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Abstract. We characterize through their action on stochastic exponentials
the class of white noise operators which are derivations with respect to both
the point-wise and Wick products. We define the class of second order differ-
ential operators and second order Wick differential operators and we charac-
terize the white noise operators belonging to both classes. We find that the
intersection of these two classes, in the first and second order cases, is iden-
tified by a skewness condition on the coefficients of the differential operator.
Our technique relies on simple algebraic properties of commutators and on
the Gaussian structure of our white noise space. Our approach is suitable to
study differential operators of any order.

1. Introduction and Notation

In the last two decades differential operators in white noise analysis have been
investigated by several authors. The research has been focused mainly on three
issues: characterization theorems for Gross laplacian, number operator, Euler op-
erator and Lévy laplacian [2, 4, 6]; differential operators related to the infinite
dimensional rotation group [4, 6, 7]; characterization theorems for derivations and
Wick derivations [1, 8]. See also the books [3, 5, 9] and the references quoted
there. The main tools of investigation in the above mentioned papers are the sym-
bol transform of an operator, the Fock expansion and integral kernels operators.

It is well known, and very useful in carrying calculations, that annihilation
operators are derivations with respect to both the ordinary and Wick products.
More precisely, for any ξ ∈ S′ (the space of tempered distributions) and ϕ, ψ ∈ (S)
(the Hida test function space) one has:

aξ(ϕ · ψ) = aξϕ · ψ + ϕ · aξψ,

aξ(ϕ ⋄ ψ) = aξϕ ⋄ ψ + ϕ ⋄ aξψ.

It is natural to wonder whether only annihilations enjoy both properties. The
first main result of the present paper is a characterization of those white noise
differential operators that behave as derivations with respect to both the ordinary
and Wick products (see Theorem 2.8 below). The operators belonging to this
class can be written as the sum of an annihilation operator and a first order
differential operator whose coefficients satisfy a skewness condition (in Remark
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2.10 below we relate this last class of operators to the generators of some infinite
dimensional rotation groups from [4]). To prove this theorem we use a quite
elementary machinery consisting of basic algebraic properties of commutators and
the Gaussian structure of the underlying white noise space. Our starting point is
the useful observation (whose origin can be traced back to Pincherle [10]) that one
can reduce the order of a differential operator by simply taking the commutator
with a multiplication operator (see Remark 2.5 below). Through this idea we then
define the classes of second order differential operators and second order Wick
differential operators and we characterize the intersection of these two classes (see
Theorem 3.10 below). Also in this case we obtain a family of differential operators
whose coefficients satisfy a skewness condition. This class contains also the Gross
laplacian. Our technique is suitable to study differential operators of any order
and can be potentially adapted to cover the theory of differential operators in non
gaussian white noise spaces.

The paper is organized as follows: at the end of this section we briefly set
the notation; Section 2 is devoted to first order differential operators: definitions,
characterization theorems and examples; Section 3 is focused on second order
differential operators.

We will work in the framework of the White Noise Theory following the standard
notation of one of the books [3, 5, 9], which we refer to for detailed information on
that topic. In particular, S and S′ will denote the Schwartz space of smooth rapidly
decreasing functions and the space of tempered distributions over R, respectively.
The notation 〈·, ·〉 will be used for the dual pairing between S′ and S. We will
use the symbols (S) and (S)∗ to denote respectively the Hida’s test function and
distribution spaces constructed from the Hilbert space L2(R) and the harmonic

oscillator A := − d2

dx2 +x
2+1. The notation 〈〈·, ·〉〉 will be used for the dual pairing

between (S)∗ and (S).
For any n ∈ N, we will say that Y ∈ (S)∗ belongs to the n-th chaos if Y is of

the form In(Fn), where Fn ∈ S′⊗n is a symmetric distribution and In(Fn) stands
for the (generalized) n-th order multiple Itô integral of Fn (with respect to the
canonical Brownian motion defined on the standard Gaussian white noise space
(S′,B(S′), µ)).

For ξ ∈ S′ we will denote X(ξ) := I1(ξ) and by aξ and a
∗
ξ the usual annihilation

and creation operators, respectively. We observe that aξ, a
∗
ξ ∈ L((S), (S)∗) and

that for any ϕ ∈ (S),

(aξ + a∗ξ)ϕ = X(ξ) · ϕ.

In particular if ξ ∈ S, then aξ, a
∗
ξ ∈ L((S), (S)) ∩ L((S)∗, (S)∗). For ξ ∈ S we

will write φξ for the usual stochastic exponential vector which we recall to be an
element of (S). The symbol ⋄ will denote the Wick product; we remind that (S)
and (S)∗ are closed under this operation. Moreover for any ϕ ∈ (S), we have

a∗ξϕ = X(ξ) ⋄ ϕ.

For A ∈ L((S), (S)) ∩ L((S)∗, (S)∗) and B ∈ L((S), (S)∗), we will set

[A,B] := AB −BA ∈ L((S), (S)∗).
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2. First Order Differential Operators

We begin with the following.

Definition 2.1. Let M ∈ L((S), (S)∗).

• M is a multiplication operator if there exists Φ ∈ (S)∗ such that for any
ϕ ∈ (S) the following equality holds:

Mϕ = Φ · ϕ. (2.1)

In this case the operator M will be denoted by MΦ.
• M is a Wick multiplication operator if there exists Φ ∈ (S)∗ such that for
any ϕ ∈ (S) the following equality holds:

Mϕ = Φ ⋄ ϕ. (2.2)

In this case the operator M will be denoted by M⋄
Φ.

Example 2.2. • For any ξ ∈ S′ the operator aξ + a∗ξ is a multiplication
operator since

(aξ + a∗ξ)ϕ = X(ξ) · ϕ.

• For any ξ ∈ S′ the operator a∗ξ is a Wick multiplication operator since

a∗ξϕ = X(ξ) ⋄ ϕ.

Definition 2.3. Let D ∈ L((S), (S)∗).

• D is a derivation if for any ϕ, ψ ∈ (S) the following equality holds:

D(ϕ · ψ) = (Dϕ) · ψ + ϕ · (Dψ). (2.3)

• D is a Wick derivation if for any ϕ, ψ ∈ (S) the following equality holds:

D(ϕ ⋄ ψ) = (Dϕ) ⋄ ψ + ϕ ⋄ (Dψ). (2.4)

Example 2.4. • The number operator N is a Wick derivation.
• The Euler operator ∆E := ∆G + N is a derivation (∆G is the Gross
laplacian).

• For any ξ ∈ S′ the operator aξ is both a derivation and a Wick derivation.

Remark 2.5. By means of the definition of multiplication operator, equation (2.3)
can be rewritten as

DMϕψ =MDϕψ +MϕDψ,

or equivalently

DMϕψ −MϕDψ =MDϕψ,

i.e.,

[D,Mϕ]ψ =MDϕψ. (2.5)

Therefore D is a derivation if and only if for any ϕ ∈ (S), one has

[D,Mϕ] =MDϕ, (2.6)

meant as an equality for operators in L((S), (S)∗).
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The same reasoning can be carried for Wick derivations using Wick multiplica-
tion operators; namely, D is a Wick derivation if and only if for any ϕ ∈ (S), one
has

[D,M⋄
ϕ] =M⋄

Dϕ. (2.7)

The next theorem establishes that in order to check whether a given operator
is a derivation (or a Wick derivation), it is sufficient to verify equation (2.6) (or
(2.7)) only for ϕ = X(ξ), ξ ∈ S.

Theorem 2.6. Let D ∈ L((S), (S)∗). Then

• D is a derivation if and only if for any ξ ∈ S, [D, aξ + a∗ξ ] =MDX(ξ).

• D is a Wick derivation if and only if for any ξ ∈ S, [D, a∗ξ ] =M⋄
DX(ξ).

Proof. We will only prove the statement concerning Wick derivations. The proof
of the other part is obtained by straightforward modifications.

If D is a Wick derivation, then there is nothing to prove (see Remark 2.5). Now
suppose that for any ξ ∈ S,

[D, a∗ξ ] =M⋄
DX(ξ).

This means that for any ξ ∈ S and ϕ ∈ (S) we have

[D, a∗ξ ]ϕ = DX(ξ) ⋄ ϕ,

or equivalently,

D(X(ξ) ⋄ ϕ) = DX(ξ) ⋄ ϕ+X(ξ) ⋄Dϕ.

Now let ξ1, ξ2 ∈ S; then exploiting the previous equality we get

D((X(ξ1) ⋄X(ξ2)) ⋄ ϕ) = D(X(ξ1) ⋄ (X(ξ2) ⋄ ϕ))

= DX(ξ1) ⋄ (X(ξ2) ⋄ ϕ) +X(ξ1) ⋄D(X(ξ2) ⋄ ϕ)

= DX(ξ1) ⋄X(ξ2) ⋄ ϕ+X(ξ1) ⋄DX(ξ2) ⋄ ϕ

+X(ξ1) ⋄X(ξ2) ⋄Dϕ

= D(X(ξ1) ⋄X(ξ2)) ⋄ ϕ+ (X(ξ1) ⋄X(ξ2)) ⋄Dϕ.

It is easy to verify by induction that for any n ∈ N and ξ1, · · · , ξn ∈ S one has

D(X(ξ1) ⋄ · · · ⋄X(ξn) ⋄ ϕ) = D(X(ξ1) ⋄ · · · ⋄X(ξn)) ⋄ ϕ

+(X(ξ1) ⋄ · · · ⋄X(ξn)) ⋄Dϕ.

Since the set {X(ξ1) ⋄ · · · ⋄X(ξn), n ∈ N and ξ1, · · · , ξn ∈ S} is total in (S) and
sinceD ∈ L((S), (S)∗) we conclude via a density argument that for any ψ, ϕ ∈ (S),

D(ψ ⋄ φ) = Dψ ⋄ ϕ+ ψ ⋄Dϕ.

�

An equivalent formulation of the previous theorem is the following.

Theorem 2.7. Let D ∈ L((S), (S)∗). Then

• D is a derivation if and only if D1 = 0 and for any ξ ∈ S, [D, aξ + a∗ξ ] is
a multiplication operator.
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• D is a Wick derivation if and only if D1 = 0 and for any ξ ∈ S, [D, a∗ξ ]
is a Wick multiplication operator.

Proof. As before we will only prove the statement concerning Wick derivations.
For the necessity one has only to check by a simple verification that D1 = 0.

Now suppose that [D, a∗ξ ] is a Wick multiplication operator. Then for any ξ ∈ S

there exists a Φξ ∈ (S)∗ such that

[D, a∗ξ ]ϕ =M⋄
Φξ
ϕ, for all ϕ ∈ (S),

or equivalently

D(ϕ ⋄X(ξ)) = (Dϕ) ⋄X(ξ) + ϕ ⋄ Φξ.

Choosing ϕ = 1 and using the condition D1 = 0 we get

Φξ = DX(ξ).

Therefore

[D, a∗ξ ] =M⋄
DX(ξ).

By the previous theorem this means that D is a Wick derivation. �

We are now ready to state and prove the first main result of the present paper.

Theorem 2.8. Let D ∈ L((S), (S)∗). D is both a derivation and a Wick deriva-

tion if and only if there exist F1 ∈ S′ and F2 ∈ S′⊗2, with

〈F2, ξ ⊗ η〉+ 〈F2, η ⊗ ξ〉 = 0,

for all ξ, η ∈ S such that

Dφξ = 〈F1, ξ〉φξ +X(F2 ⊗1 ξ) · φξ (2.8)

= 〈F1, ξ〉φξ +X(F2 ⊗1 ξ) ⋄ φξ,

where F2 ⊗1 ξ denotes the unique element in S′ such that for any η ∈ S, 〈F2 ⊗1

ξ, η〉 = 〈F2, ξ ⊗ η〉.

Proof. Suppose that D is both a derivation and a Wick derivation. It is not
difficult to see that for any ξ ∈ S, [D, aξ] is also an operator of this kind. Hence
for any ξ1, ξ2 ∈ S one has

[D, aξ](X(ξ1) ·X(ξ2)) = [D, aξ](aξ1 + a∗ξ1)X(ξ2) (2.9)

= [[D, aξ], aξ1 + a∗ξ1 ]X(ξ2) + (aξ1 + a∗ξ1)[D, aξ]X(ξ2)

= M[D,aξ]X(ξ1)X(ξ2) + (aξ1 + a∗ξ1)aξDX(ξ2)

= −MaξDX(ξ1)X(ξ2)−X(ξ1) · aξDX(ξ2)

= −aξDX(ξ1) ·X(ξ2)−X(ξ1) · aξDX(ξ2).

On the other hand, since

[D, aξ](X(ξ1) ·X(ξ2)) = [D, aξ](X(ξ1) ⋄X(ξ2)),

and

[D, aξ](X(ξ1) ⋄X(ξ2)) = [D, aξ]a
∗
ξ1
X(ξ2),
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we get proceeding as above that,

[D, aξ](X(ξ1) ·X(ξ2)) = −aξDX(ξ1) ⋄X(ξ2)−X(ξ1) ⋄ aξDX(ξ2). (2.10)

Comparing (2.9) with (2.10) we deduce that

aξDX(ξ1) ·X(ξ2) +X(ξ1) · aξDX(ξ2) = aξDX(ξ1) ⋄X(ξ2)

+X(ξ1) ⋄ aξDX(ξ2),

or equivalently

aξ2aξDX(ξ1) + aξ1aξDX(ξ2) = 0,

that means

aξ2DX(ξ1) + aξ1DX(ξ2) ∈ R.

If now we repeat the preceding argument replacing [D, aξ](X(ξ1) · X(ξ2)) with
D(X(ξ1) ·X(ξ2)) we obtain

aξ2DX(ξ1) + aξ1DX(ξ2) = 0.

Therefore there exist F1 ∈ S′ and F2 ∈ S′⊗2 with

〈F2, ξ ⊗ η〉+ 〈F2, η ⊗ ξ〉 = 0 (2.11)

for all ξ, η ∈ S, such that,

DX(ξ) = 〈F1, ξ〉+X(F2 ⊗1 ξ).

Observe that due to (2.11) we have

φξ · (〈F1, ξ〉+X(F2 ⊗1 ξ)) = φξ ⋄ (〈F1, ξ〉+X(F2 ⊗1 ξ)).

Let us now assume D ∈ L((S), (S)∗) to be of the form

Dφξ = 〈F1, ξ〉φξ +X(F2 ⊗1 ξ) · φξ.

We need to verify that D is derivation. For any ξ, η ∈ S we have

D(φξφη) = D(φξ+ηe
〈ξ,η〉)

= e〈ξ,η〉(〈F1, ξ + η〉φξ+η +X(F2 ⊗1 (ξ + η)) · φξ+η)

= 〈F1, ξ + η〉φξφη +X(F2 ⊗1 (ξ + η)) · φξφη

= 〈F1, ξ〉φξφη +X(F2 ⊗1 (ξ)) · φξφη

+〈F1, η〉φξφη +X(F2 ⊗1 (η)) · φξφη

= Dφξ · φη + φξ ·Dφη.

The verification that D is also a Wick derivation can be achieved by straightfor-
ward modifications. �

Remark 2.9. Let D ∈ L((S), (S)∗) be of the form

Dφξ = X(F2 ⊗1 ξ) · φξ.
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From the previous theorem we know that D is both a derivation and a Wick
derivation. Let us find its adjoint D∗ ∈ L((S), (S)∗):

〈〈Dφξ, φη〉〉 = 〈〈X(F2 ⊗1 ξ) · φξ, φη〉〉

= 〈〈X(F2 ⊗1 ξ), φξ+ηe
〈ξ,η〉〉〉

= 〈F2, ξ ⊗ (ξ + η)〉e〈ξ,η〉

= 〈F2, ξ ⊗ ξ〉e〈ξ,η〉 + 〈F2, ξ ⊗ η〉e〈ξ,η〉

= 〈F2, ξ ⊗ η〉e〈ξ,η〉

= −〈F2, η ⊗ ξ〉e〈ξ,η〉

= −〈〈Dφη, φξ〉〉.

Here we used the antisymmetry of F2, i.e. 〈F2, ξ ⊗ η〉 = −〈F2, η ⊗ ξ〉 which is
equivalent to the condition 〈F2, ξ

⊗2〉 = 0 for any ξ ∈ S. In conclusion D∗ = −D.

Remark 2.10. The class of operators of the form

Dφξ = X(F2 ⊗1 ξ) · φξ,

considered in the previous remark, coincides with the class of operators of the type
dΓ(Y ), where Y is the infinitesimal generator of a regular one-parameter subgroup
of O(S;L2(R)) and dΓ(Y ) denotes its differential second quantization. This class
of operators has been characterized in [4], Theorem 4.3. The equivalence of two
classes can be easily verified via the symbol transform.

We now define first order (Wick) differential operators.

Definition 2.11. Let D ∈ L((S), (S)∗).

• We say that D is a first order differential operator if

D = D +M,

where D ∈ L((S), (S)∗) is a derivation and M ∈ L((S), (S)∗) is a multi-
plication operator.

• We say that D is a first order Wick differential operator if

D = D +M⋄,

where D ∈ L((S), (S)∗) is a Wick derivation and M⋄ ∈ L((S), (S)∗) is a
Wick multiplication operator.

The next theorem is the analogue of Theorem 2.7 for the case of first order
(Wick) differential operators.

Theorem 2.12. Let D ∈ L((S), (S)∗). Then:

• D is a first order differential operator if and only if for any ξ ∈ S, [D, aξ+
a∗ξ ] is a multiplication operator.

• D is a first order Wick differential operator if and only if for any ξ ∈ S,

[D, a∗ξ ] is a Wick multiplication operator.

Proof. As usual we prove the theorem only for first order Wick differential opera-
tors.
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Assume that D is a first order Wick differential operator, i.e. D = D +M⋄

where D is a Wick derivation and M⋄ is a Wick multiplication operator. Then

[D, a∗ξ ] = [D, a∗ξ ] + [M⋄, a∗ξ ]

= MDX(ξ) + 0

= MDX(ξ),

since Wick multiplication operators commute with each other. Now suppose that
for any ξ ∈ S, [D, a∗ξ ] is a Wick multiplication operator and consider the operator

D −M⋄
D1 ∈ L((S), (S)∗). It is straightforward to check that

(D −M⋄
D1)1 = 0 and [D −M⋄

D1, a
∗
ξ ] is a Wick multiplication operator.

Therefore by Theorem 2.7, D −M⋄
D1 is a Wick derivation and hence D is a first

order Wick derivation since

D = (D −M⋄
D1) +M⋄

D1.

�

3. Second Order Differential Operators

Inspired by Remark 2.5 we give the following definition.

Definition 3.1. Let ∆ ∈ L((S), (S)∗).

• We say that ∆ is a second order differential operator if for any ϕ ∈ (S),
[∆,Mϕ] is a first order differential operator.

• We say that ∆ is a second order Wick differential operator if for any
ϕ ∈ (S), [∆,M⋄

ϕ] is a first order Wick differential operator.

As for (Wick) derivations and first order (Wick) differential operators, it is suf-
ficient to check the above condition only on a small class of (Wick) multiplication
operators.

Theorem 3.2. Let ∆ ∈ L((S), (S)∗). Then:

• ∆ is a second order differential operator if and only if for any ξ ∈ S,

[∆, aξ + a∗ξ ] is a first order differential operator.

• ∆ is a second order Wick differential operator if and only if for any ξ ∈ S,

[∆, a∗ξ ] is a first order Wick differential operator.

Proof. We will only give the proof of the second statement of the theorem.
One implication is trivial. Suppose now that for any ξ ∈ S, [∆, a∗ξ ] is a first

order differential operator and let us prove that for any ξ1, ξ2 ∈ S, [∆, a∗ξ2a
∗
ξ1
]

is also a first order Wick differential operator (observe that the operator a∗ξ2a
∗
ξ1

corresponds to the Wick multiplication operator M⋄
X(ξ2)⋄X(ξ1)

):

[∆, a∗ξ2a
∗
ξ1
] = [∆, a∗ξ2 ]a

∗
ξ1

+ a∗ξ2 [∆, a
∗
ξ1
]

= [[∆, a∗ξ2 ], a
∗
ξ1
] + a∗ξ1 [∆, a

∗
ξ2
] + a∗ξ2 [∆, a

∗
ξ1
]

= B1 +B2 +B3
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where we set

B1 := [[∆, a∗ξ2 ], a
∗
ξ1
]

B2 := a∗ξ1 [∆, a
∗
ξ2
]

B3 := a∗ξ2 [∆, a
∗
ξ1
].

Since by assumption [∆, a∗ξ2 ] is a first order Wick differential operator, using The-
orem 2.12 we deduce that B1 is a Wick multiplication operator. Moreover B2

and B3 are first order Wick differential operators. In fact, considering for in-
stance B2, since [∆, a∗ξ2 ] is a first order Wick differential operator, we can write

[∆, a∗ξ2 ] = D +M⋄ for some Wick derivation D and Wick multiplication operator

M⋄ (both of course depending on ξ2); by a simple verification, one sees that a∗ξ1D
is also a Wick derivation and that a∗ξ1M

⋄ is also a Wick multiplication operator.

In this way, B2 is a first order Wick differential operator. Therefore [∆, a∗ξ2a
∗
ξ1
] is

a first order Wick differential operator, being a sum of operators of this kind.
Following the same reasoning one can easily prove by induction that for any

n ∈ N and ξ1, ..., ξn ∈ S, [∆, a∗ξn · · · a∗ξ1 ] is a first order Wick differential operator.

Since the set {X(ξ1) ⋄ · · · ⋄ X(ξn), n ∈ N and ξ1, ..., ξn ∈ S} is total in (Sρ) for
any ρ ∈ [0, 1] and since ∆ ∈ L((S), (S)∗) we conclude via a density argument that
for any ϕ ∈ (S), [∆,M⋄

ϕ] is a first order Wick differential operator. �

Corollary 3.3. Let ∆ ∈ L((S), (S)∗). Then:

• ∆ is a second order differential operator if and only if for any ξ, η ∈ S,

[[∆, aξ + a∗ξ ], aη + a∗η] is a multiplication operator.

• ∆ is a second order Wick differential operator if and only if for any ξ, η ∈
S, [[∆, a∗ξ ], a

∗
η] is a Wick multiplication operator.

Proof. It follows immediately from Theorem 3.2 and Theorem 2.12. �

Definition 3.4. Let ∆ ∈ L((S), (S)∗).

• We say that ∆ is a pure second order differential operator if ∆ is a second
order differential operator and for any ξ ∈ S, ∆1 = ∆X(ξ) = 0.

• We say that ∆ is a pure second order Wick differential operator if ∆ is a
second order Wick differential operator and for any ξ ∈ S, ∆1 = ∆X(ξ) =
0.

Example 3.5. • Let N ∈ L((S), (S)) be the number operator. Then N is
a second order differential operator but not a pure one. In fact:

[N, aξ + a∗ξ ] = −aξ + a∗ξ

= −2aξ + (aξ + a∗ξ)

which is a first order differential operator. However:

N1 = 0 and NX(ξ) = X(ξ).

• N⋄2 := N2 −N is a pure second order Wick derivation. In fact:

[N2 −N, a∗ξ ] = 2a∗ξN and (N2 −N)1 = (N2 −N)X(ξ) = 0.
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• The Gross laplacian ∆G is both a pure second order differential operator
and a pure second order Wick differential operator. In fact:

[∆G, aξ + a∗ξ ] = [∆G, a
∗
ξ ] = 2aξ,

which is both a derivation and a Wick derivation. Moreover,

∆G1 = ∆GX(ξ) = 0.

Theorem 3.6. Let ∆ ∈ L((S), (S)∗). Then

• ∆ is a pure second order differential operator if and only if ∆1 = 0 and

for any ξ ∈ S, [∆, aξ + a∗ξ ] is a derivation.

• ∆ is a pure second order Wick differential operator if and only if ∆1 = 0
and for any ξ ∈ S, [∆, a∗ξ ] is a Wick derivation.

Remark 3.7. If [∆, aξ + a∗ξ ] is a derivation, it is not in general true that [∆,Mϕ]

is a derivation for any ϕ ∈ (S). In fact, choosing for instance ∆ to be the Gross
laplacian and ϕ = X(ξ)2, we obtain

[∆, (aξ + a∗ξ)
2] = [∆, aξ + a∗ξ ](aξ + a∗ξ) + (aξ + a∗ξ)[∆, aξ + a∗ξ ]

= 2aξ(aξ + a∗ξ) + (aξ + a∗ξ)2aξ

= 4a2ξ + 2(aξa
∗
ξ + a∗ξaξ).

Therefore, since (4a2ξ + 2(aξa
∗
ξ + a∗ξaξ))1 = 2|ξ|2, it is not a derivation.

The Wick analogue of this observation is also true.

Proof. We treat only the case of pure second order Wick differential operators.
One implication is trivial. Suppose now that ∆1 = 0 and that for any ξ ∈ S,
[∆, a∗ξ ] is a Wick derivation. Since a Wick derivation is a first order Wick differ-
ential operator, we get by Theorem 3.2 that ∆ is a second order Wick differential
operator. Moreover from [∆, a∗ξ ]1 = 0 we deduce that ∆X(ξ) = 0. �

The next two theorems will be crucial in proving the second main result of this
paper.

Theorem 3.8. Let ∆ ∈ L((S), (S)∗). The following statements are equivalent:

i) ∆ is a pure second order differential operator;

ii) For any ξ ∈ S, ∆1 = ∆X(ξ) = 0 and for n ≥ 2,

∆X(ξ)n =
n(n− 1)

2
X(ξ)n−2 ·∆X(ξ)2; (3.1)

iii) For any ξ ∈ S,

∆φξ =
1

2
φξ ·∆X(ξ)2. (3.2)

Proof. i) =⇒ ii) Let ∆ be a pure second order differential operator. Then by
definition ∆1 = ∆X(ξ) = 0 for any ξ ∈ S. We are now going to prove (3.1) by
induction. For n = 2 the statement is trivially satisfied and let us assume that
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equation (3.1) holds for a given n ∈ N. Hence,

∆X(ξ)n+1 = ∆(aξ + a∗ξ)X(ξ)n

= [∆, aξ + a∗ξ ]X(ξ)n + (aξ + a∗ξ)∆X(ξ)n

= nX(ξ)n−1 · [∆, aξ + a∗ξ ]X(ξ)

+(aξ + a∗ξ)
n(n− 1)

2
X(ξ)n−2 ·∆X(ξ)2

= nX(ξ)n−1 ·∆X(ξ)2 + (aξ + a∗ξ)
n(n− 1)

2
X(ξ)n−2 ·∆X(ξ)2

= nX(ξ)n−1 ·∆X(ξ)2 +
n(n− 1)

2
X(ξ)n−1 ·∆X(ξ)2

=
(n+ 1)n

2
X(ξ)n−1 ·∆X(ξ)2,

where in the third equality we used the fact that [∆, aξ + a∗ξ ] is a derivation and
the inductive hypothesis while in the fourth equality we argued as

[∆, aξ + a∗ξ ]X(ξ) = ∆(aξ + a∗ξ)X(ξ)− (aξ + a∗ξ)∆X(ξ)

= ∆X(ξ)2,

since ∆X(ξ) = 0.
ii) =⇒ iii) It is a simple verification:

∆φξ = e−
|ξ|2

2 ∆
∑

n≥0

1

n!
X(ξ)n

= e−
|ξ|2

2

∑

n≥2

1

n!
∆X(ξ)n

= e−
|ξ|2

2

∑

n≥2

1

n!

n(n− 1)

2
X(ξ)n−2 ·∆X(ξ)2

=
e−

|ξ|2

2

2
∆X(ξ)2 ·

∑

n≥2

1

(n− 2)!
X(ξ)n−2

=
1

2
φξ ·∆X(ξ)2.

iii) =⇒ i) Choosing ξ = 0 in (3.2) we obtain ∆1 = 0. We now have to prove that
for any η ∈ S, [∆, aη + a∗η] is a derivation. We begin by replacing ξ with ξ + tη in
(3.2) where t ∈ R and η ∈ S and differentiating at t = 0 the obtained equation;
since

d

dt
φξ+tη

∣

∣

t=0
= a∗ηφξ,

we get

∆a∗ηφξ =
1

2
a∗ηφξ ·∆X(ξ)2 + φξ ·∆X(ξ)X(η).
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Therefore,

[∆, aη + a∗η]φξ = ∆(aη + a∗η)φξ − (aη + a∗η)∆φξ

= 〈ξ, η〉∆φξ +
1

2
a∗ηφξ ·∆X(ξ)2 + φξ ·∆X(ξ)X(η)

−X(η) ·
1

2
φξ ·∆X(ξ)2

= 〈ξ, η〉∆φξ −
1

2
aηφξ ·∆X

2(ξ) + φξ ·∆X(ξ)X(η)

= 〈ξ, η〉(∆φξ −
1

2
φξ∆X(ξ)2) + φξ ·∆X(ξ)X(η)

= φξ ·∆X(ξ)X(η)

= φξ ·∆(aη + a∗η)X(ξ)

= φξ · [∆, aη + a∗η]X(ξ).

Comparing the first and the last members of this chain of equalities we conclude
that

[∆, aη + a∗η]φξ = φξ · [∆, aη + a∗η]X(ξ),

i.e. [∆, aη + a∗η] is a derivation. �

Theorem 3.9. Let ∆ ∈ L((S), (S)∗). The following statements are equivalent:

i) ∆ is a pure second order Wick differential operator;

ii) For any ξ ∈ S, ∆1 = ∆X(ξ) = 0 and for n ≥ 2,

∆X(ξ)⋄n =
n(n− 1)

2
X(ξ)⋄(n−2) ⋄∆X(ξ)⋄2; (3.3)

iii) For any ξ ∈ S,

∆φξ =
1

2
φξ ⋄∆X(ξ)⋄2. (3.4)

Proof. It is a straightforward adaptation of the proof of Theorem 3.8. �

We now come to our second main result.

Theorem 3.10. Let ∆ ∈ L((S), (S)∗). ∆ is both a pure second order differential

operator and a pure second order Wick differential operator if and only if there

exist G2 ∈ S′⊗2 and G3 ∈ S′⊗3 with

〈G3, ξ ⊗ η ⊗ θ〉+ 〈G3, θ ⊗ ξ ⊗ η〉+ 〈G3, η ⊗ θ ⊗ ξ〉 = 0 (3.5)

for all ξ, η, θ ∈ S, such that

∆φξ =
1

2
φξ · (〈G2, ξ

⊗2〉+X(G3 ⊗2 ξ
⊗2)) (3.6)

=
1

2
φξ ⋄ (〈G2, ξ

⊗2〉+X(G3 ⊗2 ξ
⊗2)),

where G3⊗2 ξ
⊗2 denotes the unique element in S′ such that for any η ∈ S, 〈G3⊗2

ξ⊗2, η〉 = 〈G3, ξ
⊗2 ⊗ η〉.
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Remark 3.11. Let ∆ ∈ L((S), (S)∗). Then for any ξ, η ∈ S,

[[∆, aξ], a
∗
η] = [[∆, a∗η], aξ].

(It can be easily checked via a direct verification). In particular, if ∆ is a pure
second order (Wick) differential operator, then [∆, aξ] is also a pure second order
(Wick) differential operator.

Proof. First of all observe that the second equality in (3.6) follows from condition
(3.5) and the identity:

φξ ·X(η) = φξ ⋄X(η) + 〈ξ, η〉φξ,

for all ξ, η ∈ S. If ∆ ∈ L((S), (S)∗) is of the form (3.6), then replacing ξ with tξ,
t ∈ R, and differentiating twice at t = 0 one gets

∆X(ξ)2 = 〈G2, ξ
⊗2〉+X(G3 ⊗2 ξ

⊗2).

Therefore by Theorem 3.8 and Theorem 3.9 we deduce that ∆ is a pure second
order differential operator and a pure second order Wick differential operator.

Now suppose ∆ to be both a pure second order differential operator and a pure
second order Wick differential operator. According to the two previous theorem
we have to characterize the action of ∆ on the second chaos. According to the
previous remark for any ξ ∈ S, [∆, aξ] is also both a pure second order differential
operator and a pure second order Wick differential operator. This means that for
any η ∈ S, [[∆, aξ], aη + a∗η] is a derivation and [[∆, aξ], a

∗
η] is a Wick derivation.

Therefore for any ξ1, ξ2, ξ3 ∈ S we can write,

[∆, aξ](X(ξ1) ·X(ξ2) ·X(ξ3)) = [∆, aξ](aξ1 + a∗ξ1)(X(ξ2) ·X(ξ3))

= [[∆, aξ], aξ1 + a∗ξ1 ](X(ξ2) ·X(ξ3))

+(aξ1 + a∗ξ1)[∆, aξ](X(ξ2) ·X(ξ3))

= X(ξ3) · [[∆, aξ], aξ1 + a∗ξ1 ]X(ξ2)

+X(ξ2) · [[∆, aξ], aξ1 + a∗ξ1 ]X(ξ3)

+(aξ1 + a∗ξ1)[∆, aξ](X(ξ2) ·X(ξ3))

= X(ξ3) · [∆, aξ](X(ξ1) ·X(ξ2))

+X(ξ2) · [∆, aξ](X(ξ1) ·X(ξ3))

+X(ξ1) · [∆, aξ](X(ξ2) ·X(ξ3))

= X(ξ3) · aξ∆(X(ξ1) ·X(ξ2))

+X(ξ2) · aξ∆(X(ξ1) ·X(ξ3))

+X(ξ1) · aξ∆(X(ξ2) ·X(ξ3)),

where in the fourth equality we used the fact that [∆, aξ] annihilates the first
chaos. Observe in addition that

X(ξ1) ·X(ξ2) ·X(ξ3) = X(ξ1) ⋄X(ξ2) ⋄X(ξ3) + terms in the first chaos.

Therefore,

[∆, aξ](X(ξ1) ·X(ξ2) ·X(ξ3)) = [∆, aξ](X(ξ1) ⋄X(ξ2) ⋄X(ξ3)).
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From the identity

X(ξ1) ⋄X(ξ2) ⋄X(ξ3) = a∗ξ1(X(ξ2) ⋄X(ξ3)),

and the fact that [[∆, aξ], a
∗
η] is a Wick derivation, we obtain proceeding as above

that

[∆, aξ](X(ξ1) ·X(ξ2) ·X(ξ3)) = [∆, aξ](X(ξ1) ⋄X(ξ2) ⋄X(ξ3))

= X(ξ3) ⋄ aξ∆(X(ξ1) ·X(ξ2))

+X(ξ2) ⋄ aξ∆(X(ξ1) ·X(ξ3))

+X(ξ1) ⋄ aξ∆(X(ξ2) ·X(ξ3)).

Here we used that fact that ∆(X(ξ1) ⋄X(ξ2)) = ∆(X(ξ1) ·X(ξ2)). A comparison
between the last and previous identities for [∆, aξ](X(ξ1) ·X(ξ2) ·X(ξ3)) gives

X(ξ3) · aξ∆(X(ξ1) ·X(ξ2)) +X(ξ2) · aξ∆(X(ξ1) ·X(ξ3))

+X(ξ1) · aξ∆(X(ξ2) ·X(ξ3)) = X(ξ3) ⋄ aξ∆(X(ξ1) ·X(ξ2))

+X(ξ2) ⋄ aξ∆(X(ξ1) ·X(ξ3)) +X(ξ1) ⋄ aξ∆(X(ξ2) ·X(ξ3)),

or equivalently,

aξ3aξ∆(X(ξ1) ·X(ξ2)) + aξ2aξ∆(X(ξ1) ·X(ξ3))

+ aξ1aξ∆(X(ξ2) ·X(ξ3)) = 0.

This gives,

aξ(aξ3∆(X(ξ1) ·X(ξ2)) + aξ2∆(X(ξ1) ·X(ξ3)) + aξ1∆(X(ξ2) ·X(ξ3))) = 0.

We have therefore proved that for any ξ1, ξ2, ξ3 ∈ S,

aξ3∆(X(ξ1) ·X(ξ2)) + aξ2∆(X(ξ1) ·X(ξ3)) + aξ1∆(X(ξ2) ·X(ξ3)) ∈ R.

More precisely, if we repeat the argument so far utilized to study the quantity

[∆, aξ](X(ξ1) ·X(ξ2) ·X(ξ3)),

on the element

∆(X(ξ1) ·X(ξ2) ·X(ξ3)),

we will obtain

aξ3∆(X(ξ1) ·X(ξ2)) + aξ2∆(X(ξ1) ·X(ξ3)) + aξ1∆(X(ξ2) ·X(ξ3)) = 0.

From the above identity we deduce that for there exist G2 ∈ S′⊗2 and G3 ∈ S′⊗3

with

〈G3, ξ1 ⊗ ξ2 ⊗ ξ3〉+ 〈G3, ξ3 ⊗ ξ1 ⊗ ξ2〉+ 〈G3, ξ2 ⊗ ξ3 ⊗ ξ1〉 = 0 (3.7)

for all ξ1, ξ2, ξ3 ∈ S, such that

∆(X(ξ1) ·X(ξ2)) = 〈G2, ξ1 ⊗ ξ2〉+X(G3 ⊗2 (ξ1 ⊗ ξ2)).

The proof is complete. �
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