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Abstract. We obtain the equivalence between a suitable tensor variational inequality and a tensor com-
plementarity problem. Moreover, we present a new tensor projection method for solving tensor varia-
tional inequalities by supposing that the involved function is continuous and satisfies a generalization of
the monotonicity condition. Finally, we use the method to compute the equilibrium solution of a general
oligopolistic market equilibrium problem with demand excesses.
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1. INTRODUCTION

Variational inequalities are a fundamental tool to study many problems arising from the opti-
mization theory and capture various applications, such as partial differential equations, optimal
control, and mathematical programming (see, e.g., [1, 2, 3]). The introduction of tensor vari-
ational inequalities (i.e. variational inequalities modeled on the space of tensors) have many
applications, including some economic problems. Hence, tensor variational inequalities are
a relevant mathematical tool. In this paper, we establish the relation between such inequali-
ties and a class of complementarity problems (called tensor complementarity problems). For
this reasons, the study of iterative methods for solving such inequalities assumes considerable
importance. Historically, two meaningful approaches for solving variational inequalities are
projection and descent methods. Recently, many different projection-like methods have been
proposed to approximate solutions to variational inequality problems under various types of
conditions. Some of them are the projection methods and extragradient methods which require
in the stepsize to know the Lipschitz constant or/and the modulus of strong monotonicity of the
function considered. In general it is not easy to obtain these constants (see, e.g., [4, 5, 6, 7, 8, 9].
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In [10], the authors extended these kind of methods to tensor variational inequalities. They stud-
ied, in particular, a tensor extragradient method and a tensor extragradient method with adaptive
steplength (inspired by the Marcotte algorithm presented in [11]).

In this paper, we introduce a new algorithm based on a milder assumption than the mono-
tonicity and even than the pseudomonotonicity. Indeed, we assume only that

〈F(Y ),Y −X 〉 ≥ 0, ∀Y ∈ K,

where K is a nonempty, closed, and convex subset of the tensor space TN,m, and F : K→TN,m
is a tensor function. Moreover, we prove a convergence result for the algorithm.

Tensor variational inequalities are useful to analyze a general oligopolistic market equilib-
rium problem in which the firms produce several goods and compete in a noncooperative be-
havior. This means that each player has at his disposal a strategy which he chooses from a set of
feasible strategies with the aim of maximizing his utility level, given the decisions of the other
players (see, e.g., [12, 13, 14]). Here, we consider a general oligopolistic market equilibrium
problem in presence of demand excesses, and we apply the theoretical results to this model. We
underline that demand excesses may occur when the supply cannot satisfy the demand espe-
cially for fundamental goods. In such an improvement of the model, equilibrium conditions are
given by using a generalization of the Cournot-Nash principle. By using variational techniques,
the equilibrium distribution can be characterized as the solution to a suitable tensor variational
inequality.

The paper is structured as follows. In Section 2, some preliminary results on tensor varia-
tional inequalities are recalled. Moreover, we show, under suitable assumptions, the equivalence
between tensor variational inequalities and tensor complementarity problems. In Section 3, a
numerical method based on the projection operator for solving tensor variational inequalities
is presented. Furthermore, we obtain that the sequence of approximation solutions converges
to the exact solution. Section 4 concerns the general oligopolistic market equilibrium problem
in which the firms produce several goods and demand excesses occur. The equilibrium con-
dition which generalizes the Cournot-Nash principle is presented and expressed by a suitable
tensor variational inequality. Then, we show existence results for the equilibrium distribution.
In Section 5, a numerical example is provided. At last, Section 6 deals with conclusive remarks.

2. SOME PRELIMINARIES

2.1. Notations. We fix some notations. Let V be a finite-dimensional vector space endowed
with an inner product. A N-order tensor is an element of the N-product space V ×·· ·×V , i.e. a
multidimensional array. We denote by small letters v,w, . . . tensors of order one (i.e. vectors), by
capital letters A,B, . . . tensors of order two (i.e. matrices) and by italic capital letters X ,Y , . . .
tensors of general order.

The space of N-order tensors on the m-dimensional vector space V is indicated by TN,m(V ).
In some clear cases, we use the simple notation TN,m instead of TN,m(V ). A N-order tensor X
on a space of dimension N has mN entries. The element (i1, . . . , iN) of X is indicated by xi1,...,iN .
Finally, we denote by R[m1...mN ] the class of N−order real tensors made by Rm1×·· ·×RmN .

We introduce the following inner product on TN,m:

〈X ,Y 〉=
m

∑
i1=1
· · ·

m

∑
iN=1

xi1,...,iN yi1,...,iN , ∀X ,Y ∈TN,m.
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Thanks to this definition, (TN,m,〈·, ·〉) is a Hilbert space.

2.2. Tensor variational inequalities. Given a nonempty closed and convex subset K of TN,m
and a tensor function F : K→ TN,m, the tensor variational inequality is the problem of finding
X ∈ K such that

〈F(X ),Y −X 〉 ≥ 0, ∀Y ∈ K. (2.1)

In [15] and [16], the authors proved some existence and uniqueness results for tensor vari-
ational inequalities. We recall some of them in the bounded case (see Theorem 2.1), in the
unbounded case (see Theorem 2.2) and using the monotone approach (see Theorem 2.3).

Theorem 2.1. If K is a nonempty compact convex subset of TN,m and F : K → TN,m is a
continuous tensor function. Then (2.1) admits at least one solution.

Without the boundedness assumption on the set K, we need to require the coerciveness of the
operator F , as the following result states.

Theorem 2.2. If K is a nonempty closed convex subset of TN,m and F : K→ TN,m is a contin-
uous tensor function such that

lim
‖X ‖→+∞

〈F(X )−F(X0),X −X0〉
‖X −X0‖

=+∞,

for some X0 ∈ K, then (2.1) admits a solution.

In order to recall the results based on the monotone approach, let us start with the following:

Definition 2.1. Let K be a nonempty subset of TN,m. A tensor function F : K→ TN,m is said
to be

• pseudomonotone on K if, for each X ,Y ∈TN,m,

〈F(Y ),X −Y 〉 ≥ 0 ⇒ 〈F(X ),X −Y 〉 ≥ 0;

• monotone on K if, for each X ,Y ∈TN,m,

〈F(X )−F(Y ),X −Y 〉 ≥ 0;

• strictly monotone on K if, for each X ,Y ∈TN,m, with X 6= Y ,

〈F(X )−F(Y ),X −Y 〉> 0;

• strongly monotone on K if, for each X ,Y ∈TN,m, there exists ν > 0 such that

〈F(X )−F(Y ),X −Y 〉 ≥ ν‖X −Y ‖2.

Theorem 2.3. Let K be a nonempty closed convex subset of TN,m, and let F : K→ TN,m be a
tensor function.

a) If F is continuous and monotone, then the set of solutions, briefly S(F,K), to (2.1) is
nonempty, closed, and convex.

b) If F is strictly monotone, then if there exists a solution to (2.1), then it is unique.
c) If F is continuous and strongly monotone, then there exists a unique solution to (2.1).

We recall also the following result which has an important role to introduce numerical meth-
ods.
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Theorem 2.4. If K is a nonempty compact convex subset of TN,m and F : K→TN,m is a tensor
continuous function, then the function F admits a fixed point in K.

We conclude this subsection with some useful observations for the algorithm presented in the
next section. Firstly, from Theorem 2.1, it is easy to deduce that X is a solution to (2.1) if and
only if X is a fixed point for the operator X 7→ PK(X −αF(X )), for any α > 0, where PK(·)
is the projection operator on K.

Under suitable conditions, as recalled in the previous theorems, the solution set S(F,K) of
(2.1) is nonempty. Let X be any element of the solution set S(F,K). We introduce now the
following condition:

〈F(Y ),Y −X 〉 ≥ 0, ∀Y ∈ K, (2.2)
which generalizes monotonicity assumptions. More precisely, it is easy to verify that if F is
monotone or pseudo-monotone, then (2.2) is satisfied.

For theoretical results, we know that solutions to tensor variational inequality (2.1) coincide
with the zeros of the following tensor projection residual function:

R(X ) = X −PK(X −F(X )), (2.3)

namely, X ∈ S(F,K) if and only if R(X ) = 0.

2.3. The tensor complementarity problem via TVI. The variational inequality problem is
strongly connected with the complementarity problem (see, in the vectorial case, for instance
[2, 17, 18]. We introduce here a general version of the complementarity problem modeled on
tensor spaces.

Definition 2.2. Given K ⊆TN,m, the polar cone of K is the set defined by

K∗ = {X ∗ ∈ (TN,m)
∗ : 〈X ∗,Y 〉 ≥ 0, ∀Y ∈ K},

where (TN,m)
∗ is the dual space of TN,m, i.e., (TN,m)

∗ = {F : TN,m→ R : F is linear}.

The following problem extends the vector complementarity problem, introduced in [17, 18],
considering tensor functions.

Problem 2.1. Let K be a closed convex cone of TN,m, and let F : K→ TN,m be a tensor map.
The tensor complementarity problem is the problem of finding X ∈ K such that

F(X ) ∈ K∗, 〈F(X ),X 〉= 0. (2.4)

We can prove the following result.

Proposition 2.1. Let K be a closed convex cone of TN,m, and let F : K→TN,m be a tensor map.
The tensor complementarity problem (2.4) is equivalent to the tensor variational inequality
(2.1).

Proof. Let us suppose, at first, that X is a solution to (2.1). Then choosing Y = 2X and Y =
0 in (2.1) we obtain that 〈F(X ),X 〉 ≥ 0 and 〈F(X ),X 〉 ≤ 0, respectively, which implies
〈F(X ),X 〉= 0. Moreover, from (2.1), we obtain that 〈F(X ),Y 〉 ≥ 0, for every Y ∈ K, i.e.,
F(X ) ∈ K∗. Then X is a solution of problem (2.4).

Conversely, if X is a solution to Problem 2.1, then

〈F(X ),Y −X 〉= 〈F(X ),Y 〉−〈F(X ),X 〉= 〈F(X ),Y 〉
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which is nonnegative since F(X ) ∈ K∗. As a consequence, we can conclude that X is a
solution to (2.1). �

3. TENSOR NUMERICAL METHOD

This section is devoted to the new algorithm for solving tensor variational inequalities as (2.1)
based on the projection operator. More precisely, we extend a numerical method presented
by Solodov and Svaiter in [19] for vector variational inequalities. Furthermore, we prove a
convergence result under suitable assumptions.

Nevertheless, we only assume the condition (2.2), namely

〈F(Y ),Y −X 〉 ≥ 0, ∀Y ∈ K,

and we recall the tensor projection residual function

R(X ) = X −PK(X −F(X )).

In the following, we describe the numerical method.

Algorithm.
• We choose X 0 ∈ K, γ ∈ (0,1), and σ ∈ (0,1);
• At each step, we compute R(X i). If R(X i) = 0, then stop.
• If R(X i) 6= 0, we calculate

ki = min
{

k ≥ 0, k ∈ Z : 〈F(X i− γ
kR(X i)),R(X i)〉 ≥ σ‖R(X i)‖2

}
, (3.1)

ηi = γ
ki,

Z i = X i−ηiR(X i).

• We compute
X i+1 = PC∩Hi(X

i),

where Hi = {X ∈TN,m : 〈F(Z i),X −Z i〉 ≤ 0}.
In order to prove a convergence result, we establish some preliminary lemmas.

Lemma 3.1. Let K be a nonempty, closed, and convex subset of TN,m. For any X ,Y ∈ TN,m
and any Z ∈ K,

〈X −PK(X ),Z −PK(X )〉 ≤ 0, (3.2)

and
‖PK(X )−PK(Y )‖2 ≤ ‖X −Y ‖2−‖PK(X )−X +Y −PK(Y )‖2. (3.3)

Proof. Observe that

‖X −PK(X )‖2−‖X −Y ‖2

= ‖X −PK(X )‖2−‖(X −PK(X ))+(PK(X )−Y )‖2

= −2〈X −PK(X ),PK(X )−Y 〉−‖PK(X )−Y ‖2. (3.4)

Rewriting (3.4) with W = tZ +(1− t)PK(X ), 0≤ t ≤ 1, in place of Y , we have

‖X −PK(X )‖2−‖X −W ‖2 =−2t〈X −PK(X ),PK(X )−Z 〉− t2‖PK(X )−Z ‖2.
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Then, it results

0≥−2t〈X −PK(X ),PK(X )−Z 〉− t2‖PK(X )−Z ‖2, 0 < t ≤ 1.

Dividing by t and passing to the limit as t → 0+, inequality (3.2) follows. In particular, the
following inequality holds:

〈X −PK(X ),PK(X )−PK(Y )〉 ≥ 0, ∀X ,Y ∈TN,m. (3.5)

Let us prove that PK satisfies the inequality:

〈(I−PK)(X )− (I−PK)(Y ),PK(X )−PK(Y )〉 ≥ 0, ∀X ,Y ∈TN,m. (3.6)

In fact, rewriting (3.5) as

〈(I−PK)(X ),PK(X )−PK(Y )〉 ≥ 0, (3.7)

and interchanging X and Y , we have

〈(I−PK)(Y ),PK(Y )−PK(X )〉 ≥ 0. (3.8)

Hence, adding (3.7) and (3.8), we obtain (3.6). Taking into account (3.6), we can derive

‖PK(X )−PK(Y )‖2 ≤ 〈X −Y ,PK(X )−PK(Y )〉, (3.9)

and

‖(I−PK)(X )− (I−PK)(Y )‖2 ≤ 〈X −Y ,(I−PK)(X )− (I−PK)(Y )〉. (3.10)

Finally, making use of (3.9) and (3.10), we obtain (3.3) immediately. �

Lemma 3.2. If the Algorithm is well defined, then X i+1 = PK∩Hi(PHi(X
i)).

Proof. From the Algorithm, we deduce that if

〈F(W i),X i−W i〉> 0,

then W i /∈ Hi. Since K is convex, it results

Z i = (1−ηi)X
i +ηiPK(X

i−F(X i)) ∈ K.

Again, from the numerical procedure, we have 〈F(Z i),X ∗−Z i〉 ≤ 0, for any X ∗ ∈ S(F,K),
which implies X ∗ ∈ Hi. Moreover, taking into account that X ∗ ∈ K, we have K ∩Hi 6= /0.
Since K∩Hi is a nonempty closed convex set, we see that X i+1 = PK∩H i(X i) is well defined.
We have

X
i

= PHi(X
i)

= X i− 〈F(Z i),X i−Z i〉
‖F(Z i)‖2 F(Z i)

= X i− ηi〈F(Z i),R(X i)〉
‖F(Z i)‖2 F(Z i).
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Let Y ∈K∩Hi. Being X i ∈K but X i /∈Hi, there exists β ∈ [0,1] such that X̃ = βX i+(1−
β )Y ∈ K∩∂Hi, with ∂Hi = {X ∈TN,m : 〈F(Z i),X −Z i〉= 0}. It results

‖Y −X
i‖2 ≥ (1−β )‖Y −X

i‖2

= ‖X̃ −βX i− (1−β )X
i‖2

= ‖X̃ −X
i‖2 +β

2‖X i−X
i‖2−2β 〈X̃ −X

i
,X i−X

i〉

≥ ‖X̃ −X
i‖2, (3.11)

where we used Lemma 3.2 with K = Hi, X = X i and Z = X̃ ∈ Hi. Moreover, taking into
account X

i
= P∂Hi(X

i), X̃ ∈ ∂Hi, and the Pythagoras theorem, we obtain

‖X̃ −X
i‖2 = ‖X̃ −X i‖2−‖X i−X

i‖2.

Hence, by X̃ ∈ K∩Hi and X i+1 = PK∩Hi(Xi), and the Pythagoras theorem again, we have

‖X̃ −X
i‖2 ≥ ‖X i+1−X i‖2−‖X i−X

i‖2

= ‖X i+1−X
i‖2. (3.12)

By (3.11) and (3.12), we obtain

‖Y −X
i‖ ≥ ‖X i+1−X

i‖, ∀Y ∈ K∩Hi.

Then, it results X i+1 = PK∩Hi(X
i
). �

Now, we are able to establish the convergence result for the numerical procedure.

Theorem 3.1. Let K be a nonempty, closed, and convex subset of TN,m, and let F : K→ TN,m
be a continuous tensor function. Assume that the solution set S(F,K) is nonempty, and (2.2)
holds. Then, any sequence {X i} generated by the Algorithm converges to a solution to tensor
variational inequality (2.1).

Proof. The first step is to prove that the Algorithm is well defined. If R(X i) = 0, then the
method stops at a solution to (2.1). Now, we suppose that ‖R(X i)‖ > 0. We remark that
X i ∈ K, for every i. We assume that, for some i, (3.1) does not hold for any integer k, namely

〈F(X i− γ
kR(X i)),R(X i)〉< σ‖R(X i)‖2, ∀k ∈ N. (3.13)

Making use of Lemma 3.2 with K = K, X = X i−F(X i) and Z = X i ∈ K, we deduce

0 ≥ 〈X i−F(X i)−PK(X
i−F(X i)),X i−PK(X

i−F(X i))〉
= ‖R(X i)‖2−〈F(X i),R(X i)〉.

Then, it results
〈F(X i),R(X i)〉 ≥ ‖R(X i)‖2. (3.14)

Note that X i− γkR(X i)→X i, as k→ +∞. By using the continuity of F and passing to the
limit as k→+∞ in (3.13), we obtain

〈F(X i),R(X i)〉 ≤ σ‖R(X i)‖2,
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which contradicts (3.14). Then (3.1) is satisfied for some ki and the algorithm is well defined.
By virtue of Lemma 3.1 with K = K∩Hi, X = X

i
, and Z = X ∗ ∈ K∩Hi, we have

0 ≥ 〈X i−X i+1,X ∗−X i+1〉

= ‖X i+1−X
i‖2 + 〈X −X i+1,X ∗−X

i〉.

It follows that

〈X ∗−X
i
,X i+1−X

i〉 ≥ ‖X i+1−X
i‖2.

As a consequence, we have

‖X i+1−X ∗‖2

= ‖X i−X ∗‖2 +‖X i+1−X
i‖2 +2〈X i−X ∗,X i+1−X

i〉

≤ ‖X i−X ∗‖2−‖X i+1−X
i‖2

= ‖X i−X ∗‖2−‖X i+1−X
i‖2 +

(
ηi〈F(Z i),R(X i)〉
‖F(Z i)‖

)2

−2ηi〈F(Z i),R(X i)〉
‖F(Z i)‖2 〈F(Z i),X i−X ∗〉

= ‖X i−X ∗‖2−‖X i+1−X
i‖2−

(
ηi〈F(Z i),R(X i)〉
‖F(Z i)‖

)2

−2ηi〈F(Z i),R(X i)〉
‖F(Z i)‖2 〈F(Z i),Z i−X ∗〉

≤ ‖X i−X ∗‖2−‖X i+1−X
i‖2−

(
σηi

‖F(Z i)‖

)2

‖R(X i)‖4, (3.15)

where we have taken into account (3.1) and (2.2). By (3.15), we deduce that {‖X ∗−X i‖}
is nondecreasing and, then, it is convergent. As a consequence, {X i} is bounded, and hence
{Z i} is also bounded which means that there exists M > 0 such that ‖F(Z i)‖ ≤M, for every
i. Again from (3.15), we deduce

‖X i+1−X ∗‖2 ≤ ‖X i−X ∗‖2−‖X i+1−X
i‖2−

(
σηi

M

)2
‖R(X i)‖4. (3.16)

Since {‖X ∗−X i‖} converges, we have

lim
i→+∞

ηi‖R(X i)‖= 0. (3.17)

If limsupi→+∞ ηi > 0, we obtain from (3.17) that limi→+∞ ‖R(X i)‖= 0. Since R is continuous
and {X i} is bounded, there exists an accumulation point X̂ for {X i} such that R(X̂ ) = 0.
So it results X̂ ∈ S(F,K). Choosing X ∗ = X̂ in (3.16), we have that {‖X i−X̂ ‖} converges
to zero (recall that X̂ is an accumulation point). Then {X i} converges to X̂ ∈ S(F,K). If
limi→∞ ηi = 0, by the choice of ηi, we know that (3.15) was not satisfied for ki−1 (for i large
enough), namely

〈F(X i− γ
−1

ηiR(X i)),R(X i)〉< σ‖R(X i)‖2, ∀i≥ i0. (3.18)
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Let us denote by X̂ an accumulation point of {X i} and by {X i j} the corresponding subse-
quence converging to X̂ . Passing to the limit as j→+∞ and recalling (3.14), we obtain

σ‖R(X̂ )‖2 ≥ 〈F(X̂ ),R(X̂ )〉 ≥ ‖R(X̂ )‖2.

The latter implies that R(X̂ ) = 0, namely X̂ ∈ S(F,K). Proceeding as in the precedent case,
we obtain that {X i} converges to X̂ ∈ S(F,K). Therefore the claim is achieved. �

4. AN OLIGOPOLISTIC MARKET MODEL

We want to consider an economic model in which the equilibrium condition is expressed by
a tensor variational inequality. More precisely, we present a general market equilibrium model
where demand excesses occur, as a generalization of the one introduced in [15]. The economic
network is made up of m firms Pi, i = 1, . . . ,m, and n demand markets Q j, j = 1, . . . ,n, that are
generally spatially separated. Each firm Pi produces l different commodities and sells them to
market Q j, j = 1, . . . ,n. We fix the following notations:

• xk
i j is the nonnegative variable expressing the commodity shipment of kind k between

the producer Pi and the market Q j, i = 1, . . . ,m, j = 1, . . . ,n, k = 1, . . . , l;
• δ k

j is the nonnegative variable expressing the demand excess for the commodity of kind
k of the demand market Q j, j = 1, . . . ,n, k = 1, . . . , l;
• pk

i is the variable expressing the commodity output of kind k produced by Pi, such that
pk

i = ∑
n
j=1 xk

i j, i = 1, . . . ,m, k = 1, . . . , l;
• qk

j is the variable expressing the demand for the commodity of kind k of demand market
Q j, j = 1, . . . ,n, k = 1, . . . , l.

Moreover we make the following assumptions:

• xk
i j, i = 1, . . . ,m, j = 1, . . . ,n, k = 1, . . . , l, and δ k

j , j = 1, . . . ,n, k = 1, . . . , l, are nonneg-
ative and the following capacity constraints hold:

xk
i j ≤ xk

i j ≤ xk
i j, ∀i = 1, . . . ,m, ∀ j = 1, . . . ,n, ∀k = 1, . . . , l,

where xk
i j, xk

i j, i = 1, . . . ,m, j = 1, . . . ,n, k = 1, . . . , l, are nonnegative bounds. We group
X = (xk

i j), X = (xk
i j) and X = (xk

i j), which belong to R[mnl] and ∆ = (δ k
j ) ∈ Rnl;

• qk
j, j = 1, . . . ,n, k = 1, . . . , l, is nonnegative and the following feasibility condition holds:

qk
j =

m

∑
i=1

xk
i j +δ

k
j , ∀ j = 1, . . . ,n, ∀k = 1, . . . , l, (4.1)

namely the quantity demanded by each demand market Q j of kind k must be equal to
the commodity shipments of such kind from all the firms to that demand market plus
the demand excess for such kind of commodity.
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As a consequence, the feasible set is

K̃ =

{
(X ,∆) ∈ R[mnl]×Rnl :

xk
i j ≤ xk

i j ≤ xk
i j, ∀i = 1, . . . ,m, ∀ j = 1, . . . ,n, ∀k = 1, . . . , l,

δ
k
j ≥ 0, ∀ j = 1, . . . ,n, ∀k = 1, . . . , l,

qk
j =

m

∑
i=1

xk
i j +δ

k
j , ∀i = 1, . . . ,m, ∀k = 1, . . . , l

}
, (4.2)

which is a nonempty convex compact subset of R[mnl].
We define:
• f k

i representing the variable expressing the production cost of Pi for each good of type
k, i = 1, . . . ,m, k = 1, . . . , l. We assume that the production cost of a firm Pi may depend
upon the entire production pattern, namely, f k

i = f k
i (X ), X ∈ R[mnl];

• d̃k
j representing the variable expressing the demand price for unity of kind k of the

commodity with each demand market Q j, j = 1, . . . ,n, k = 1, . . . , l. We assume that the
demand price of a demand market Q j may depend upon the entire consumption pattern,
namely, d̃k

j = d̃k
j (X ,∆), X ∈ R[mnl], ∆ ∈ Rnl;

• c̃k
i j representing the variable expressing the transaction cost between firm Pi and demand

market Q j regarding the good of kind k, i = 1, . . . ,m, j = 1, . . . ,n,, k = 1, . . . , l. We
assume also that the transaction cost depends upon the entire shipment pattern, namely,
c̃k

i j = c̃k
i j(X ,∆), X ∈ R[mnl], ∆ ∈ Rnl .

Then the profit of firm Pi, i = 1, . . . ,m, is

ṽi(X ,∆) =
l

∑
k=1

[
n

∑
j=1

d̃k
j (X ,∆)xk

i j− f k
i (X )−

n

∑
j=1

c̃k
i j(X ,∆)xk

i j

]
,

namely the difference between the price that each demand market Pi is disposed to pay and the
sum of the production costs and the transportation costs.

We remark that, by (4.1), we can express the demand excesses in the following way:

δ
k
j = qk

j−
m

∑
i=1

xk
i j, ∀ j = 1, . . . ,n, ∀k = 1, . . . , l (4.3)

and hence
l

∑
k=1

δ
k
j = q j−

l

∑
k=1

m

∑
i=1

xk
i j, ∀i = 1, . . . ,m.

Making use of the nonnegativity of the production excesses, we can write an equivalent formu-
lation for the feasible set:

K=

{
X ∈ R[mnl] : xk

i j ≤ xk
i j ≤ xk

i j, ∀i = 1, . . . ,m, ∀ j = 1, . . . ,n, ∀k = 1, . . . , l,

m

∑
i=1

xk
i j ≤ qk

j, ∀ j = 1, . . . ,n, ∀k = 1, . . . , l

}
. (4.4)
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We stress that K includes the presence of demand excesses as in K̃.
Hence, we can replace the demand prices and the transaction costs as:

dk
j (X ) = d̃k

j (X ,∆), ∀ j = 1, . . . ,n, ∀k = 1, . . . ,m,

ck
i j(X ) = c̃k

i j(X ,∆), ∀i = 1, . . . ,m, ∀ j = 1, . . . ,n, ∀k = 1, . . . ,m.

With the same spirit, we rewrite the profit function of firm Pi as

vi(X ) = ṽi(X ,∆) =
l

∑
k=1

[
n

∑
j=1

dk
j (X )xk

i j− f k
i (X )−

n

∑
j=1

ck
i j(X )xk

i j

]
,

The aim of each firm is to maximize its own profit function considering the optimal distri-
bution pattern of the others, namely it follows a noncooperative behavior. As a consequence,
the equilibrium distribution has to satisfy a generalization of the Cournot-Nash equilibrium
principle.

Definition 4.1. A tensor distribution X ∗ ∈ K is a general oligopolistic market equilibrium in
presence of demand excesses if and only if

vi(X
∗)≥ vi(Xi,X

∗
−i), ∀i = 1, . . . ,m, (4.5)

where X ∗
−i = (X∗1 , . . . ,X

∗
i−1,X

∗
i+1, . . . ,X

∗
m) and Xi = (xk

i j) ∈ Rnl .

In the sequel, we suppose:
(i) vi(X ) is continuously differentiable, for each i = 1, . . . ,m;

(ii) vi(X ) is pseudoconcave with respect to Xi ∈Rnl , for each i = 1, . . . ,m, namely (see [1])〈
∂vi

∂Xi
(X1, . . . ,Xi, . . . ,Xm),Xi−Yi

〉
≥ 0⇒ vi(X1, . . . ,Xi, . . . ,Xm)≥ vi(X1, . . . ,Yi, . . . ,Xm).

We set

∇Dv =

(
∂vi

∂xk
i j

)
, i = 1, . . . ,m, j = 1, . . . ,n, k = 1, . . . , l,

the tensor of partial derivative of vi with respect to xk
i j, i = 1, . . . ,m, j = 1, . . . ,n, k = 1, . . . , l.

We now are able to prove the following result.

Theorem 4.1. Under assumptions (i) and (ii), x∗ ∈K is a general oligopolistic market equilib-
rium distribution in presence of demand excesses if and only if it satisfies

〈−∇Dv(X ∗),X −X ∗〉=−
m

∑
i=1

n

∑
j=1

l

∑
k=1

∂vi(X ∗)

∂xk
i j

(xk
i j− (xk

i j)
∗)≥ 0, ∀x ∈K. (4.6)

Proof. We start showing that if X ∗ is a solution to (4.6), then it is a general oligopolistic
market equilibrium distribution in presence of demand excesses. By contradiction, we assume
that there exists i∗ such that vi∗(X ∗) < vi∗(Xi∗,X ∗

−i∗). For the pseudoconcavity assumption of
v(X ), we have 〈−∇Dv(X ∗),X −X ∗〉< 0. The vice versa clearly follows. �

Taking into account the theoretical results for tensor variational inequalities shown in the
previous sections and reminding that the feasible set K is nonempty convex compact, we obtain
the following existence and uniqueness result for the economic model.

Theorem 4.2. Under assumptions (i) and (ii), if −∇Dv is strictly monotone, then there exists a
unique general oligopolistic market equilibrium distribution in presence of demand excesses.
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Q1 Q2 Q3

P1 P2

FIGURE 1. Oligopolistic market network

5. NUMERICAL EXAMPLE

We consider a simple oligopolistic market network made up of two firms P1 and P2 and three
markets Q1, Q2 and Q3. Every firm Pi, i = 1,2, produces two different kinds of goods. Figure 1
explains the economic network, in particular dashed and continuous lines represent the path of
the two kinds of goods. We denote by xk

i j the k-th commodity shipment from Pi to Q j, i = 1,2,
j = 1,2,3, k = 1,2. We also assume that the capacity constraints 0 ≤ xk

i j ≤ 100 hold for every
i = 1,2, j = 1,2,3, k = 1,2. Since we are studying a general oligopolistic market equilibrium
example in presence of demand excesses, we introduce the commodity demand q:

q =

1 2
2 1
2 2

 ,

Hence, we have

K =

{
x ∈ R[12] : 0≤ xk

i j ≤ 100, ∀i = 1,2, ∀ j = 1,2,3, ∀k = 1,2

2

∑
i=1

xk
i j ≤ qk

j, ∀ j = 1,2,3, ∀k = 1,2

}
. (5.1)

The profit functions vi, i = 1,2, are given by:

v1 =−4(x1
11)

2−4(x1
12)

2−6(x1
13)

2−6(x2
11)

2−5(x1
21)

2−2(x1
22)

2

−4x1
11x1

12−6x1
13x2

11−2x1
21x1

22 +3x1
11 +4x1

12 + x1
13 + x2

11 +2x1
21 +2x1

22,

and

v2 =−10(x2
22)

2−4(x2
23)

2−4(x2
13)

2−5(x2
12)

2−2(x1
23)

2−2(x2
21)

2

−2x1
11x2

23−2x2
13x2

12−2x1
23x2

21 + x2
22 +2x2

23 +10x2
13 +3x2

12 +3x1
23 +2x2

21.
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Hence the nonzero components of ∇Dv are

∂v1

x1
11

=−8x1
11−4x1

12 +3,
∂v2

x1
23

=−4x1
23−2x2

21 +3,

∂v1

x1
12

=−4x1
11−8x1

12 +4,
∂v2

x2
21

=−2x1
23−4x2

21 +2,

∂v1

x1
13

=−12x1
13−6x2

11 +1,
∂v2

x2
22

=−20x2
22−2x1

12 +1,

∂v1

x2
11

=−6x1
13−12x2

11 +1,
∂v2

x2
23

=−8x2
23−2x1

11 +2.

By Theorem 4.1, the general oligopolistic market equation distribution is a solution to

〈−∇Dv(x∗),x− x∗〉=−
2

∑
i=1

3

∑
j=1

2

∑
k=1

∂vi(x∗)
∂xk

i j
(xk

i j− (xk
i j)
∗)≥ 0, ∀x ∈K. (5.2)

By using the Algorithm, we obtain the following numerical distribution:

(x1)∗ =

(
0.16667 0.41667 0.05555
0.11111 0.44444 0.66667

)
,

(x2)∗ =

(
0.05555 0.05263 1.23684
0.16667 0.00833 0.20833

)
.

The algorithm was coded making use of Matlab and was run on a PC with 32 GB RAM,
Lenovo ThinkPad E570 Intel Core i7-7500U and the stopping criterion used in the numerical
computation is ‖X i+1−X i‖< 10−5.

6. CONCLUSIONS

In this paper, we continued the study of tensor variational inequalities. In particular, we estab-
lished the equivalence between the tensor complementarity problem and a special tensor varia-
tional inequality. Moreover, we introduced a projection type method to solve tensor variational
inequalities. We proved a convergence result which guarantees that the sequence generated
by the algorithm converges to the exact solution. Then, we presented the general oligopolistic
market equilibrium problem in which each firm produces several commodities and demand ex-
cesses occur. The equilibrium distribution expressed by a generalization of the Cournot-Nash
equilibrium principle was characterized by a tensor variational inequality. Thanks to this varia-
tional formulation, we obtained an existence result for the model. At last, a numerical example
was provided.
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