian [27].

For a more generic Hamiltonian, the Z2 gauge structure is
broken. This means that the spin configurations with an odd
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number of spins flipped on a boundary loop of ∂A are allowed;
therefore the topological constraint is no longer connected to
the subsystem boundary ∂A. Note that we can also achieve an
effective gauge structure breaking by drawing the boundary
loops of ∂A on the dual lattice rather than on the real lattice
(see Fig. 4) because they can then intersect with the spin loops
on the dual lattice at an arbitrary number of points. To recover
the robustness of ST

2 in such a non-gauge-preserving case,
one needs to calculate it by using the original subsystem A

(thick subsystem). This complicates the situation because the
reduced density matrix ρA is not diagonal and so Eq. (11)
becomes invalid. However, we believe that if a generalization
of the Rényi entropy formula is found, the results in this paper
can be extended to the more generic non-gauge-preserving
case as well. This further step is crucial for verifying the
robustness of the topological Rényi entropy against generic
perturbations and hence proving its applicability as a nonlocal
order parameter for topologically ordered phases.
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APPENDIX: DETAILED DESCRIPTIONS OF THE PCUT
CALCULATIONS IN THE ACTUAL 2D CASE

1. PCUT calculation at small magnetic field

When considering Eq. (21) in the λ � 1 limit, we can use
the PCUT procedure to relate the eigenstates of the perturbed
Hamiltonian Ĥ with λ > 0 to those of the unperturbed
Hamiltonian Ĥ0 with λ = 0. This method relies on the concept
of elementary excitations. In the case of Ĥ0, these excitations
are flips of stars (quasispins) Az

s with an energy cost of
2 for each. They appear pairwise when switching on the
perturbation, and the perturbed Hamiltonian can be written
as

Ĥ = 2Q̂ + T̂+2 + T̂0 + T̂−2, (A1)

where Q̂ counts the number of excitations, and T̂n is the
component of the perturbation that changes the number of
excitations by n. It can be verified that [Q̂,T̂n] = nT̂n and that
T̂

†
n = T̂−n. The explicit forms of the terms in Eq. (A1) are

Q̂ = 1

2

∑
s

(
1 − Âz

s

)
, T̂+2 = −λ

∑
〈s,s ′〉

Â−
s Â−

s ′ ,

T̂0 = −λ
∑
〈s,s ′〉

(Â+
s Â−

s ′ + Â−
s Â+

s ′ ), T̂−2 = −λ
∑
〈s,s ′〉

Â+
s Â+

s ′ ,

(A2)

where Â±
s = (Âx

s ± iÂ
y
s )/2 are the standard spin raising and

lowering operators. In the basis of the Ĥ0 excitations, the

term Q̂ is diagonal, while the terms T̂n are nondiagonal. The
application of the PCUT involves an iterative sequence of
steps to construct a unitary basis transformation Û (l) such that
the transformed Hamiltonian Ĥ (l) = Û †(l)Ĥ Û (l) changes
continuously from Ĥ at l = 0 to a block-diagonal form at
l → ∞. The blocks in the asymptotic form Ĥ ′ ≡ Ĥ (∞)
correspond to subspaces of constant excitation number, and the
excitations can be found by solving the blocks. Note that these
excitations belong to the perturbed Hamiltonian Ĥ ; therefore
they are not the same as the original Ĥ0 excitations. To avoid
confusion, we refer to them as quasiexcitations.

According to the standard procedure of the PCUT [20,24],
we write Ĥ (l) = 2Q̂ + T̂+2(l) + T̂0(l) + T̂−2(l) as in Eq. (A1),
and define η̂(l) ≡ T̂+2(l) − T̂−2(l). If we then require Û (l)
to satisfy the equation ∂lÛ (l) = −Û (l)η̂(l), it follows that
∂lĤ (l) = [η̂(l),Ĥ (l)]. In terms of the components T̂n(l), this
equation for Ĥ (l) becomes

∂lT̂0(l) = 2[T̂+2(l),T̂−2(l)],

∂lT̂+2(l) = −4T̂+2(l) + [T̂+2(l),T̂0(l)], (A3)

∂lT̂−2(l) = −4T̂−2(l) + [T̂0(l),T̂−2(l)].

The last two equations show that T̂+2(∞) = T̂−2(∞) = 0,
which is consistent with the block-diagonal form of Ĥ (∞).
To solve the equations for Û (l) and T̂n(l) iteratively, we write
these quantities in a series as

Û (l) =
∞∑

k=0

Û (k)(l), T̂n(l) =
∞∑

k=1

T̂ (k)
n (l). (A4)

The equations for Û (l) and T̂n(l) then take the forms

∂lÛ
(k)(l) = −

k−1∑
j=0

Û (j )(l)
{
T̂

(k−j )
+2 (l) − T̂

(k−j )
−2 (l)

}
,

∂lT̂
(k)

0 (l) = 2
k−1∑
j=1

[
T̂

(j )
+2 (l),T̂ (k−j )

−2 (l)
]
, (A5)

∂lT̂
(k)
+2 (l) = −4T̂

(k)
+2 (l) +

k−1∑
j=1

[
T̂

(j )
+2 (l),T̂ (k−j )

0 (l)
]
,

∂lT̂
(k)
−2 (l) = −4T̂

(k)
−2 (l) +

k−1∑
j=1

[
T̂

(j )
0 (l),T̂ (k−j )

−2 (l)
]
,

and the corresponding starting conditions at l = 0 become

Û (k)(0) =
{

1 (k = 0),

0 (k � 1),
(A6)

T̂ (k)
n (0) =

{
T̂n (k = 1),

0 (k � 2).

If we apply the PCUT up to second order in λ, the relevant
terms in the series of Eq. (A4) are

Û (0)(l) = 1, Û (1)(l) = − 1
4 (T̂+2 − T̂−2)(1 − e−4l),

Û (2)(l) = 1
32 (T̂+2 − T̂−2)2(1 − e−4l)2

− 1
16 [T̂+2 + T̂−2, T̂0][1 − (1 + 4l) e−4l], (A7)

T̂
(1)

0 (l) = T̂0, T̂
(2)

0 (l) = 1
4 [T̂+2,T̂−2](1 − e−8l),
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T̂
(1)
±2 (l) = T̂±2 e−4l , T̂

(2)
±2 (l) = ±[T̂±2,T̂0]l e−4l ,

the basis transformation Û ≡ Û (∞) becomes

Û = 1 + 1
4 (T̂−2 − T̂+2) + 1

16 ([T̂0,T̂−2] − [T̂+2,T̂0])

+ 1

32

(
T̂+2T̂+2 + T̂−2T̂−2 − T̂+2T̂−2 − T̂−2T̂+2

)
, (A8)

and the asymptotic Hamiltonian takes the form

Ĥ ′ = 2Q̂ + T̂0 + 1
4 [T̂+2,T̂−2], (A9)

which indeed conserves the number of quasiexcitations. The
same procedure can be continued to arbitrary order in λ, but
the calculations quickly become cumbersome.

Since the ground state |�(λ)〉 of Ĥ is the only state with no
quasiexcitations, it has its own block in Ĥ ′. To express this state
in terms of the physically transparent Ĥ0 excitations, we use
the basis transformation: |�(λ)〉 = Û |0〉. When calculating the
first two perturbative corrections to the ground state at λ = 0,
the perturbed state |�(λ)〉 needs to be properly normalized up
to λ4. Applying the PCUT up to fourth order with the aid of a
computer, the perturbed ground state becomes

|�(λ)〉 = Û |0〉 =
[

1 − N2λ2

16
+ (N4 − 95N2)λ4

512

]
|0〉

+
[
λ

4
− (N2 − 15)λ3

64

] ∑
2N2

|× ×〉

+ λ2

4

∑
2N2

∣∣∣∣× ·
· ×

〉
+ λ2

8

∑
2N2

|× · × 〉

+ λ2

8

∑
N2

∣∣∣∣× ×
× ×

〉
+ λ2

16

∑
2N4−9N2

∣∣∣∣
[×

×
][×

×
]〉

,

(A10)

where the equivalent states related to each other by transla-
tional and rotational symmetries are labeled by the relative
positions of the star excitations (×) in them, and the number
of states in each equivalence class is given by the number
below the corresponding sum. The notation [· · ·][· · ·] means
that there are two clusters of excitations that are independent
of each other: they are not in a relative position characterizing
any other equivalence class.

The ground state in Eq. (A10) is indeed properly normalized
up to fourth order in λ because

〈�(λ)|�(λ)〉 =
[

1 − N2λ2

16
+ (N4 − 95N2)λ4

512

]2

+ 2N2

[
λ

4
− (N2 − 15)λ3

64

]2

+ 2N2

(
λ2

4

)2

+ (
2N2 + N2

) (
λ2

8

)2

+ (2N4 − 9N2)

(
λ2

16

)2

= 1 + O(λ6). (A11)

To calculate the Rényi entropy, we need to evaluate the
expectation values of the products appearing in Eq. (11) for

the ground state. The expectation values having a contribution
up to λ4 to the Rényi entropy are

〈× ×〉 = 2

[
λ

4
− (N2 − 15)λ3

64

] {[
1 − N2λ2

16

]

+ 4

(
λ2

4

)
+ 4

(
λ2

8

)
+ (

2N2 − 9
) (

λ2

16

) }

= λ

2
+ 15λ3

16
+ O(λ5), (A12)

〈× ·
· ×

〉
= 2

(
λ2

4

)
+ 4

[
λ

4

]2

= 3λ2

4
+ O(λ4),

〈× · × 〉 = 2

(
λ2

8

)
+ 2

[
λ

4

]2

= 3λ2

8
+ O(λ4),

〈× ×
× ×

〉
= 2

(
λ2

8

)
+ 4

[
λ

4

]2

= λ2

2
+ O(λ4),

〈[×
×

][×
×

]〉
= 2

(
λ2

16

)
+ 2

[
λ

4

]2

= λ2

4
+ O(λ4),

where the notation is analogous to that in Eq. (A10). For
example, 〈× ×〉 ≡ 〈�(λ)|Âx

s Â
x
s ′ |�(λ)〉, where s and s ′ are

any two nearest-neighbor stars. If the boundary ∂A consists of
n closed loops with a combined length L and a total number
of K corners that are sufficiently far away from each other, the
Rényi entropy is given by

S∂A
2 = (L − n) − log2

(
1 + L 〈× ×〉2 + K

〈× ·
· ×

〉2

+ (L − K)〈× · × 〉2 + L(L − 3)

2

〈[×
×

][×
×

]〉2)

= (L − n) − 1

ln 2

[
L

4
λ2 + 63L + 27K

64
λ4 + O(λ6)

]
.

(A13)

The perturbative corrections are linearly proportional to either
L or K , and they are independent of n.

Now we consider a Wilson loop for a square region R

with boundary length L = 4D and corner number K = 4.
According to Eq. (4), the Wilson loop is WR = 1 for the
unperturbed ground state |0〉 because Az

s = +1 for all s. The
structure of the perturbed ground state |�(λ)〉 in Eq. (A10)
shows that WR can only be −1 instead of +1 if an odd number
of excitations are inside R. Taking into account all possibilities
up to fourth order in λ, the Wilson loop becomes

WR = 1 − 2

{
L

[
λ

4
− (N2 − 15)λ3

64

]2

+ (2L − K)

(
λ2

4

)2

+ 2L

(
λ2

8

)2

+ K

(
λ2

8

)2

+L (2N2 − L − 6)

(
λ2

16

)2
}
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FIG. 7. Equivalence classes for the relative positions of the star
excitations (×) at the level of the third corrections (at order λ6).

= 1 − L

8
λ2 −

(
L

2
− L2

128
− 3K

32

)
λ4 + O(λ6)

= exp

{
−L

[
λ2

8
+ λ4

2
+ O(λ6)

]
+ K

[
3λ4

32
+ O(λ6)

]}
.

(A14)

The perturbative corrections inside the exponential are linearly
proportional to either L or K .

The expressions in Eqs. (A13) and (A14) give the first two
corrections to S∂A

2 and WR . With the aid of a computer, the third
corrections proportional to λ6 can be found in a similar manner.
In this case, the state |�(λ)〉 must be properly normalized up
to sixth order in λ, and one needs to consider all the relative
excitation positions shown in Fig. 7. Without including the
detailed calculations, the final results for the Rényi entropy
and the Wilson loop are

S∂A
2 = (L − n) − L

ln 2

[
λ2

4
+ 63λ4

64
+ 503λ6

96
+ O(λ8)

]

− K

ln 2

[
27λ4

64
+ 737λ6

256
+ O(λ8)

]
, (A15)

WR = exp

{
− L

[
λ2

8
+ λ4

2
+ 7697λ6

3072
+ O(λ8)

]

+K

[
3λ4

32
+ 89λ6

128
+ O(λ8)

] }
. (A16)

The features noticed after the first two corrections remain intact
after the third corrections as well.

2. PCUT calculation at large magnetic field

When considering Eq. (24) in the μ ≡ λ−1 � 1 limit, the
PCUT procedure is entirely analogous to the one described in
Appendix A1. The elementary excitations of the unperturbed
Hamiltonian with μ = 0 are flips of physical spins σ z

i with
an energy cost of 2 for each. The perturbed Hamiltonian with
μ > 0 can be written as

Ĥ = 2Q̂ + T̂+4 + T̂+2 + T̂0 + T̂−2 + T̂−4, (A17)

where the respective terms take the explicit forms

Q̂ = 1

2

∑
i

(
1 − σ̂ z

i

)
,

(A18)
T̂n = −μ

∑
s

∑
±

∏
i∈s

σ̂±
i .

The sum in ± contains all inequivalent products of the four
σ̂±

i operators in which the number of the σ̂+
i factors is 2 − n/2

and that of the σ̂−
i factors is 2 + n/2. Applying the PCUT with

η̂(l) ≡ T̂+4(l) + T̂+2(l) − T̂−2(l) − T̂−4(l) up to fourth order,
we find that the perturbed ground state which is properly
normalized up to μ4 is given by

|�(λ)〉 =
[

1 − N2μ2

128
+

(
N4 − 62N2

9

)
μ4

32 768

]
| ⇑ 〉

+
[
μ

8
−

(
N2 − 2

3

)
μ3

1024

] ∑
N2

∣∣∣∣∣
◦

◦ ◦
◦

〉

+ μ2

48

∑
2N2

∣∣∣∣∣
◦ ◦

◦ · ◦
◦ ◦

〉

+ μ2

64

∑
1
2 (N4−5N2)

∣∣∣∣∣
[ ◦

◦ ◦
◦

][ ◦
◦ ◦

◦

]〉
, (A19)

where the equivalent states are labeled by the relative positions
of the spin excitations (◦) in them [cf. Eq. (A10)].

We now consider a subsystem with a boundary ∂A

containing L spins and L stars acting on these spins. The total
number of corners is K as above. The diagonal elements of
the density matrix ρ∂A can be obtained directly in the basis of
the physical spins σ z

i . The element corresponding to σ z
i = +1

for all L spins (no star excitations on the boundary) is

(ρ∂A)00 =
[

1 − N2μ2

128
+

(
N4 − 62N2

9

)
μ4

32 768

]2

+ (N2 − L)

[
μ

8
−

(
N2 − 2

3

)
μ3

1024

]2

+ (2N2 − 3L)

(
μ2

48

)2

+ 1

2
[N4 − N2 (2L + 5) + (L2 + 7L)]

(
μ2

64

)2

= 1 − L

64
μ2 −

(
5L

8192
− L2

8192

)
μ4 + O(μ6),

(A20)

while the one corresponding to σ z
i = −1 for any two neigh-

boring spins and σ z
i = +1 for the remaining L − 2 spins (one

star excitation on the boundary) is

(ρ∂A)11 =
[
μ

8

]2

= μ2

64
+ O(μ4). (A21)

Note that there are L ways of choosing two neighboring spins
from ∂A. Since the contribution of the remaining diagonal
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FIG. 8. Equivalence classes for the relative positions of the spin
excitations (◦) at the level of the third corrections (at order μ6).

elements is O(μ6) to the Rényi entropy, we find that

Tr
[
ρ̂2

∂A

] = (ρ∂A)2
00 + L(ρ∂A)2

11

= 1 − L

32
μ2 −

(
L

1024
− L2

2048

)
μ4 + O(μ6),

(A22)

and the Rényi entropy takes the form

S∂A
2 = 1

ln 2

[
L

32
μ2 + L

1024
μ4 + O(μ6)

]
. (A23)

The perturbative corrections are again linearly proportional
to the boundary length L. Furthermore, there are no terms
proportional to K in the first two corrections determined
here.

With the aid of a computer, the third correction to S∂A
2 can

be calculated in a similar manner. In this case, the state |�(λ)〉
must be properly normalized up to sixth order in μ, and one
needs to consider all the relative excitation positions shown in
Fig. 8. Without including the detailed calculations, the final
result for the Rényi entropy is

S∂A
2 = L

ln 2

[
λ−2

32
+ λ−4

1024
+ 115λ−6

2 359 296
+ O(λ−8)

]

− K

ln 2

[
35λ−6

4 718 592
+ O(λ−8)

]
. (A24)

After the third correction, there is a corner contribution propor-
tional to K , but still no topological contribution proportional
to n.
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