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We present an analytical study on the resilience of topological order after a quantum quench. The

system is initially prepared in the ground state of the toric-code model, and then quenched by switching on

an external magnetic field. During the subsequent time evolution, the variation in topological order is

detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has

an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-

term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial

value. Based on our results, we argue that topological order is resilient against a wide range of quenches.
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Introduction.—Topologically ordered phases in quan-
tum many-body systems are of extreme importance in
condensed matter physics [1] and in quantum information
[2,3]. They are novel phases of matter that defy the Landau
paradigm of spontaneous symmetry breaking and possess
a robust ground-state degeneracy that makes them good
candidates for quantum memories. Furthermore, they
feature anyonic excitations whose interactions are of a
topological nature and that are therefore less subject to
decoherence [2,3].

Formally, a gapped phase is topologically ordered if and
only if it has a topology-dependent ground-state degener-

acy such that h�jÔj�0i is exponentially small in the sys-

tem size for any local operator Ô and any two orthogonal
ground states j�i and j�0i. On the other hand, it has been
shown that topological order can be detected in the global
properties of each ground-state wave function, without
reference to any other states or the Hamiltonian [4–7].
More precisely, topological order is revealed by an entan-
glement pattern called topological entropy: a universal
correction to the boundary law for the entanglement en-
tropy. Since this correction is robust against perturbations,
it serves as an effective nonlocal order parameter for
topologically ordered phases [8,9].

Unfortunately, the entanglement entropy is extremely
hard to compute and its measurement requires complete
state tomography [10]. On the other hand, it has been argued
that the Rényi entropy of order 2 also contains substantial
information about the universal properties of a quantum
many-body system [11]. In particular, the topological pat-
tern of entanglement appears in the Rényi entropy as well
[6,12]. Moreover, this quantity is significantly easier to
compute and can in principle be measured directly [13].

It is crucial to understand how topological order behaves
away from equilibrium. Since topological order is a prop-
erty of the wave function only, its presence or absence is

well defined for an arbitrary quantum state, and it can be
present in a nonequilibrium state even if it is absent from
the ground state of the system Hamiltonian. The nonequi-
librium properties of quantum many-body systems are in
general extremely fruitful topics in both theoretical [14]
and experimental [15] condensed matter physics, and they
can be studied conveniently in the setting of the quantum
quench: a sudden change in the system Hamiltonian [16].
The quantum quench of a topologically ordered system
was numerically studied in Ref. [17], where they found
that topological order is resilient against certain types of
quenches. The main disadvantage of their method is that
it is only applicable to small system sizes.
In this Letter, we analytically study the behavior of a

topologically ordered system after a quantum quench via
the time evolution of the topological Rényi entropy of
order 2. In particular, we prepare the system in the ground
state of the toric-code model (TCM) [2] and quench it by
switching on an external magnetic field. By establishing an
exact treatment and a perturbation theory for two different
versions of the quench, we ensure that our results are not
confined to the small system sizes accessible by exact
diagonalization [8,17].
General formalism.—We consider the TCM with an

external magnetic field in the þz direction. In this model,
there are 2N2 spins on the edges of anN � N square lattice
with periodic boundary conditions [2]. The spins on the
horizontal (h) and the vertical (v) edges experience differ-
ent magnetic fields � and ��; therefore, the Hamiltonian
takes the form [12]

Ĥð�Þ ¼ �X
s

Âs �
X
p

B̂p � �
X
i2h

�̂z
i � ��

X
i2v

�̂z
i ; (1)

where the star operators Âs � Q
i2s�̂

x
i and the plaquette

operators B̂p � Q
i2p�̂

z
i belong to stars (s) and plaquettes

(p) on the lattice containing four spins each (see Fig. 1).
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In the case of � ¼ 0, the system is exactly solvable

because ½Âs; B̂p� ¼ ½Âs; Ĥð0Þ� ¼ ½B̂p; Ĥð0Þ� ¼ 0. The sec-

tors with different sets of expectation values fAs � hÂsi ¼
�1g and fBp � hB̂pi ¼ �1g can be treated independently.

In the ground-state sector with As ¼ þ1 (8 s) and Bp ¼
þ1 (8 p), there are four linearly independent degenerate
ground states that are distinguished by the topological
quantum numbers Z1;2 ¼ �1. These quantum numbers

are expectation values for products of �̂z
i operators

along horizontal and vertical strings going around the
lattice. The ground state with Z1 ¼ Z2 ¼ þ1 becomes

j0i ¼ N
Q

sð1þ ÂsÞj*i, where N is a normalization
constant and j*i is the completely polarized state with
�z

i � h�̂z
i i ¼ þ1 (8 i).

In the case of � > 0, the system is not exactly solvable

in general because ½Âs; �̂
z
i � � 0. On the other hand, it

is true that ½B̂p; Ẑ1;2� ¼ ½B̂p; Ĥð�Þ� ¼ ½Ẑ1;2; Ĥð�Þ� ¼ 0;

therefore, the sectors with different values of Bp and Z1;2

can be treated independently. In the following, we only
consider the lowest-energy sector with Bp ¼ þ1 (8 p)

and Z1 ¼ Z2 ¼ þ1. The states within this sector are dis-
tinguished by the expectation values fAs ¼ �1g, and we
introduce a corresponding representation with quasispins
As located at the stars [18]. In this quasispin representation,

the quasispin As is measured by the operator Âz
s � Âs and

switched by operator Âx
s ; therefore, the quasispin operators

Âz
s and Âx

s satisfy the standard spin commutation relations.

Note that �̂z
i ¼ Âx

sÂ
x
s0 for an edge i between two neighbor-

ing stars s and s0. Up to an irrelevant additive constant, the
Hamiltonian in Eq. (1) becomes

Ĥð�Þ ¼ �X
s

Âz
s � �

X
hs;s0i2h

Âx
sÂ

x
s0 � ��

X
hs;s0i2v

Âx
sÂ

x
s0 ; (2)

where hs; s0i means that the summation is over edges
between neighboring stars s and s0. The TCMwith external
magnetic field is therefore equivalent to a 2D transverse
field Ising model (TFIM) in which the coupling strengths
on the horizontal and the vertical edges are not equal in
general.

When studying the quantum quench, we are interested
in the time evolution of the quantum state j�ðtÞi after a

sudden change in the Hamiltonian. At time t ¼ 0, the
system is set up in the ground state of the initial

Hamiltonian Ĥð0Þ such that j�ð0Þi ¼ j0i. At time t > 0,

the system is evolved with the quench Hamiltonian Ĥð�Þ
and the state takes the general form j�ðtÞi ¼
exp½�itĤð�Þ�j0i. To extract any valuable information
from this expression, we need to obtain a full solution of

the Hamiltonian Ĥð�Þ. In the following, we consider two
important limits. When � ¼ 1, the horizontal and the
vertical coupling strengths are equal, and the equivalent
TFIM is the standard 2D TFIM. When � ! 0þ, the ver-
tical coupling strength vanishes, and the equivalent TFIM
factorizes into N independent 1D TFIM copies along the
horizontal chains of the lattice [19]. The � ¼ 0 case has
an exact solution available for all values of �, while the
� ¼ 1 case requires perturbation theory around the exactly
solvable point at � ¼ 0.
Topological Rényi entropy.—The Rényi entropy of

order � is a generalization of the usual (von Neumann)
entanglement entropy that characterizes the quantum
entanglement between two complementary subsystems A
and B � �A. It is defined by SAB� � log2Tr½�̂�

A�=ð1� �Þ,
where �̂A is the reduced density operator for A. Note that
the usual entanglement entropy is recovered in the special
case of � ¼ 1.
The topological Rényi entropy is extracted from inde-

pendent Rényi entropies SðmÞ
� calculated in the four cases

ðmÞ of Fig. 2 as ST� � �Sð1Þ� þ Sð2Þ� þ Sð3Þ� � Sð4Þ� . When

defining ST� in the standard way [5], we take SðmÞ
� ¼ SAB�

between the two thick subsystems A and B. However, it
was argued in Ref. [12] that the presence of the Z2 lattice
gauge structure due to the constraint Bp ¼ þ1 (8 p)

makes it possible to substitute the subsystem A with its
boundary @A. In the following, we use the corresponding

modified definition for ST� in which we take SðmÞ
� ¼

S@A;@A� � S@A� between the thin boundary subsystem @A
and the rest of the system. The topological Rényi entropy
is nonzero if and only if the given state has topological
order. For example, its value is ST� ¼ 2 for the TCM ground
state j0i and ST� ¼ 0 for the completely polarized state j*i.
Note that the dimensions D and d of the subsystems need
to be macroscopic such that D> d � 1.
The modified definition for the topological Rényi en-

tropy is an immense simplification to our calculations
because the reduced density matrix �@A is diagonal in the

s

p

FIG. 1 (color online). Illustration of the square lattice with
physical spins on the horizontal (black circles) and the vertical
(white circles) edges. Examples of a star (s) and a plaquette (p)
are included.

A

B d

(4)(3)(2)(1)

B

A A

B

D

B
BA A

FIG. 2. Illustration of the subsystems A and B in the four cases
(m) that are used to calculate the topological Rényi entropy.
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basis of the physical spins �z
i . It was shown in Ref. [12]

that if the boundary subsystem @A consists of n closed
loops with a combined length L, the Rényi entropy of order
2 for a generic state j�i satisfying the gauge constraint
Bp ¼ þ1 (8 p) is

S@A2 ¼ ðL� nÞ � log2

�
1þ X

s1;s2

h�jÂx
s1Â

x
s2 j�i2

þ X
s1;s2;s3;s4

h�jÂx
s1 Â

x
s2Â

x
s3 Â

x
s4 j�i2 þ � � �

�
; (3)

where the sum inside the logarithm contains all 2L�n

possible products with an even number of quasispin opera-

tors Âx
s chosen from each closed loop of the subsystem @A.

Exact treatment.—In the case of � ¼ 0, there are no
interactions between the horizontal chains of the lattice,
and the 2D system factorizes into N independent 1D
systems in terms of the quasispins As. Indeed, the 2D
Hamiltonian in Eq. (2) becomes the direct sum of N
identical 1D Hamiltonians. If we consider any horizontal
chain and label itsN stars with 1 � l � N, the correspond-
ing 1D Hamiltonian is

ĥð�Þ ¼ �XN
l¼1

ðÂz
l þ �Âx

l Â
x
l�1Þ; (4)

where the periodic boundary conditions are taken into
account by A0 � AN . Since the 1D TFIM Hamiltonian in
Eq. (4) is exactly solvable by means of a standard proce-
dure [20], we can determine the exact time evolution of the
Rényi entropy after the quantum quench [21]. Note that
despite the factorization into independent 1D chains in
terms of the quasispins, this calculation gives the Rényi
entropy of a strongly entangled 2D state in terms of the
physical spins.

The long-term time average of the topological Rényi
entropy against the magnetic field � of the quench

Hamiltonian Ĥð�Þ is plotted in Fig. 3. The time averages
are calculated from 1000 independent time instants, which
are taken from a sufficiently long interval at sufficiently
large times such that t � maxf1; ��1g for all time instants
t. We first notice that hST2 i is distinct from the value of
ST2 ¼ 0 that would correspond to the lack of topological
order. Instead, it is found for all magnetic fields � that hST2 i
is close to the initial value of ST2 ¼ 2 and gets closer to it if
we increase the system size N as well as the subsystem
dimensionsD and d. We therefore argue that ST2 ¼ 2 in the
thermodynamic limit for all times t after a quench with an
arbitrary magnetic field �.

Perturbation theory.—In the case of � ¼ 1, the
Hamiltonian in Eq. (2) requires perturbation theory around
the exactly solvable point at � ¼ 0. Our aim is to deter-
mine the time evolution of the first-order correction to ST2 .
In general, the most straightforward approach is the
method of perturbative continuous unitary transformations

[12,18,22]. However, a naive first-order perturbation the-
ory is sufficient in our case, and we derive our results using
this simpler approach.
The unperturbed ground state of the initial Hamiltonian

Ĥð0Þ is j0i and the perturbed ground state of the quench

Hamiltonian Ĥð�Þ is j�i. In the first order of perturbation
theory, the perturbed ground state takes the expansion form
j�i ¼ j0i þ ð�=4ÞPhr1;r2ijfr1; r2gi, where jfr1; r2gi is the

state with two star excitations at the positions r1 and r2
such that Az

r1 ¼ Az
r2 ¼ �1. The position of each star is

labeled by the 2D vector r ¼ ðx; yÞ with 0 � x, y < N.
In terms of the ground state j�i, the initial state j�ð0Þi
becomes j�ð0Þi ¼ j0i ¼ j�i � ð�=4ÞPhr1;r2ijfr1; r2gi.
Although the nondegenerate corrections to the excited
states jfr1; r2gi vanish in the first-order calculation, the
perturbation introduces a hopping between these degener-
ate states. The two star excitations can hop between neigh-
boring stars with an amplitude ��, and their only
interaction is a hard-core repulsion: they are not allowed
to be at the same star. However, this interaction is negli-
gible in the thermodynamic limit because the two excita-
tions are far away from each other. The exact eigenstates
of the quench Hamiltonian with two star excitations are

then jk1;k2i ¼ N�2
P

r1;r2
eiðK1�r1þK2�r2Þjfr1; r2gi, where

k ¼ ðkx; kyÞ with 0 � kx; ky < N, and each excitation has

a 2D momentum K ¼ 2�k=N. Note that the state
jfr1; r2gi ¼ jfr2; r1gi appears twice in the sum. Since the
system and the initial state are both invariant under trans-
lations, we need to consider only the eigenstates with zero
total momentum k1 þ k2. These states labeled by jki �
jk;�ki have relative energies EðkÞ ¼ 4� 4��ðkÞ with
respect to the ground state j�i, where �ðkÞ � cosðKxÞ þ
cosðKyÞ. In terms of the eigenstates, the initial state j�ð0Þi
takes the form j�ð0Þi ¼ j0i ¼ j�i � ð�=2ÞP0

k�ðkÞjki,
where the prime means that the summation is only over
half of the N2 possible k values. The state j�ðtÞi after

the time evolution with Ĥð�Þ is then obtained by the

substitution �ðkÞ ! �ðkÞe�itEðkÞ, and in terms of the states
jfr1; r2gi, it reads

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

S
2T

i

ii

iii
iv

FIG. 3 (color online). Exact long-term time average of ST2 as
a function of � ¼ �=ð1þ �Þ for various system sizes: N ¼ 40
and D ¼ 3d ¼ 6 (i); N ¼ 60 and D ¼ 3d ¼ 9 (ii); N ¼ 80 and
D ¼ 3d ¼ 12 (iii); N ¼ 100 and D ¼ 3d ¼ 15 (iv).
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j�ðtÞi ¼ j�i þ X
ðr1;r2Þ

Qðr1; r2; tÞjfr1; r2gi; (5)

where ðr1; r2Þ means that the summation is over pairs of
stars without double counting. The coefficient of each state

is Qðr1;r2; tÞ¼�ð�=N2ÞP0
k�ðkÞcos½K � ðr1�r2Þ�e�itEðkÞ.

Since the functions Qðr1; r2; tÞ consist of many incoherent
oscillations with different frequencies EðkÞ, the average
modulus square of any such function is given by

hjQðr1; r2; tÞj2i ¼ �2

N4

X0

k

�ðkÞ2cos2ðK � ðr1 � r2ÞÞ ¼ �2

4N2
:

(6)

This result has a simple physical interpretation. The two
excitations are always at neighboring stars before the time
evolution, and the sum of the norm squares in the states
with two excitations is 2N2�2=16 ¼ N2�2=8 because there
are 2N2 ways of choosing two neighboring stars. During
the time evolution, the excitations hop between stars, and
the norm square is distributed uniformly between all pos-
sible states with two star excitations. Since there are
N2ðN2 � 1Þ=2 	 N4=2 ways of choosing any two stars,
the uniform norm square corresponds to the result �2=4N2

in Eq. (6).
When calculating the Rényi entropy for the state j�ðtÞi

in Eq. (5), there are two corrections to the value S@A2 ¼
L� n for the unperturbed ground state j0i: a static correc-
tion from the perturbed ground state j�i and a dynamic
correction from the oscillating terms / Qðr1; r2; tÞ. The
static correction is linearly proportional to the combined
length L of the boundary in each case (m); therefore, its
topological contribution vanishes [12]. On the other hand,
the terms / Qðr1; r2; tÞ give an expectation value

h�ðtÞjÂx
r1 Â

x
r2 j�ðtÞi ¼ 2Re½Qðr1; r2; tÞ� for each pair of

stars r1 and r2 on the same closed loop of the boundary.
Since hRe½Qðr1; r2; tÞ�2i ¼ hjQðr1; r2; tÞj2i=2 and there are
‘ð‘� 1Þ=2 ways of choosing two stars from a closed loop
of length ‘, the time average of the dynamic correction is
h�S@A2 i ¼ ��2‘ð‘� 1Þ=ð4N2 ln2Þ for each closed loop of
the boundary in each case (m). Since there is a term / ‘2,
the topological contribution does not vanish, and the result-
ing time average of the topological Rényi entropy is

hST2 i ¼ 2� �2ð8D2 � 16d2Þ
N2 ln2

: (7)

If we take both the system size and the subsystem dimen-

sions to infinity such that D
 d
 N1=4, the perturbative

correction vanishes as N�3=2. We can thus choose macro-
scopic subsystems in the thermodynamic limit such that
the topological Rényi entropy is ST2 ¼ 2 for all times t.

To verify that the first-order perturbation theory is
indeed a good approximation at � � 1 and is not invali-
dated by higher-order corrections, we also establish
an analogous perturbation theory in the exactly solvable

� ¼ 0 case. The first-order time average of the topological
Rényi entropy takes the form

hST2 i ¼ 2� �2ðd2 þ 6D� 6d� 1Þ
2N ln2

: (8)

Note that the correction in this case vanishes as N�1=2

when D
 d
 N1=4. The exact results and those obtained
from the perturbation theory are plotted together in Fig. 4.
We notice that the respective curves are in good agreement
when � � 1, and therefore we argue that the first-order
perturbation theory is a good approximation in the � ¼ 1
case as well.
Conclusions.—In this Letter, we studied the resilience of

topological order in the TCM ground state after a quantum
quench with an external magnetic field. The time evolution
of topological order was detected via the topological Rényi
entropy of order 2. We considered two different quenches:
the integrable one was solved exactly, while the nonintegr-
able one was treated with perturbation theory. In both
cases, we found that topological order is resilient in the
thermodynamic limit. Our results are in agreement with
those in Ref. [17], but they apply to significantly larger
system sizes.
It is interesting to discuss the generic conditions under

which topological order is resilient. First of all, the results
for the nonintegrable quench show that integrability does
not play a role. On the other hand, both quenches preserve
the Z2 gauge structure of the TCM ground state. This
gauge structure allows us to use the modified definition
for ST2 , which in turn makes the subsequent calculations
possible. We therefore believe that topological order
characterized by ST2 is a robust nonequilibrium property
of the system whenever gauge invariance is preserved. In
perspective, it would be important to study the behavior
of topological order after a more generic non-gauge-
preserving quench. This further step could help us better
understand the universal nonequilibrium and thermal prop-
erties of topologically ordered systems.
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FIG. 4 (color online). Long-term time average of ST2 from the
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theory (dashed red line) for two system sizes: N ¼ 40 and
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