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ON EIGENSPACES OF SOME COMPOUND COMPLEX UNIT GAIN GRAPHS

FRANCESCO BELARDO AND MAURIZIO BRUNETTI∗

Abstract. Let T be the multiplicative group of complex units, and let L(Φ) denote the Laplacian

matrix of a nonempty T-gain graph Φ = (Γ,T, γ). The gain line graph L(Φ) and the gain subdivision

graph S(Φ) are defined up to switching equivalence. We discuss how the eigenspaces determined by

the adjacency eigenvalues of L(Φ) and S(Φ) are related with those of L(Φ).

1. Introduction

Let Γ be a nonempty simple graph with vertex set V (Γ) = {v1, v2, . . . , vn}, and let
#–

E(Γ) be the set of

oriented edges. Such set contains two copies of each edge of Γ with opposite directions. We write eij for

the oriented edge from vi to vj . Given any group G, a (G-)gain graph is a triple Φ = (Γ,G, γ) consisting

of an underlying graph Γ, the gain group G and a map γ :
#–

E(Γ)→ G such that γ(eij) = γ(eji)
−1 called

the gain function. Let 1 denote the identity element of G. The gain graph Φ is said to be balanced if,

for every directed cycle ~C = ei1i2 . . . eiki1 in Γ (if any), we have γ(ei1i2)γ(ei2i3) . . . γ(eiki1) = 1. Most

of the concepts defined for simple graphs directly extend to gain graphs. For instance, we say that a

gain graph (Γ,G, γ) is k-cyclic if the underlying graph Γ is connected and k = m − n + 1. As usual,

the words unicyclic and bicyclic stand as synonyms for 1-cyclic and 2-cyclic respectively. Gain graphs

(also known in the literature as voltage graphs) are studied in many research areas (see [27] and the

annotated bibliography [28]).

In particular, a complex unit gain graph is a G-gain graph with G = T, the multiplicative group of

all complex numbers with norm 1. The theory of complex unit gain graphs embodies those of signed
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graphs and mixed graphs (as defined in [16]). In fact, a signed graph (resp. mixed graph) can be

seen as a particular T-gain graph with gains in the subset {±1} (resp. {1,±i}) of T. Clearly, every

Tn-gain graph, where n ∈ N and Tn denotes the group of n-th roots of unity, can be regarded as a

complex unit gain graph. Empty graphs can be thought as T-gain graph equipped with the empty

gain function ∅→ T and are obviously balanced.

Over the last few years, there has been a growing interest for the study of matrices and eigenvalues

associated to T-gain graphs (see, for instance [3, 5, 9, 12, 17, 18, 20, 21, 22, 25]).

In [23], Reff introduced a notion of orientation for gain graphs in order to provide a suitable setting

to build up line graphs of gain graphs. In the wake of this inspiring paper, some work has been

done to develop a spectral theory for line and subdivision graphs of T-gain graphs [1, 2, 10, 11]. A

fundamental result in this context is the mutual interrelationship between the Laplacian spectrum of

a T-gain graph Φ and the adjacency spectra of a spectral line graph L(Φ) and a subdivision graph

S(Φ) determined by Φ. The relationship is expressed by Theorem 1.1 proved in [1] for T4-gain graphs,

but the proof for complex unit gain graphs is formally identical. In the statement of Theorem 1.1 and

throughout the paper, we denote by A(Φ) and L(Φ) the adjacency and the Laplacian matrix associate

to a T-gain graph Φ, and by

φ(Φ, x) = det(xI −A(Φ)) (resp. ψ(Φ, x) = det(xI − L(Φ)))

its adjacency (resp. Laplacian) characteristic polynomial.

Theorem 1.1. Let Γ be the underlying graph of a nonempty T-gain graph Φ of order n and size m.

The following equalities of polynomials hold.

(1) φ(L(Φ), x) = (x+ 2)m−nψ(Φ, x+ 2);

(2) φ(S(Φ), x) = xm−nψ(Φ, x2).

Since the roots of the Laplacian characteristics polynomial are all real and nonnegative, the mini-

mum possible (adjacency) eigenvalue of L(Φ) is −2. We have recently proved in [2] that such minimum

is attained whenever Φ has a connected component which is neither a tree or a balanced unicyclic gain

graph. In these cases, we detected a basis for the −2-eigenspace by using the star complement tech-

nique and generalizing the routine successfully applied in the past to simple graphs (see [13, 14, 15])

and to signed graphs (see [6, 7]).

In Section 2, we recall how to associate a line graph L(Φ) and a subdivision S(Φ) to a T-gain

graph Φ. These two compound graphs are well-defined once we choose a fixed incidence matrix for

Φ = (Γ,T, γ) (or, adopting the terminology of [11], a suitable represented T-phase matrix of Γ). In

this paper, we show how the eigenspaces of L(Φ) are related with those of A(L(Φ)) and A(S(Φ)). The

main results are summarized in Theorems 4.5, 4.8, 4.9 and 4.10.

It turns out that, apart from at most the minimal eigenvalue, the eigenspaces of any pair of matrices

in the set T = {L(Φ), A(L(Φ)), A(S(Φ))} can be quickly deduced from the matrix H chosen to define
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L(Φ) and S(Φ), and from the eigenspaces of the remaining one in T . Our way of arguing generalizes

to complex unit gain graphs the corresponding results in [24] involving unsigned graphs and those in

[7] holding for signed graphs. The remainder of the paper is organized as follows. Section 2 contains

preliminaries on complex unit graphs, on the associated line and subdivision graphs built from a fixed

incidence matrix, and on the procedure investigated in [2] to determine a basis for the (-2)-eigenspace

of A(L(Φ)) when −2 belongs to its spectrum. Section 3 is devoted to a comparison between the

eigenspaces of L(Φ) and those of A(L(Φ)). Section 4 focuses on the eigenspaces of the subdivision

graph. In the short Section 5 it is studied how the eigenbases of the compound graphs behave when

Φ is replaced by a switching equivalent graph. Finally, Section 6 provides the explicit computation of

some eigenspaces.

2. Preliminaries

2.1. Complex unit gain graphs.

From now on, a T-gain graph will be simply denoted by Φ = (Γ, γ). Given a nonempty T-gain

graph Φ = (Γ, γ) of order n and size m > 0, we adopt the notation

V (Γ) = { v1, . . . , vn } and E(Γ) = { e1, . . . , em }

for the set of vertices and the set of (unoriented) edges of Γ respectively.

Let Mm,n(C) be the set of m× n complex matrices. For a matrix A = (aij) ∈Mm,n(C), we denote

by A∗ = (a∗ij) ∈Mn,m(C) its conjugate (or Hermitian) transpose; i.e. a∗ij = aji.

The adjacency matrix A(Φ) = (aij) ∈Mn,n(C) of a T-gain graph Φ = (Γ, γ) is defined by

aij =

γ(eij) if vi is adjacent to vj ,

0 otherwise.

If vi is adjacent to vj , then aij = γ(eij) = γ(eji)
−1 = γ(eji) = aji. Consequently, A(Φ) is Hermitian

and its eigenvalues λ1(Φ) ≥ · · · ≥ λn(Φ) are real. The Laplacian matrix L(Φ), defined as D(Γ)−A(Φ),

where D(Γ) = diag(d(v1), . . . , d(vn)) stands for the diagonal matrix of vertex degrees of Γ, is Hermitian

as well, and all its eigenvalues µ1(Φ) ≥ · · · ≥ µn(Φ) are nonnegative [22]. By definition, the spectrum

Spec(M(Φ)) is the multiset of eigenvalues of M(Φ), where M ∈ {A,L}. For each λ ∈ R, we set

EM (λ,Φ) = {x ∈ C|V (Γ)| |M(Φ)x = λx},

and denote by mM(Φ)(λ) its dimension as a C-vector space. Clearly, mM(Φ)(λ) > 0 if and only if

λ ∈ Spec(M(Φ)).

A switching function for a gain graph Φ is a map ζ : V (Γ)→ T. Switching a nonempty T-gain graph

Φ = (Γ, γ) means replacing γ by γζ , where γζ(eij) = ζ(vi)
−1γ(eij)ζ(vj), and obtaining in this way the

new T-gain graph Φζ = (Γ, γζ). We say that Φ1 = (Γ, γ1) and Φ2 = (Γ, γ2) (and their corresponding

gain functions) are switching equivalent if there exists a switching function ζ such that Φ2 = Φζ
1. By

writing Φ1 ∼ Φ2 we mean that Φ1 and Φ2 are switching equivalent.
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To each switching function ζ we associate a diagonal matrix D(ζ) = diag(ζ(v1), . . . , ζ(vn)). Note

that

(2.1) M(Φ2) = D(ζ)∗M(Φ1)D(ζ) for M ∈ {A,L};

therefore,

Spec(M(Φ1)) = Spec(M(Φ2)), whenever Φ1 ∼ Φ2.

One of the key notions in the theory of gain graphs (and of the more general theory of biased graphs

as well) is balance (see [27]). An oriented edge eihik ∈
#–

E(Γ) is said to be neutral for Φ = (Γ, γ) if

γ(eihik) = 1. Similarly, the walk W = ei1i2ei2i3 · · · eil−1il is said to be neutral if its gain

γ(W ) := γ(ei1i2)γ(ei2i3) · · · γ(eil−1il)

is equal to 1. We write (Γ, 1) for the T-gain graph with all neutral edges.

An edge set S ⊆ E is said to be balanced if no nonneutral directed cycles with edges in S exist. A

subgraph is balanced if its edge set is balanced (see [1, 5, 22] for further details).

By [25, Theorem 2.8] we get the following proposition.

Proposition 2.1. A connected T-gain graph Φ of order n is balanced if and only if its least Laplacian

eigenvalue µn(Φ) is 0.

The next proposition specializes [23, Lemma 2.2] to T-gain graphs.

Proposition 2.2. Let Φ1 = (Γ, γ1) and Φ2 = (Γ, γ2) be T-gain graphs with the same underlying graph

Γ. Φ1 and Φ2 are switching equivalent if and only if, for every cycle C in Γ, there exists a directed

cycle with base vertex v such that γ1(~Cv) = γ2(~Cv).

By Proposition 2.2 it follows that a gain graph Φ is balanced if and only if all its directed cycles

are neutral. Furthermore, the following corollary holds.

Corollary 2.3. A nonempty T-gain graph Φ = (Γ, γ) is balanced if and only if it is switching equivalent

to (Γ, 1).

The last result of this section is a consequence of Proposition 2.1 and Corollary 2.3.

Corollary 2.4. Let Φ be any complex unit gain graph. The number of its balanced components is

equal to mL(Φ)(0), the multiplicity of 0 as a Laplacian eigenvalue of Φ.

2.2. Line and subdivision graphs associated to T-gain graphs.

Unless otherwise specified, Φ = (Γ, γ) will always denote a T-gain graph of order n and size m > 0.

We say that the n×m complex matrix H(Φ) = (ηve) with entries in T∪ {0} is an incidence matrix of

Φ if

ηvieh =

−ηvjehγ(eij) if the endpoints of eh are precisely vi and vj ,

0 otherwise.
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In the case when eh joins vi and vj , we also require that ηvieh is nonzero. We say ‘an’ incidence matrix,

because by multiplying each column by any element in T, we still obtain an incidence matrix of the

same gain graph. Indeed, Proposition 2.5 says that all the other possible incidence matrices can be

obtained from a fixed H(Φ) in that way.

Proposition 2.5. [2, Proposition 2.10] Let H(Φ) = (ηve) and H(Φ)′ = (η′ve) be two incidence matrices

both related to the T-gain graph Φ = (Γ, γ). There exists an m×m diagonal matrix S with entries in

T ∪ {0} such that H(Φ)′ = H(Φ)S and S∗S = I.

By definition (or equivalently by Proposition 2.5), for a fixed edge eh ∈ E(Γ) with endpoints vi and

vj , the nonzero elements on the corresponding column of H(Φ), i.e. ηvieh and ηvjeh , satisfy

(ηvieh , ηvjeh) = (eiθγ(eij), e
i(θ+π))

for a suitable eiθ ∈ T (depending on h).

In what follows, we denote by H a specific incidence matrix related to the T-gain graph Φ = (Γ, γ).

We next explain how H and an involution s ∈ {−1, 1} ⊂ C determine a T-gain structure on the line

graph L(Γ). It is well-known that V (L(Γ)) = E(Γ), and ef ∈ E(L(Γ)) whenever e and f share an

endpoint. We denote by LsH(Φ) the T-gain graph (L(Γ), γL
s

H ), where

γL
s

H : ef ∈ #–

E(L(Γ)) −→ s ηweηwf ∈ T,

and w is the endpoint shared by the edges e and f . It is easy to verify that γL
s

H is a gain function. In

fact,

γL
s

H (fe) = γL
s

H (ef).

As recalled in [2, Section 2.2] and [8, Remark 2.1], there is not a scientific consensus on which compound

graph between L1
H(Φ) and L−1

H (Φ) enjoys nicer properties. In [8] they are respectively named spectral

line graph and combinatorial line graph (it is also instructive the comprehensive discussion in [10,

Section 1] on the several definitions of gain line graphs existing in literature). In this paper, we only

deal with LH(Φ) := L1
H(Φ), and simply write γLH to denote γL

1

H . Note, in any case, that

λ ∈ Spec(A(LH(Φ)))⇐⇒ −λ ∈ Spec(A(L−1
H (Φ)));

moreover,

EA(λ,LH(Φ)) = EA(−λ,L−1
H (Φ)).

When γ(
#–

E(Γ)) ⊆ {−1, 1}, i.e. when the T-gain graph Φ is actually a signed graph, the map γLH assigns

to L(Γ) the same signature prescribed in [6, Section 1] and [7, Section 2].

Theorem 2.6. [23, Theorem 5.1] Let H be one of the incidence matrices related to the T-gain graph

Φ = (Γ, γ). Then,

H(Φ)∗H(Φ) = 2Im +A(LH(Φ)).
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We end this section with two results essentially encapsulating [1, Proposition 5] and [2, Propositions

2.12 and 2.13].

Proposition 2.7. Let H and H′ be two of incidence matrices both associated to the same T-gain graph

Φ = (Γ, γ).

(1) LH(Φ) and LH′(Φ) share the same adjacency spectrum. Moreover, if S is the diagonal matrix

such that H(Φ)′ = H(Φ)S, then

A(LH′(Φ)) = S∗A(LH(Φ))S.

(2) Every T-gain graph being switching equivalent to LH(Φ) is a line graph associated to Φ.

Proposition 2.8. Line graphs of switching equivalent T-gain graphs Φ1 = (Γ, γ1) and Φ2 = (Γ, γ2)

are switching equivalent. Moreover, if ζ : V (Γ)→ T is the switching function such that Φ2 = Φζ
1, and

H1 is an incidence matrix for Φ1, then D(ζ)∗H1 is an incidence matrix for Φ2, and

LH1(Φ1) = LD(ζ)∗H1
(Φ2).

From Propositions 2.7 and 2.8, it follows that all line graphs built from any representative of a

switching equivalence class of T-gain graphs share the same A-spectrum and the same L-spectrum.

That is why it has been possible to drop the incidence matrix H out of notation in Theorem 1.1.

For any nonempty graph Γ, the subdivision graph S(Γ) is obtained from Γ by replacing each of its

edges by a path of length 2, or, equivalently, by inserting an additional vertex into each edge e of Γ.

As it is usual in this context, we denote by e the additional vertex inserted on the homonymous edge.

For the set V (S(Γ)) we choose the ordering {v1, . . . , vn, e1, . . . , em}.

Any incidence matrix H = (ηve) of Φ induces a gain structure on S(Γ) through the map γSH :
#–

E(S(Γ))→ T defined in the following way:

γSH(ve) = γSH(ev) = ηve

for any v ∈ V (Γ) and for any e ∈ E(Γ).

According to the chosen vertex ordering the adjacency matrix of the gain graph SH(Φ) = (S(Γ), γSH)

is

(2.2) A(SH(Φ)) =

(
On H

H∗ Om

)
.

The following proposition can be regarded as the subdivision counterpart of Proposition 2.7.

Proposition 2.9. Let H and H′ = HS be two incidence matrices of a T-gain graph Φ = (Γ, γ), with

S = diag(s1, . . . , sm). Then,

(1) A(SH(Φ)) and A(SH′(Φ)) are similar and share the same adjacency spectrum. In fact, SH′(Φ) =

SH(Φ)ζ
H′
H , the switching function ζH′

H : V (SH(Φ))→ T being

ζH′
H (vh) = 1 for 1 ≤ h ≤ n, and ζH′

H (ek) = sk for 1 ≤ k ≤ m.
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(2) Subdivision graphs of two nonempty switching equivalent T-gain graphs Φ1 = (Γ, γ1) and Φ2 =

(Γ, γ2) are switching equivalent. More explicitly, if H2 is a fixed incidence matrix of Φ2 and γ2 =

γζ1 , then SH2(Φ2) = SH1(Φ1)Z , where H1 := D(ζ)H2 and the switching map Z : V (SH1(Φ1))→
T is defined as follows:

Z(vh) = ζ(vh), for 1 ≤ h ≤ n, and Z(ek) = 1, for 1 ≤ k ≤ m.

Proof. The proofs of [1, Propositions 7 and 8] can be followed verbatim, once T4 is replaced with T
whenever it occurs. �

Remark 2.10. As it happens for ordinary graphs, a complex unit gain graph Φ is connected if and

only if L(Φ) and S(Φ) are both connected. Moreover, since for a (disjoint) union Φ1 ∪̇Φ2 of complex

unit graphs, we have L(Φ1 ∪̇Φ2) = L(Φ1) ∪̇ L(Φ2) and S(Φ1 ∪̇Φ2) = S(Φ1) ∪̇ S(Φ2), in a comparison

of eigenspaces it would not be really restrictive to assume that Φ, and a fortiori L(Φ) and S(Φ), are

connected; in fact, the spectral results can be extended component-wise to disconnected T-gain graphs.

2.3. The eigenspace EA(−2,L(Φ)).

Let Φ = (Γ, γ) be a nonempty k-cyclic complex unit gain graph, and let L(Φ) = (L(Γ), γL) be

the associated line graph arising from a fixed incidence matrix H of Φ. We denote by Φ̂ the unique

minimal k-cyclic subgraph of Φ. The graph Φ̂ is known as the base of Φ, and can be also characterized

as the only k-cyclic subgraph of Φ with no pendant vertices.

In this section we assume that −2 belongs to Spec(A(L(Φ)). As a consequence of Theorem 1.1(1), it

is not hard to show that this is equivalent to require that Φ is neither a tree nor unbalanced unicyclic.

The same fact can also be directly deduced from [2, Theorem 3.1].

The eigenspace EA(−2,L(Φ)) is described in every detail in [2, Section 3], and the reader is referred

to it for all further information. Here, we extract just what is needed to make this paper reasonably

self-contained.

It can be proved that there exists a spanning subgraph Ψ = (Λ, γ| ~E(Λ)) of Φ satisfying the following

properties:

(i) L(Ψ) is connected;

(ii) −2 6∈ Spec(A(L(Ψ)));

(iii) −2 ∈ Spec(A(L(Ψe))) for each e ∈ E(Γ) \ E(Λ), where Ψe is a one-edge extension of Ψ, i.e.

Ψe = (Λe, γ| ~E(Λe)
), with V (Λe) = V (Λ) and E(Λe) = E(Λ) ∪ {e}

A spanning subgraph Ψ satisfying (i)-(iii) is known as a complex unit foundation. Complex unit

foundations are either trees (if Φ is balanced) or unbalanced unicyclic graphs. Moreover, Ψ̂e can either

be a balanced cycle, or an ∞-graph with two unbalanced cycles, or a dumbbell with two unbalanced

cycles, (see Fig. 1). Recall that a dumbbell is a graph consisting of two disjoint cycles joined by a

nontrivial path; whereas an ∞-graph consists of two cycles with just one vertex in common.
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Figure 1. Vertex and edge labeling for the three types of cores Θe.

Let now xe be a (−2)-eigenvector of L(Ψe). Clearly, each of its coordinates is labelled by a suitable

edge in Ψe. Since the multiplicity of −2 in Spec(A(L(Ψe))) is 1, every (−2)-eigenvector of L(Ψe) is

proportional to xe; in particular, it shares with xe the same nonzero versus zero pattern.

In view of the latter observation, we can distinguish two types of edges in Ψe. We say that an edge

is heavy (resp. light) if the corresponding entry in xe is nonzero (resp. zero). The unique subgraph Θe

of Ψe induced by its heavy edges will be called the core of Ψe. It turns out that

(i) the core Θe is precisely the base Ψ̂e of Ψe; therefore, it can either be a balanced cycle, or an

∞-graph with two unbalanced cycles, or a dumbbell with two unbalanced cycles;

(ii) the edge e belongs to some cycle of Θe = Ψ̂e; hence, it is heavy for L(Ψe);

(iii) the vector xe can be extended to a (−2)-eigenvector ye of A(L(Φ)) by inserting zeros at the

entries corresponding to edges in E(Γ) \ E(Λe);

(iv) the set {ye | e ∈ E(Γ) \ E(Λ)} forms a basis for EA(−2,L(Φ)).

The components of any nonzero generator of EA(−2,L(Θe)) are described by the following three

theorems.

Theorem 2.11. [2, Theorem 3.5] Let the core Θe = (C, γ| ~E(C)) be a balanced cycle. After labeling the

q ≥ 3 vertices of C and its edges as in Fig. 1, a generator a = (a0, a1, . . . , aq−1)> of the −2-eigenspace

of A(L(Θe)) is given by the formulæ

ai = (−1)i
[ i∏
s=1

ν(s)
]
a0 for 1 ≤ i ≤ q − 1 and a0 6= 0.

where the component ai corresponds to the edge ei, and

ν(i) = γL(ei−1ei) = ηiei−1
ηiei ∈ T for 1 ≤ i ≤ q − 1.
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We now fix some notation to investigate the cases when the underlying graph of Θe consists of two

cycles C ′ and C ′′ (of length q′ and q′′ respectively) joined by a path P of length p ≥ 0. In literature,

this bicyclic graph is often denoted by B(q′, p, q′′) (see, for instance, [4, 13]). We label vertices and

edges of Θe as follows:

V (C ′) = {v′0, . . . , v′q′−1}, V (C ′′) = {v′′0 , . . . , v′′q′′−1},

E(C ′) = {e′i = v′iv
′
i+1 |0 ≤ i ≤ q′ − 1} ∪ {e′q′−1 = v′q′−1v

′
0},

E(C ′′) = {e′′i = v′′i v
′′
i+1 |0 ≤ i ≤ q′′ − 1} ∪ {e′′q′′−1 = v′′q′′−1v

′′
0}.

If P is nontrivial, i.e. its length is p > 0, we assume that

V (P ) = {w0, . . . , wp}, E(P ) = {fi = wiwi+1 | 0 ≤ i ≤ p− 1},

and its end-vertices w0 and wp are respectively identified with vertices v′0 ∈ V (C ′) and v′′0 ∈ V (C ′′)

(see Fig. 1).

Let x be a −2-eigenvector for A(L(Θe)). For convenience, we split its ordered set of components into

two (resp. three) parts if p = 0 (resp. p > 0), each corresponding to its constituents C ′, P (if nontrivial)

and C ′′. Namely, we write x = a′+̇b+̇a′′ where a′ = (a′0, a
′
1, . . . , a

′
q′−1)>, b = (b0, b1, . . . , bp−1)> and

a′′ = (a′′0, a
′′
1, . . . , a

′′
q′′−1)>, and the components a′i, bi and a′′i respectively correspond to the edges e′i,

fi and e′′i . In the statements of Theorems 2.12 and 2.13, the following two directed cycles

(2.3) ~C ′ = e′0e
′
1 · · · e′q′−1 and ~C ′′ = e′′0e

′′
1 · · · e′′q′′−1

play an important role.

Theorem 2.12. [2, Theorem 3.7] Let the core Θe = (B(q′, 0, q′′), γ| ~E(B(q′,0,q′′))) be a complex unit

∞-graph with two unbalanced cycles. Under the above notation (see also Fig. 1), for each nonzero

complex number a′0, a generator a′+̇a′′ of the −2-eigenspace of A(L(Θe)) is given by the formulæ

(2.4) a′′0 = −
(

1− γ(~C ′′)
)−1 (

1− γ(~C ′)
)
γL(e′′0e

′
0)a′0,

and

a′i = (−1)i
[ i∏
s=1

ν ′(s)
]
a′0 for 1 ≤ i ≤ q′ − 1,

a′′i = (−1)i
[ i∏
s=1

ν ′′(s)
]
a′′0 for 1 ≤ i ≤ q′′ − 1,

where

(2.5) ν ′(i) = γL(e′i−1e
′
i) = ηie′i−1

ηie′i ∈ T for 1 ≤ i ≤ q′ − 1,

and

(2.6) ν ′′(i) = γL(e′′i−1e
′′
i ) = ηie′′i−1

ηie′′i ∈ T for 1 ≤ i ≤ q′′ − 1.
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Theorem 2.13. [2, Theorem 3.6] Let the core Θe = (B(q′, p, q′′), γ| ~E(B(q′,p,q′′))) be a complex unit

dumbbell with two unbalanced cycles (hence, p > 0). Under the above notation (see also Fig. 1), for

each nonzero complex number b0, a generator a′+̇b+̇a′′ of the −2-eigenspace of A(L(Θe)) is given by

the formulæ

(2.7) a′0 = −
(

1− γ(~C ′)
)−1

γL(e′0f0)b0, a′′0 = −
(

1− γ(~C ′′)
)−1

γL(e′′0fp−1)bp−1,

and

a′i = (−1)i
[ i∏
s=1

ν ′(s)
]
a′0 for 1 ≤ i ≤ q′ − 1,(2.8)

bi = (−1)i
[ i∏
s=1

ν(s)
]
b0 for 1 ≤ i ≤ p− 1 and b0 6= 0,(2.9)

a′′i = (−1)i
[ i∏
s=1

ν ′′(s)
]
a′′0 for 1 ≤ i ≤ q′′ − 1,(2.10)

where the ν ′(i)’s and the ν ′′(i)’s satisfy (2.5) and (2.6), and

ν(i) = γL(fi−1fi) = ηifi−1
ηifi ∈ T for 1 ≤ i ≤ p− 1.

The geometric procedure described in [7, Remark 3.6] to quickly identify ‘heavy’ subgraphs of a

signed graph can be improved and employed in a complex unit gain context. Suppose that Φ is k-cyclic

and −2 ∈ Spec(A(L(Φ)). Theorem 1.1 and Corollary 2.4 yield

mA(L(Φ))(−2) =

k if Φ is balanced;

k − 1 if Φ is unbalanced.

We first pick k independent cycles Θi = (Λi, γ| ~E(Λi)
) for 1 ≤ i ≤ k, choosing them in order to get as

many balanced cycles as possible. This implies that each pair of chosen unbalanced cycles (if any) is

edge-disjoint.

If Φ is balanced, then all Θi’s are neutral. A foundation Ψ can be obtained from Φ by removing k

pairwise distinct edges e1, . . . , ek with ei ∈ Λi. For 1 ≤ i ≤ k, the core of Ψei is precisely Θi. Thus,

we form an eigenbasis for EA(−2,L(Φ)) by considering the vectors yei (1 ≤ i ≤ k) built as explained

above from a generator xei of EA(−2,L(Ψei)). The components of xei are given in Theorem 2.11.

If Φ is unbalanced, it not restrictive to assume that the unbalanced graphs among the Θi’s are the

first ` > 0. If ` ≥ 2, for 2 ≤ i ≤ ` we denote by Ξi the minimal connected subgraph of Φ containing

Θ1 and Θi. Each Ξi is either an ∞- or a dumbbell complex unit gain graph. A set of k − 1 heavy

subgraphs giving rise to an eigenbasis for EA(−2,L(Φ)) is

{Θi | 2 ≤ i ≤ k} if ` = 1;

{Ξ2, . . . ,Ξ`,Θ`+1, . . . ,Θk} if 1 < ` < k;

{Ξi | 2 ≤ i ≤ k} if ` = k.
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and the nonzero components of the vector in the eigenbasis corresponding to each Ξi can be computed,

as done in [2], by Theorems 2.12 and 2.13.

3. Eigenspaces of A(Φ) and A(L(Φ)): a comparison

In this section, we fix once for all an incidence matrix H of the T-gain graph Φ, and consider the

graph L(Φ) := L1
H(Φ), i.e. the complex unit line graph determined by H (see Section 2.2).

By definition, the following two equalities hold (see the proofs of [1, Proposition 4 and Theorem 1]

if needed):

(3.1) HH∗ = L(Φ) and H∗H = 2I +A(L(Φ)).

By Theorem 1.1, it is immediately seen that the map

µ ∈ Spec(L(Φ)) \ {0} 7−→ µ− 2 ∈ Spec(A(LH(Φ))) \ {−2}

is bijective. Moreover, for µ > 0, the eigenspaces EL(µ,Φ) and EA(µ − 2,L(Φ)) are isomorphic. The

following lemma shows how the matrix H allows to define isomorphisms in both directions.

Lemma 3.1. Let µ a nonzero element in Spec(L(Φ)). The maps

(3.2) αH∗ : x ∈ EL(µ,Φ) 7−→ H∗x ∈ EA(µ− 2,L(Φ))

and

(3.3) αH : y ∈ EA(µ− 2,L(Φ)) 7−→ Hy ∈ EL(µ,Φ)

are both isomorphisms.

Proof. Let x ∈ EL(µ,Φ). We first prove that y = H∗x actually belongs to EA(µ − 2,L(Φ)). By the

two equalities of (3.1), we respectively obtain

(3.4) Hy = HH∗x = L(Φ)x = µx

and

A(L(Φ))y = H∗Hy − 2y = H∗H(H∗x)− 2y = H∗(µx)− 2y = (µ− 2)y.

Since µ 6= 0, we also deduce from (3.4) that x 6= 0 implies y 6= 0. In other words, the map αH∗ is a

monomorphism between two vector spaces of same dimension, and thence an isomorphism.

Knowing that αH∗ is an isomorhism, the fact that αH bijectively maps EA(µ−2,L(Φ)) onto EL(µ,Φ)

comes from the equality αH ◦ αH∗ = µ1L(Φ) (recall that µ 6= 0). �

With the aid Lemma 3.1, the proof of the following theorem becomes straightforward.

Theorem 3.2. Let µ a nonzero element in Spec(L(Φ)).

(i) {x1, . . . ,xs} is a basis for the eigenspace EL(µ,Φ) if and only if {H∗x1, . . . ,H
∗xs} is a basis for

the eigenspace EA(µ− 2,L(Φ)).
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(ii) {y1, . . . ,ys} is a basis for the eigenspace EA(µ−2,L(Φ)) if and only if {Hy1, . . . ,Hys} is a basis

for the eigenspace EL(µ,Φ).

The next proposition suggests how to obtain an eigenbasis for EL(0,Φ) when 0 ∈ Spec(L(Φ)).

Proposition 3.3. Let the T-gain graph Φ be balanced and connected, and let ξ : V (Γ) −→ T be the

switching function such that Φξ = (Γ, 1). Then, the 1-dimensional eigenspace EL(0,Φ) is generated by

w> = (ξ(v1), ξ(v2), . . . , ξ(vn)).

Proof. Corollary 2.4 implies that mL(Φ)(0) = 1, and by definition of ξ we see that ξ(vi) = γ(eij)ξ(vj).

Now, the i-th element of the column vector L(Φ)w is given by

d(vi)ξ(vi)−
∑
vh∼vi

γ(eih)ξ(vh) = d(vi)ξ(vi)− d(vi)ξ(vi) = 0.

Hence, L(Φ)w = 0w as claimed. �

The proof of the following corollary easily comes from Proposition 3.3.

Corollary 3.4. Let Φ = (Γ, γ) be a complex unit gain graph with at least one balanced component.

Denoted by Λ1, . . . ,Λr the balanced connected components of Γ, and by ξ : V (Γ) −→ T a switching

function such that all edges of Φξ in
#–

E(∪ri=1Λi) are neutral, an eigenbasis of EL(0,Φ) is given by

{w1, . . . ,wr}, where

wi = (wiv)v∈V (Γ), with wiv =


ξ(v) if v ∈ Λi;

0 otherwise.

When Φ is balanced, it makes sense to ask whether, for µ = 0, the maps αH∗ and αH defined in (3.2)

and (3.3) map eigenvectors onto eigenvectors. The answer is trivially negative when Φ is a forest, since

in this case −2 6∈ SpecA(L(Φ)). Proposition 3.5 shows that the answer is negative in all cases.

Proposition 3.5. Let the T-gain graph Φ be balanced. Then, the maps

αH∗ : x ∈ EL(0,Φ) 7−→ H∗x ∈ EA(−2,L(Φ))

and

αH : y ∈ EA(−2,L(Φ)) 7−→ Hy ∈ EL(0,Φ)

are both null.

Proof. Let z be any element in EL(0,Φ). By multiplying the extremal sides of

HH∗z = L(Φ)z = 0

by z∗, it turns out that the norm of H∗z is null, and this is possible only if H∗z = 0. Hence, αH∗ is

null.

The proof of the nullity of αH in nontrivial cases, i.e. when −2 ∈ SpecA(L(Φ)), is slightly more

complicated. It relies on Theorems 2.11-2.13. Indeed, we have to distinguish three cases. Using
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notation and terminology of Section 2.3, let Ψ = (Λ, γ| ~E(Λ)) be a complex unit foundation of any

connected component (Ω, γ| ~E(Ω)) of Φ = (Γ, γ), and, for each e ∈ E(Ω) \E(Λ), let Θe denote the core

of Ψe. We need to show that Hye = 0, where ye ∈ EA(−2,L(Φ)) is obtained from the generator xe of

EA(−2,L(Ψe)) by inserting zeroes at the entries corresponding to edges in E(Γ) \ E(Λe).

Case 1: Θe is a balanced cycle. We label the edges of Θe as done for the graph at the top-left

corner of Fig. 1, and consider the directed cycle ~C = e0e1 · · · eq−1. The nonzero components of ye are

computed in Theorem 2.11. The only possible nontrivial components of Hye are in correspondence of

vertices in {v0, . . . , vq−1}. The v0-entry of Hye is

ηv0e0a0 + ηv0eq−1aq−1 = ηv0e0a0 + ηv0eq−1(−1)q−1
[∏q−1

s=1 ν(s)
]
a0

= ηv0e0a0 + ηv0eq−1(−1)q−1(−1)qν(0)a0

= ηv0e0a0 − ηv0eq−1ηv0eq−1ηv0e0a0

= 0.

For the second equality we have used the identity

(3.5)

q−1∏
s=1

ν(s) = (−1)qν(0)γ(~C)

obtained from
∏q−1
s=0 ν(s) = (−1)qγ(~C) by multiplying both sides by ν(0) = ηv0eq−1

ηv0e0 (recall that,

in this case, γ(~C) = 1, the graph Θe being balanced).

The vi-entry of Hye for i > 0 is instead given by

ηviei−1ai−1 + ηvieiai = ηviei−1(−1)i−1
[∏i−1

s=1 ν(s)
]
a0 + ηviei(−1)i

[∏i
s=1 ν(s)

]
a0

= (−1)i−1
[∏i−1

s=1 ν(s)
][
ηviei−1 − ν(i)ηviei

]
a0

= (−1)i−1
[∏i−1

s=1 ν(s)
][
ηviei−1 − ηviei−1ηvieiηviei

]
a0

= 0.

It turns out that Hye = 0 as claimed.

Case 2: Θe is a complex unit ∞-graph. We label the edges of Θe as done for the graph at the

top-right corner of Fig. 1, and consider the directed cycles ~C ′ and ~C ′′ as in (2.3). We only need to

prove that the entry c of Hye corresponding to v0 := v′0 = v′′0 vanishes (the argument for the nullity

of the entries corresponding to the other vertices of Θe is given in Case 1). By definition of H and by

Theorem 2.12, we have

c = ηv0e′0a
′
0 + ηv0e′q′−1

a′q′−1 + ηv0e′′0a
′′
0 + ηv0e′′q′′−1

a′′q′′−1

=
[
ηv0e′0 + ηv0e′q′−1

(−1)q
′−1
∏q′−1
s=1 ν

′(s)
]
a′0 +

[
ηv0e′′0 + ηv0e′′q′′−1

(−1)q
′′−1

∏q′′−1
s=1 ν ′′(s)

]
a′′0

Once we plug (2.4) in such expression, together with γL(e′′0e
′
0) = ηv0e′′0 ηv0e

′
0

and

(3.6)

q′−1∏
s=1

ν ′(s) = (−1)q
′
ηv′0e′q′−1

ηv′0e′0γ(~C ′) and

q′′−1∏
s=1

ν ′′(s) = (−1)q
′′
ηv′′0 e′′q′′−1

ηv′′0 e′′0 γ(~C ′′)
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obtained by specializing (3.5) to ~C ′ and ~C ′′ respectively, an elementary algebraic manipulation shows

that c = 0.

Case 3: Θe is a complex unit dumbbell. We label the edges of Θe as done for the graph at the

bottom of Fig. 1, and once again consider the directed cycles ~C ′ and ~C ′′ as in (2.3). Arguing as in

Case 1, we deduce that it is zero each entry of Hye corresponding to vertices of degree 2 in C ′ ∪ C ′′.
Therefore, we only need to prove that the entries

cv′0 = ηv′0e′0a
′
0 + ηv′0e′q′−1

a′q′−1 + ηv′0f0b0,

cwi = ηwifi−1
bi−1 + ηwifibi (1 ≤ i ≤ p− 1)

and

cv′′0 = ηv′′0 fp−1
bp−1 + ηv′′0 e′′0a

′′
0 + ηv′′0 e′′q′′−1

a′′q′′−1

of Hye respectively corresponding to v′0, wi (0 ≤ i ≤ p − 1) and v′′0 vanish. This can be done by

suitably plugging in the three equalities above (2.7)-(2.10) together with (3.6). �

4. Eigenspaces of A(S(Φ))

As in Section 3, we fix a particular incidence matrix H of the T-gain graph Φ, and consider the graphs

L(Φ) := L1
H(Φ) and S(Φ) = SH(Φ). The latter is the complex unit subdivision graph determined by

H defined in Section 2.2. Once again, we choose for V (S(Γ)) the ordering {v1, . . . , vn, e1, . . . , em}.
Moreover, for every n + m vector z, we denote by x = z(V1) (resp. y = z(V2)) the projection of z

onto its first n-components (resp. its last m components). Thus, we can write z = x+̇y.

The first of the following list of lemmas immediately comes from the definition of A(S(Φ)).

Lemma 4.1. Let z := x+̇y, where x = z(V1) and y = z(V2). The following conditions are equivalent.

(1) Hy = λ̂x and H∗x = λ̂y.

(2) The vector z belongs to EA(λ̂,S(Φ)).

(3) The vector x+̇(−y) belongs to EA(−λ̂,S(Φ)).

Lemma 4.2. Let λ̂ be any real number, and let z = x+̇y ∈ EA(λ̂,S(Φ)), with x = z(V1) and y = z(V2).

Then,

L(Φ)x = λ̂2x and A(L(Φ))y = (λ̂2 − 2)y.

Proof. Clearly, A2(S(Γ))z = λ̂2z. From (2.2), we easily compute

A2(S(Γ)) =

(
HH∗ On×m

Om×n H∗H

)
=

(
L(Φ) On×m

Om×n A(L(Φ)) + 2Im

)
:= L(Φ)+̇(A(L(Φ)) + 2Im).

It is now clear that L(Φ)x = λ̂2x and (A(L(Φ)) + 2Im)y = λ̂2y. �

Lemma 4.3. Let S = {zi := xi+̇yi | 1 ≤ i ≤ k} and S′ = {zi′ := xi+̇(−yi) | 1 ≤ i ≤ k} be two

subsets of Cn+m, where xi = zi(V1) and y = zi(V2). If λ̂ is a nonzero real number, then S spans (resp.

is a basis of) EA(λ̂,S(Φ)) if and only if S′ spans (resp. is a basis of) EA(−λ̂,S(Φ)).
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Proof. By Theorem 1.1(2), EA(λ̂,S(Φ)) and EA(−λ̂,S(Φ)) are isomorphic, and by elementary matrix

theory Span(S) and Span(S′) are isomorphic as well. The statement now comes from Lemma 4.1. �

Lemma 4.4. Let z := x+̇y ∈ Cn+m, where x = z(V1) and y = z(V2). If λ̂ 6= 0 and z is a (nonzero)

eigenvector of EA(λ̂,S(Φ)), then x and y are both nonzero vectors.

Proof. Let us write x = (xv)v∈V (Γ) and y = (ye)e∈E(Γ). Given any pair (u, f) ∈ V (Γ) × E(Γ), the

eigenvalue equations at the u-row and the f -row of A(S(Φ)) yield

xu = λ̂−1

 ∑
e∈E(Γ)

ηueye

 and yf = λ̂−1

 ∑
v∈V (Γ)

ηvfxv

 ,

implying that x = 0 ⇐⇒ y = 0. But x+̇y is by hypothesis an eigenvector; hence, x and y are both

nonzero as claimed. �

Given a set S = {z1 = x1+̇y1, . . . , zk = xk+̇yk} ⊂ Cn+m, where xi = zi(V1) and yi = zi(V2) for

each i ∈ {1, . . . , k}, we introduce the following notation:

S(V1) := {x1, . . . ,xk} ⊂ Cn and S(V2) := {y1, . . . ,yk} ⊂ Cm.

The next theorem explains how to quickly determine the L-eigenspaces of Φ and the A-eigenspaces of

L(Φ) from the A-eigenspaces of S(Φ).

Theorem 4.5. Let λ̂ ∈ Spec(A(S(Φ)), and let B = {z1 = x1+̇y1, . . . , zk = xk+̇yk} be an eigenbasis

for EA(λ̂,S(Φ)), where xi = zi(V1) and yi = zi(V2) for each i ∈ {1, . . . , k}.

(1) If λ̂ 6= 0, then B(V1) is an eigenbasis for EL(λ̂2,Φ), and B(V2) is an eigenbasis for EA(λ̂2 −
2,L(Φ)).

(2) If λ̂ = 0, then B(V1) spans EL(0,Φ), and B(V2) spans EA(−2,L(Φ)).

Proof. By Lemma 4.2, surely B(V1) ⊂ EL(λ̂2,Φ) and B(V2) ⊂ EA(λ̂2 − 2,L(Φ)).

In order to prove (1) it suffices to show the B(V1) and B(V2) are linearly independent when λ̂ 6= 0;

in fact, if this is the case, the eigenspaces EL(λ̂2,Φ) and EA(λ̂2 − 2,L(Φ)) have both dimension k by

Theorem 1.1(2).

Thus, suppose
∑k

i=1 αixi = 0 for some (α1, . . . , αk) ∈ Ck. Since
∑k

i=1 αizi belongs to EA(λ̂,S(Φ)),

we infer from Lemma 4.4 that
∑k

i=1 αizi = 0, hence all the αi’s are null, the set B being independent.

The linear independence of B(V2) is proved similarly.

We now prove (2). Let λ̂ = 0. We already observed at the beginning of the proof that

(4.1) Span(B(V1)) ⊆ EL(0,Φ) and Span(B(V2)) ⊆ EA(−2,L(Φ)).

We now show that in (4.1) the equalities hold. Pick any pair (x,y) ∈ EL(0,Φ) × EA(−2,L(Φ)). By

Proposition 3.5, the vectors H∗x and Hy are both null. Therefore, Condition (1) of Lemma 4.1 holds

for z = x+̇y and λ̂ = 0. Now, Lemma 4.1 ensures that its Condition (2) holds as well for z; in other

words x+̇y belongs to EA(0,S(Φ)). Thus, x+̇y =
∑k

i=1 βi(xi+̇yi) for a suitable (β1, . . . , βk) ∈ Ck.
This proves that x ∈ Span(B(V1)) and y ∈ Span(B(V2)), and the proof is complete. �
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Remark 4.6. If the gains of Φ are in {±1} ⊂ T, the complex unit gain graph Φ can be regarded as

a signed graph; hence, [7, Theorem 3.7] becomes a consequence of our Theorem 4.5. Yet, our line

of attack does not need the orthogonality assumption for the basis B, which is instead decisive in [7,

Section 3].

The next result could be obtained from Theorem 1.1, but the required case analysis is quite annoying.

As we see in a moment, Theorem 4.5 provides instead a much more direct argument.

Corollary 4.7. If 0 belongs to Spec(A(S(Φ))) then either 0 belongs to Spec(L(Φ)) or −2 belongs to

Spec(A(L(Φ))).

Proof. Let B = {z1 = x1+̇y1, . . . , zk = xk+̇yk} be an eigenbasis for EA(0,S(Φ)), where xi = zi(V1)

and yi = zi(V2) for each i ∈ {1, . . . , k}. Clearly, at least one set between B(V1) and B(V2) contains a

nonzero vector. Our statement now comes from Theorem 4.5(2). �

Compared to Theorem 4.5, the next three results go the other way around. In fact, eigenbases of

A(S(Φ)) are obtained from those of L(Φ) and A(L(Φ)).

Theorem 4.8. Let B = {x1, . . . ,xk} be a basis of the eigenspace EL(µ,Φ) for µ 6= 0, and let λ̂ =
√
µ.

Then, the sets

λ̂B+̇H∗(B) := {λ̂x1+̇H∗x1, . . . , λ̂xk+̇H∗xk}

and

−λ̂B+̇H∗(B) := {(−λ̂x1)+̇H∗x1, . . . , (−λ̂xk)+̇H∗xk}

are a basis for EA(λ̂,S(Φ)) and EA(−λ̂,S(Φ)) respectively.

Proof. First of all, set Xi = λ̂xi and Yi = H∗xi for 1 ≤ i ≤ k. We see that

HYi = HH∗ xi = L(Φ)xi = λ̂2 xi = λ̂Xi and H∗Xi = λ̂Yi.

By Lemma 4.1, this implies that λ̂B+̇H∗(B) is a subset of EA(λ̂,S(Φ)). Since, by elementary ma-

trix theory, λ̂B+̇H∗(B) is linearly independent and dimC(EA(λ̂,S(Φ))) = k by Theorem 1.1, the set

λ̂B+̇H∗(B) is actually a basis for EA(λ̂,S(Φ)).

The argument to prove that −λ̂B+̇H∗(B) is a basis of EA(−λ̂,S(Φ)) is analogous. �

Theorem 4.9. Let B′ = {y1, . . . ,yk} be a basis of the eigenspace EA(λ,L(Φ)) for λ 6= −2, and let

λ̂ =
√
λ+ 2. Then, the sets

H(B′)+̇λ̂B′ := {Hy1+̇λ̂y1, . . . ,Hyk+̇λ̂yk}

and

−B′+̇H∗(B′) := {(−Hy1)+̇λ̂y1, . . . , (−Hyk)+̇λ̂yk}

are a basis for EA(λ̂,S(Φ)) and EA(−λ̂,S(Φ)) respectively.
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Proof. We set Xi = Hyi and Yi = λ̂yi for 1 ≤ i ≤ k. Now,

HYi = Hλ̂yi = λ̂Xi and H∗Xi = H∗Hyi = A(L(Φ) + 2I)yi = (λ+ 2)yi = λ̂Yi.

As in the previous proof, by Lemma 4.1 and elementary matrix theory, H(B′)+̇λ̂B′ is an independent

set in EA(λ̂,S(Φ)). Since its cardinality is dimC(EA(λ̂,S(Φ))), the set H(B′)+̇λ̂B′ is a basis of such

eigenspace, as claimed. The analogous argument proving that −B′+̇H∗(B′) is a basis for EA(−λ̂,S(Φ))

is left to the reader. �

Let r be the number of balanced connected components of a complex unit gain graph Φ, and let

s = mA(L(Φ))(−2). In order to state the last theorem of this section, we need some extra notation.

Let C1 and C2 denote the following subsets of Cn+m.

(4.2) C1 =

 ∅ if r = 0,

{w1+̇0, . . . ,wr+̇0} if r > 0,
and C2 =

 ∅ if s = 0,

{0+̇y1, . . . ,0+̇ys} if s > 0,

where {w1, . . . ,wr} is a basis for L(0,Φ) (for instance the one described in Corollary 3.4), and

{y1, . . . ,ys} is a basis of EA(−2,L(Φ)) (for instance constructed according to the procedure explained

in Section 2.2).

Theorem 4.10. Let Φ = (Γ, γ) be a T-gain graphs such that mA(S(Φ))(0) > 0, and let C1 and C2 the

sets defined in (4.2). An eigenbasis of EA(0, S(Φ)) is given by C1 ∪ C2.

Proof. By Corollary 4.7, the sets C1 and C2 cannot be both empty. Furthermore, C1 ∪ C2 is linearly

independent. Proposition 3.5 ensures that (C1 ∪C2)(V1) is in the kernel of H∗ and (C1 ∪C2)(V2) is in

the kernel of H. Now, Lemma 4.1 guarantees that C1∪C2 is a subset of EA(0, S(Φ)). By Part (1) (resp.

Part (2)) of Theorem 1.1, it turns out that s = |C2| = m − n + r (resp. mA(S(Φ))(0) = m − n + 2r).

Thus, |C1 ∪C2| = |C1|+ |C2| = r+ (m− n+ r) = mA(S(Φ))(0). This proves that C1 ∪C2 is a basis of

EA(0, S(Φ)), and the proof is complete. �

5. Switching and eigenvector components

Let Φ1 = (Γ, γ1) and Φ2 = (Γ, γ2) be two complex unit gain graphs of order n and size m > 0 such

that Φ2 = Φζ
1 for a suitable switching function ζ : V (Γ) −→ T, and let H1 (resp. H2) be an incidence

matrix of the complex unit gain graph Φ1 (resp. Φ2). The relationship between the eigenspaces of

LH1Φ1 and LH2Φ2 has been already investigated in [1, 2]. In this short section, we recap the outcomes

of that discussion, by adding a comparison between the A-eigenspaces of SH1Φ1 and those of SH2Φ2.

Specifically, Parts (1) and (2) of Theorem 5.1 easily come from [2, Propositions 2.12 and 2.13], whereas

Part (3) is new.

Theorem 5.1. Let Φ1 = (Γ, γ1) and Φ2 = (Γ, γ2) be T-gain graphs such that Φ2 = Φζ
1 for a suitable

switching function ζ : V (Γ) −→ T, let Hi be an incidence matrix of Φi for i ∈ {1, 2}, and let S be a

diagonal matrix such that H2 = D(ζ)∗H1S. For every λ ∈ R, the following three statements hold.
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(1) For M ∈ {A,L}, a vector x belongs to EM (λ,M(Φ1)) if and only if D(ζ)∗x belongs to

EM (λ,M(Φ2)).

(2) A vector y belongs to EA(λ,LH1(Φ1)) if and only if S∗y belongs to EA(λ,LH2(Φ2)).

(3) Let z = x+̇y be a vector in Cn+m with x = z(V1) and y = z(V2). Then, z belongs to

EA(λ,SH1(Φ1)) if and only if z′ = D(ζ)∗x+̇S∗y belongs to EA(λ,SH2(Φ2)).

Proof. By Proposition 2.8, D(ζ)∗H1 is an incidence matrix for Φ2 such that LH1(Φ1) = LD(ζ)∗H1
(Φ2).

Hence, an m × m diagonal matrix S such that H2 = D(ζ)∗H1S exists by Proposition 2.5. Now,

Statement (1) is a direct consequence of (2.1), whereas Statement (2) comes from Proposition 2.7. In

order to prove that Statement (3), we recall that

z = x+̇y ∈ EA(λ,SH1(Φ1))⇐⇒ H1y = λx and H∗1x = λy (by Lemma 4.1),

and the two conditions on the right hold if and only if z′ ∈ EA(λ,SH2(Φ2)). In fact,

A(SH2(Φ2))z′ =

(
On D(ζ)∗H1S

S∗H∗1D(ζ) Om

)(
D(ζ)∗x

S∗y

)
=

(
D(ζ)∗H1y

S∗H∗1x

)
. �

Along the proof of Theorem 5.1 we have used the following equality of matrices

(5.1) A(SH2(Φ2)) = (D(ζ)⊕ S)∗A(SH1(Φ))(D(ζ)⊕ S),

where the symbol ⊕ denote the block diagonal sum of two matrices. If we want to compare the

adjacency matrices of gain subdivision graphs arising from a single nonempty complex unit gain

graph Φ, once we fix two different incidence matrices H and H′ = H1S, from (5.1) we deduce

A(SH′(Φ)) = (In ⊕ S)∗A(SH(Φ))(In ⊕ S),

consistently with Proposition 2.9(1).

6. Examples

In order to depict T-gain graphs in Fig. 2, each continuous (resp. dashed) thick undirected line

represents two opposite oriented edges with gain 1 (resp. −1); whereas the arrows detect the oriented

edges uv’s with an imaginary gain. The value γ(uv) is specified near the correspondent arrow.

Let Φ = (Γ, γ) be the complex unit gain graph depicted in Fig. 2. The graph Φ could be regarded

as a T6-gain graph or a signed digraph in the sense of [26] (see also [19]).

The vertex and the edge labeling is consistent with the one used in Fig. 1. Namely e′i = v′1v
′
i+1 and

e′′i = v′1v
′
i+1 for i ∈ {0, 1}; e′2 = v′2v

′
0, e′′2 = v′′2v

′′
0 and f0 = v′0v

′′
0 .

In order to write down the Laplacian matrix L(Φ), an incidence matrix H for Φ and the adjacency

matrix of the corresponding line graph L(Φ), we choose the ordering v′0, v′1, v′2, v′′0 , v′′1 , v′′2 for the
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v′2

v′0

v′1

v′′0

f0ei
π
3

S(Φ)

e′0

e′2

e′0

e′′2

e′′1

v′′1

v′′2

e′1

e′0

e′2

f0

e′′0

e′′2

e′′1

L(Φ)

ei
4π
3

v′2

v′0

v′1

v′′0

ei
π
3 C′ C′′

Φ

v′′1

v′′2

Figure 2. A complex unit dumbbell Φ, one of its subdivision graphs S(Φ), and one of its

line graphs L(Φ).

elements in V (Γ), and the ordering e′0,e′1,e′2,f0,e′′0,e′′1,e′′2 for those in E(Γ). The gains of the directed

cycles C ′0 := e′0e
′
1e
′
2 and C ′′0 := e′′0e

′′
1e
′′
2 are

γ(C ′0) = ei
π
3 and γ(C ′′0 ) = −1.

The Laplacian matrix L(Φ) and an incidence matrix H for Φ are respectively given by

L(Φ) =



3 −1 −1 −1 0 0

−1 2 −ei
π
3 0 0 0

−1 −e−i
π
3 2 0 0 0

−1 0 0 3 −1 −1

0 0 0 −1 2 1

0 0 0 −1 1 2


and H =



1 0 1 1 0 0 0

−1 ei
π
3 0 0 0 0 0

0 −1 −1 0 0 0 0

0 0 0 −1 1 0 1

0 0 0 0 −1 1 0

0 0 0 0 0 1 −1


.

According to the rules explained in Section 3, the adjacency matrix of LH(Φ) is

A(LH(Φ)) =



0 ei
4π
3 1 1 0 0 0

ei
2π
3 0 1 0 0 0 0

1 1 0 1 0 0 0

1 0 1 0 −1 0 −1

0 0 0 −1 0 −1 1

0 0 0 0 −1 0 −1

0 0 0 −1 1 −1 0


.

For instance, γL(e′0e
′
1) = ηv′1e′0ηv

′
1e
′
1

= −ei
π
3 = ei

4π
3 . The graph LH(Φ) is depicted in Fig. 2.

A MATLAB computation shows that

Spec(L(Φ)) =

{
2−
√

3, 1, 3−2 cos

(
2π

9

)
, 3−2 sin

( π
18

)
, 2 +

√
3, 3+2 cos

(π
9

)}
and

Spec(A(LH(Φ))) =

{
−2, −

√
3, −1, 1−2 cos

(
2π

9

)
, 1−2 sin

( π
18

)
,
√

3, 1+2 cos
(π

9

)}
,
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confirming that the map

µ ∈ Spec(L(Φ)) \ {0} 7−→ µ− 2 ∈ Spec(A(LH(Φ))) \ {−2}

is bijective (since Φ is unbalanced, in this case Spec(L(Φ)) \ {0} = Spec(L(Φ)).

Row-column products can be performed in order to verify that EL(2−
√

3,Φ) = Span(x), where

x> =

(
2,
√

3 + ei
π
3 ,
√

3 + e−i
π
3 , 1,

√
3− 1

2
,

√
3− 1

2

)
.

and EA(−
√

3,L(Φ)), as predicted by Theorem 3.2, is equal to Span(H∗x) , where

(H∗x)> =

(
2−
√

3− ei
π
3 , (
√

3− 1)(e−i
π
3 − 1), 2−

√
3− e−i

π
3 , 1,

3−
√

3

2
,
√

3− 1,
3−
√

3

2

)
.

Theorem 4.5 now ensures that the 1-dimensional eigenspaces

EA(

√
2−
√

3, A(S(Φ))) and EA(−
√

2−
√

3, A(S(Φ)))

are respectively spanned by(√
2−
√

3 · x
)

+̇H∗x and

(
−
√

2−
√

3 · x
)

+̇H∗x.

As already observed in [2, Section 4], the 1-dimensional eigenspace EA(−2,L(Φ)) is equal to Span(y),

where

y> = (2ei
2π
3 , 2ei

π
3 , 2ei

4π
3 , 2, 1, 1, 1)>.

The components of y satisfy Theorem 2.13. Since mL(Φ)(0) = 0, consistently with Theorem 4.10, the

eigenspace EA(0,S(Φ)) is spanned by 0+̇y, where 0 ∈ C6.
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