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Entanglement complexity in quantum many-body dynamics, thermalization, and localization
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Entanglement is usually quantified by von Neumann entropy, but its properties are much more complex
than what can be expressed with a single number. We show that the three distinct dynamical phases known
as thermalization, Anderson localization, and many-body localization are marked by different patterns of the
spectrum of the reduced density matrix for a state evolved after a quantum quench. While the entanglement
spectrum displays Poisson statistics for the case of Anderson localization, it displays universal Wigner-Dyson
statistics for both the cases of many-body localization and thermalization, albeit the universal distribution is
asymptotically reached within very different time scales in these two cases. We further show that the complexity
of entanglement, revealed by the possibility of disentangling the state through a Metropolis-like algorithm, is
signaled by whether the entanglement spectrum level spacing is Poisson or Wigner-Dyson distributed.
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Introduction. Entanglement is usually quantified by a num-
ber, the entanglement entropy, defined as the von Neumann
entropy of the reduced density matrix p4 of a subsystem, and
it is a key concept in many different physical settings, from
novel phases of quantum matter [1-4] to cosmology [5,6].
However, there is a lot more information in the entanglement
spectrum of p4, namely the full set of its eigenvalues (or its
logarithms) [7]. Recently, a measurement protocol to access
the entanglement spectrum of many-body states using cold
atoms has been proposed [8]. The main goal of this paper is to
explore the relationship between entanglement spectrum and
dynamical behavior of a quantum many-body system.

In Refs. [9,10], it was shown that the entanglement of a state
generated by a quantum circuit can be simple or complex, in the
sense that the state either can or cannot be disentangled by an
entanglement cooling algorithm that resembles the Metropolis
algorithm for finding the ground state of a Hamiltonian. The
success or failure of the disentangling procedure is signaled
by the so-called entanglement spectrum statistics (ESS) [9,10],
namely, the distribution of the spacings between consecutive
eigenvalues of p,. When such a distribution is Wigner-Dyson
(WD), the cooling algorithm fails. This situation occurs when
the gates in the circuit are sufficient for universal computing,
either classical or quantum. On the other hand, for circuits
that are not capable of universal computing, the states can be
disentangled and they feature a (semi-)Poisson ESS.

In this Rapid Communication, we focus on systems whose
dynamics is controlled by a time-independent quantum many-
body Hamiltonian, as opposed to a random circuit. We study
the entanglement complexity revealed by the ESS of the time-
evolved state for Hamiltonians whose eigenstates yield one of
three behaviors: (1) eigenstate thermalization (ETH) [11-16],
(2) Anderson localization (AL), or (3) many-body localization
(MBL) [17-19]. We find that the time-evolved states under
Hamiltonians that feature AL follow a Poisson ESS, and
that they can be disentangled by applying the entanglement
cooling algorithm which uses only the unitaries generated from
one- and two-body terms in the Hamiltonian. On the other
hand, the time-evolved states under Hamiltonians that satisfy
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ETH follow a WD distribution, and the entanglement cooling
algorithm fails. Remarkably, the dynamics generated by MBL
Hamiltonians results in ESS approaching asymptotically in
time a WD distribution, the same distribution that time-evolved
states with ETH Hamiltonians reach in shorter times. We find
that the rate of such approach to WD scales with the inverse of
the logarithm of time. We further find that the state generated
by MBL Hamiltonians cannot be disentangled using a cooling
algorithm.

Quantum quench of the Heisenberg spin chain. We shall
focus on a quantum state that is time-evolved after a quantum
quench, namely, a sudden switch of the Hamiltonian so as to
throw the initial state away from equilibrium. We consider the
XXZ spin-1/2 chain of L sites with open boundary conditions,

~1

H =17} (0f0}+0] 0\ +A0i 0}, +zi0i +xi0}). (1)

i=1

We consider three distinct regimes of parameters: (i) in the
absence of a transverse field and interaction (A = x; = 0,
z; # 0), the Hamiltonian in Eq. (1) maps onto free fermions
via a Jordan-Wigner transformation [20,21]. The complexity
of the problem is reduced from that of diagonalizing a 2L x 2
matrix to that of diagonalizing an L x L matrix. In the limit
case of no disorder, z; = const, the system is completely
integrable while in the presence of disorder it shows AL
[22]. In the case of AL, the Hamiltonian is noninteracting
in the basis of local conserved quantities. The presence of
constants of motion prevents the system from thermalizing.
(i) In the presence of interactions and weakly disordered
external fields (z; € [—1,1] and A = 0.5), the Hamiltonian in
Eqg. (1) is nonintegrable and thermalizes. Its eigenstates obey
ETH. (iii) Finally, in the presence of interactions and strong
disorder (z; € [—10,10] and A = 0.5), the system features
MBL.: even the high-energy eigenstates of such a system are
weakly entangled, obey an area law, and thus do not follow
ETH [14,23,24]. The dynamical behavior of the MBL phase
is also apparent in the fact that during the evolution, the
entanglement grows only logarithmically in time [25-27].
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TABLE 1. Summary of the main results presented in the paper.
The ESS of Hamiltonians featuring AL shows a Poisson distribution,
while for both ETH and MBL Hamiltonians it displays a WD
distribution. In particular, the deviation from the WD distribution in
the MBL case decays as 1/ In(¢). The energy level spacing statistics
yields a Poisson distribution for both AL and MBL, while for the
ETH case it can be either Poisson (in the presence of additional
conserved quantities) or WD (with no conserved quantities). Finally,
the states generated by AL Hamiltonians can be disentangled using an
entanglement cooling algorithm, while the states generated by ETH
and MBL Hamiltonians cannot.

Dynamical phases

Features AL ETH MBL
Entanglement spectrum  Poisson WD WD
Energy spectrum Poisson  Poisson or WD Poisson
Entanglement cooling i X X

The quantum evolution is studied as follows. We consider
the state |V (z)) = exp(—i H)|Wo), where |Wo) = ®; [); is
a random factorized state. By quenching to different values
of {x;,z;,A}, we can obtain all possible dynamics we want to
study. The marginal state p4(¢) corresponds to the reduced
density matrix of one-half of the total chain. The set of
eigenvalues of p, are then denoted by { pi}izi/lz and ordered
in decreasing order. At the same time, we also consider the
eigenenergies {E j}%L:l of the full Hamiltonian.

Entanglement spectrum statistics. At t = 0, the state con-
tains initially no entanglement and gets entangled only through
the dynamics. After a time # = 1000 in units of 1/J, we

Anderson localization A =0 z; € [-1,1]

ETH A = 0.5 z € [-1,1]
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study the ESS of the spectrum { p,-},?;/f [9,10], here obtained
from the distribution P(r) = R™' X (8(r — r;)) of the ratios
of consecutive spacings, r; = (p;—1 — pi)/(pi — pi+1)- In an
analogous fashion, we obtain the statistics of ratios of the
energy spectrum {E j}%i, and compare it to the ESS. Our
results are summarized in Table I.

We first consider case (i), the XX spin chain (A = x; = 0)
in the presence of a random field z; € [—h,k]. This model can
be brought into the form of free fermions in one dimension
and features AL for every value of 4. Here, we choose h = 1.
In Fig. 1(a), we show P(r) of the final states after a long time
evolution (#pJ = 1000). The ESS fits the distribution expected
for uncorrelated eigenvalues, Ppyisson(r) = (1 4+ )72, which
can be straightforwardly derived assuming a Poisson distribu-
tion of spacings. In Refs. [9,10], such statistics corresponds
to simple patterns of entanglement that are easily reversible
under the entanglement cooling algorithm. In the quantum
quench scenario, such pattern results in the failure to reach
thermalization. Indeed, the distribution of the spacings in the
energy spectrum is also Poisson [see Fig. 1(b)], which is a
typical feature of integrable systems [28,29]. As we can see,
in the integrable case, the ESS and the energy level spacings
convey the same information. Similarly, we find that in the
completely integrable case (z; = 0) both ESS and energy
spectrum are still Poisson. However, because of the absence of
localization, entanglement propagates and fulfills the volume
law like in a thermal system [30], though no thermalization can
happen. This shows that it is the finer structure of entanglement
in the ESS that is able to diagnose dynamical phases, instead
of just the amount of entanglement.

When the interaction A is switched on, the system can be
made nonintegrable by introducing a random field z; [31].

5 2z € [~10,10]
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FIG. 1. Comparison between ESS and energy level spacing statistics after a quantum quench at 7, = 1000 starting from a random product
state in systems that are Anderson localized [(a) and (b)], nonintegrable and featuring ETH [(c) and (d)], and featuring MBL [(e) and (f)].
ESS follows three different distributions, namely, Poisson (a), WD (c), and a nonuniversal one (e), thus perfectly classifying the three different
dynamical phases. On the other hand, the distribution of the energy level spacings is always Poisson in all three cases. It becomes WD in the
nonintegrable, ETH case shown in the inset of (d) only if the conservation of the total magnetization S, is broken by a field in the x direction.
In the MBL case, the ESS approaches WD upon discarding the largest eigenvalues values of the spectrum [inset of (e)]. All simulations are
done with 2000 realizations of disorder and L = 12 unless otherwise specified.
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Although nonintegrable, there is still a simple conserved
quantity in the model, namely, the total magnetization S, in
the z direction. If the disorder is weak (we choose h = 1),
we are in case (ii): the model obeys ETH and thermalizes.
At this point, we are confronted with a shortcoming of
the energy level statistics. For a nonintegrable system, the
distribution of energy level spacings is expected to follow
a WD distribution and very accurate surmises exist in this
case [32]: Pwp(r) = Z7'(r + r2)P(1 + r 4+ r>)~1 7382 where
Z = 8/27 for the Gaussian orthogonal ensemble (GOE) with
B = 1,and Z = 47 /814/3 for the Gaussian unitary ensemble
(GUE) with 8 = 2. However, to find such a result, one needs to
diagonalize the Hamiltonian only in the subspace of fixed total
magnetization [33]. If one does not know what the conserved
quantities are—and this is a generic case—and diagonalizes
the Hamiltonian in the full Hilbert space, one would find again
Poisson statistics, see Fig. 1(d). However, if one breaks the S,
conservation by a small uniform field in the x direction, one
does find the WD distribution, see inset of Fig. 1(d). Thus, for
nonintegrable systems, one is required to know all conserved
quantities in order to check the ETH through the energy level
statistics. The presence of just one (local) constant of motion
makes the system behave as integrable (Poisson statistics)
from the viewpoint of the energy gaps if we consider the
full spectrum, even though the system indeed thermalizes,
while breaking all conservation laws results in WD, see
Table I.

In contrast, we find that the ESS is more robust and captures
that thermalization should not be impaired by the fact that there
is one conserved quantity. We find that the ESS data agrees well
with a WD distribution with 8 = 2, see Fig. 1(c). Breaking the
last constant of motion by introducing a small constant field
x; = 0.1 in the x direction results in the same distribution
(see inset). Therefore it is clear that ESS already gives us
an advantage in comparison to the energy level statistics,
as it can discriminate between integrable and nonintegrable
models without requiring the knowledge of the local conserved
quantities.

Finally, keeping fixed A = 0.5 and increasing the range
of z;, we enter in the MBL case (iii). In spite of the
system being still nonintegrable, the energy eigenstates stay
very localized breaking ergodicity and hence thermalization.
Moreover, the eigenstates are weakly entangled (they obey an
area law [34,35], which for a one-dimensional chain implies an
entanglement entropy nearly independent of the system size).
Thus the mechanism behind ETH breaks down and the system
does not thermalize, at least within reasonable time scales,
that is, nonexponential in system size. At such time scales,
the system shows some features of the integrable systems, as
there is an extensive number of quasilocal conserved quantities
[35-39]. This is also reflected in the distribution of the energy
level spacings. We computed that distribution and show it in
Fig. 1(f), which reveals a Poisson statistics, just like for an
integrable system (or AL, that is, integrable).

Let us now analyze the ESS for MBL. We shall find that
MBL can be distinguished from both AL/integrable systems
and ETH. The analysis that we present below shows that the
ESS for MBL approaches asymptotically a WD distribution
at rather long time scales, which we quantify below. The ESS
is shown in Fig. 1(e), and show the following features. At the
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FIG. 2. (a) The KL divergence D, as a function of the fraction
of truncation of the full spectrum for different total evolution times
(L = 14and z; € [—8,8]). The data are averaged over 100 realizations
of disorder and 2000 realizations of the initial product state, evolved
for times ¢ = 100,500, 1000, and 10°. (b) Scaling of Dy; with 1/ In(t)
for the full spectrum and for the truncated spectrum at fraction 0.1875,
consistent with the KL divergence vanishing at long times and the
ESS asymtoptically reaching the WD distribution.

given time scale (#pJ = 1000), the ESS appears to deviate from
WD statistics (as well as from Poisson statistics); the deviation
is reduced if one considers a fraction of the full spectrum,
retaining the lowest eigenvalues of the spectrum and discarding
the largest ones (see inset). In order to quantify the approaching
of the entanglement spectrum to WD (GUE) distribution upon
truncation, we consider the statistical distance between two
probability distributions given by the Kullback-Leibler (KL)
divergence: Dxi(pllq) = _; piIn(pi/qi). In Fig. 2(a), we
show the KL divergence between P(r) of MBL and the WD
distribution as a function of the fraction of the cutoff. As
more of the largest eigenvalues are discarded, we get closer to
a universal statistics. Moreover, we find that, as a function of
evolution time, all the Dk decreases as 1/ In(z) [see Fig. 2(b)],
and thus the ESS of MBL asymptotically approaches a WD
(GUE) distribution. [We remark that the Dg; divergence
between P(r) and the WD distribution in the ETH regime goes
to zero at a time scale of order 1/J.] Indeed, in the infinite
time limit, time-evolved states in the MBL regime also have
to equilibrate, as the time fluctuations of typical observables
go to zero, though the scaling with both time and system size
are different in MBL from ETH [40].

We interpret the slow approach to universal WD (GUE)
statistics of the ESS of a state following unitary evolution with
a Hamiltonian in the MBL regime as follows. At reasonable
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FIG. 3. Attempt of disentangling using the entanglement cooling
algorithm starting from the states at f, = 1000. S is the von Neumann
entropy averaged over all possible bipartitions of the system with
L =12.

time scales, the system has approximately local conserved
integrals of motion, and may look like an integrable one. How-
ever, unlike AL, the MBL Hamiltonian remains interacting
even in the basis of conserved quantities. Eventually, for long
time scales, information propagates along the full chain [41],
and the interaction between far away quasilocal conserved
quantities is revealed by the slow 1/In(z) approach to the
universal WD distribution. The ESS detects the presence of
interaction already at short time scales, because the deviations
from the universal distribution are small and decreasing in
time. None of these aspects can be captured by the study of the
energy level spacings. We remark that this feature of the ESS is
a truly dynamical one, and depends on the fact that the system
is away from equilibrium. If one truncates the entanglement
spectrum of a high-energy eigenstate of MBL, the spectrum
stays nonuniversal [42—44].

Complexity of entanglement. The different statistics in the
ESS correspond to different complexity of the entanglement
generated by the time evolution. In Refs. [9,10], it was shown
that the entanglement generated by a quantum circuit can be
undone by an entanglement cooling algorithm when the ESS
shows (semi-)Poisson statistics. On the other hand, if one
uses a quantum circuit obtained by a universal set of gates,
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the ESS displays WD statistics and the simple algorithm for
disentangling fails, so the ESS is complex.

How does the disentangling algorithm perform in the
case of Hamiltonian evolution? We start from the final state
obtained after a quantum quench for running time #, = 1000,
like in the previous analysis for ESS. Notice that a similar
amount of entanglement (averaged over all possible contiguous
bipartitions of the system) is reached in both the MBL and
the AL case (see Fig. 3), while the average entanglement is
much higher for the ETH case. The disentangling (cooling)
algorithm works as follows. We pick randomly a one- or
two-body term from the model Eq. (1), and evolve the state
for a time 8¢ = 7 /10. Then we accept such an attempt with
probability min{1,exp(—BAS)}, where AS§ is the change of the
amount of von Neumann entropy averaged over all possible
bipartitions of the system, and 8~ is a fictitious temperature
that is gradually reduced to zero.

Let us look first at the cooling in the disordered XX model,
which at time fy = 1000 after the quench features Poisson
statistics for the ESS—what we would call a noncomplex en-
tanglement pattern. The performance of the cooling algorithm
is shown in the blue curve in Fig. 3. As the data show, the
state can be disentangled almost completely by this kind of
entanglement cooling algorithm. It is a remarkable fact that
entanglement can be undone after Hamiltonian evolution even
without knowledge of the precise Hamiltonian.

What happens for ETH and MBL? Figure 3 shows that
the entanglement entropy reached at 7o = 1000 using both the
MBL and ETH Hamiltonians cannot be undone by the cooling
algorithm, even though the value of the entanglement entropy
is smaller in the case of MBL. States generated from evolutions
using MBL or ETH Hamiltonians cannot be disentangled, and
in both cases, the ESS shows some degree of universality (both
reach a WD distribution, albeit at rather different time scales).
We conclude that what determines how easy or hard it is to
disentangle a state is not the level of entanglement, as measured
by the entanglement entropy, but instead that information is
contained in the ESS, like in the case for states generated by
quantum circuits.
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