
Empirical Software Engineering (2022) 27:191
https://doi.org/10.1007/s10664-022-10233-3

STATEAFL: Greybox fuzzing for stateful network servers

Roberto Natella1

Accepted: 28 August 2022
© The Author(s) 2022

Abstract
Fuzzing network servers is a technical challenge, since the behavior of the target server
depends on its state over a sequence of multiple messages. Existing solutions are costly and
difficult to use, as they rely on manually-customized artifacts such as protocol models, pro-
tocol parsers, and learning frameworks. The aim of this work is to develop a greybox fuzzer
(STATEAFL) for network servers that only relies on lightweight analysis of the target pro-
gram, with no manual customization, in a similar way to what the AFL fuzzer achieved
for stateless programs. The proposed fuzzer instruments the target server at compile-time,
to insert probes on memory allocations and network I/O operations. At run-time, it infers
the current protocol state of the target server by taking snapshots of long-lived memory
areas, and by applying a fuzzy hashing algorithm (Locality-Sensitive Hashing) to map mem-
ory contents to a unique state identifier. The fuzzer incrementally builds a protocol state
machine for guiding fuzzing. We implemented and released STATEAFL as open-source soft-
ware. As a basis for reproducible experimentation, we integrated STATEAFL with a large
set of network servers for popular protocols, with no manual customization to accomo-
date for the protocol. The experimental results show that the fuzzer can be applied with no
manual customization on a large set of network servers for popular protocols, and that it
can achieve comparable, or even better code coverage and bug detection than customized
fuzzing. Moreover, our qualitative analysis shows that states inferred from memory better
reflect the server behavior than only using response codes from messages.

Keywords Security · Fuzzing · Network servers

1 Introduction

According to recent statistics (Hawkes 2019; O’Neill 2021), high-severity software vulner-
abilities of network servers have been on the rise, and will likely still be in the near future.
Network servers are a critical part of the attack surface of IT infrastructures, as they are
openly exposed to malicious users over local networks and the Internet, and can be attacked

Communicated by: Paolo Tonella

� Roberto Natella
roberto.natella@unina.it

1 Università degli Studi di Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10233-3&domain=pdf
http://orcid.org/0000-0003-1084-4824
mailto: roberto.natella@unina.it

 191 Page 2 of 31 Empir Software Eng (2022) 27:191

with malformed traffic to cause a denial-of-service (e.g., crashing the server), and to exe-
cute arbitrary code on the server machine to perpetrate further attacks. For this reason, any
vulnerability not yet found by developers (0-days) has a significant economic value for
attackers (Guo et al. 2021).

Fuzzing is a relevant security testing technique to identify such vulnerabilities, by auto-
matically generating large volumes of malformed inputs. However, fuzzing network servers
is still a technical challenge, since the input space of network servers is strictly regulated
by a stateful protocol. Therefore, the behavior of the server, and its vulnerabilities, depend
on a sequence of several messages exchanged over time, which determine the state of the
server. Examples of well-know stateful protocols include cryptographic ones such as TLS
(De Ruiter and Poll 2015; Fiterau-Brostean et al. 2020), file transfer and messaging pro-
tocols such as FTP, SMB, and SMTP (Antunes and Neves 2011; Comparetti et al. 2009),
and multimedia protocols such as SIP (Banks et al. 2006; Alrahem et al. 2007) and RSTP
(Pham et al. 2020). All of these protocols are selective with respect to which messages they
can receive at a given time, and which actions they can perform, depending on previous
messages in a session.

The existing stateful protocol fuzzing techniques and tools can only be applied with a
significant effort, which has prevented their widespread adoption so far: generation-based
fuzzers require formal specifications manually written by human experts, based on their
detailed knowledge of the protocols (Beyond Security 2020; Synopsis Inc 2020; Rapid7
2020); learning-based fuzzers infer the protocol state machine at a significant compu-
tational cost, and still require custom implementations of wrappers to abstract protocol
messages in efficient ways (De Ruiter and Poll 2015; Fiterau-Brostean et al. 2020).

Coverage-driven fuzzing techniques have recently emerged as a popular solution, as
demonstrated by the widespread adoption of the AFL fuzzer and similar tools (Zalewski
2021; Metzman et al. 2021; Manès et al. 2019; Boehme et al. 2021). For example, as of
June 2021, OSS-Fuzz has found over 30,000 bugs in 500 open source projects (Google
2021; Serebryany 2017), with more and more open-source projects being integrated by the
community (Korczynski and Korczynski 2021). This success could only be possible thanks
to its fully-automated approach, which is based on unsupervised evolution of fuzz inputs,
using simple and robust heuristics. However, research on coverage-driven fuzzing for state-
ful protocols is still at an early stage (Pham et al. 2020; Feng et al. 2021). These recent
approaches infer protocol states by analyzing the contents of messages (e.g., status codes),
using message parsers that are specifically developed for the protocol under test. Moreover,
it is difficult for these approaches to fuzz many protocols, which only embed little or no
state information within messages. These problems are a limiting factor towards securing
more stateful network servers through fuzzing.

In this work, we propose a new solution for stateful coverage-driven fuzzing
(STATEAFL). Similarly to coverage-driven fuzzing, we inject code in the target binary
using compile-time instrumentation techniques. The injected code infers protocol state
information by: tracking memory allocations and network I/O operations; at each request-
reply exchange, taking snapshots of long-lived memory areas; and applying fuzzy hashing
(Locality-Sensitive Hashing, LSH) to map each in-memory state to a unique protocol state
identifier. This approach does not rely on state information from network messages, and
does not require developers to implement custom message parsers for extracting such state
information. The aim of this approach is to contribute towards a completely-automated solu-
tion for stateful protocol fuzzing, similarly to what AFL was able to achieve for stateless
programs, in order to promote a wider application of fuzzing in real-world systems. We

Empir Software Eng (2022) 27:191 Page 3 of 31 191

note that fuzzing research achieved significant progress from the point of view of fuzzing
algorithms, but we are still witnessing at critical vulnerabilities (e.g., the well-known case
of Hearthbleed (Wheeler 2020)) that in hindsight could have been easily prevented with
fuzzing. Moreover, empirical research also showed that fuzzing a new system for the first
time is likely to find security bugs (Böhme and Falk 2020). For these reasons, it is now a pri-
ority to make fuzzing more broadly applicable, as it is still too difficult to setup fuzzing to
target new systems. In the case of stateful network fuzzing, StateAFL overcomes the issues
of writing custom parsers to extract individual requests from seed inputs, and to extract sta-
tus codes from response messages from the target server. These issues make fuzzing less
accessible for developers that are new to this technique, since they are not inclined to write
more code to use a fuzzing tool unfamiliar to them. Moreover, StateAFL is even applica-
ble for protocols that do not provide any explicit status code in the messages, such as in the
TLS protocol in our experiments, or where the status code only represents the status of the
last request executed by the server instead of the protocol state, as in FTP and HTTP.

To assess the feasibility of the approach, we implemented and publicly released
STATEAFL as open-source software. Moreover, to support reproducible experimentation,
we integrated STATEAFL with a publicly-available benchmark of 13 open-source network
servers, the largest experimental setup among stateful network fuzzing studies to the best of
our knowledge. Our proposed approach allowed us to integrate STATEAFL with no manual
customization of the fuzzer to accomodate for the protocols under test. The experimental
evaluation shows that STATEAFL is a robust approach that can be applied to diverse network
servers without requiring any protocol customization. Moreover, STATEAFL can achieve
comparable, or even better code coverage and bug detection than previous solutions based
on stateless coverage-driven fuzzing and on stateful, protocol-customized fuzzing. We also
qualitatively analyze state information both from parsing response codes returned by the
target server, and from inference based on long-lived data. We found that using response
codes provides misleading representation of the protocol state, leading to redundant states
in the inferred protocol state machine and wasted fuzz inputs.

In summary, this paper presents the following contributions:

– A novel coverage-driven strategy for fuzzing stateful network servers, based on
compile-time instrumentation and fuzzy hashing techniques to automatically infer
protocol states from process memory;

– An open-source fuzzing tool based on the proposed approach, available at https://
github.com/stateafl/stateafl. Similarly to AFL, this fuzzer is designed to be applicable
to a wide variety of targets without requiring customizations.

– The integration of STATEAFL in a public benchmark of network servers, with scripts to
automate reproducible experimentation, available at https://github.com/profuzzbench/
profuzzbench.

– An experimental evaluation of STATEAFL, with respect to code coverage, bugs, and
performance, along with a qualitative analysis of the inferred protocol states.

The paper is structured as follows. Section 2 discusses related work on stateful fuzzing.
Section 3 presents the design and implementation of STATEAFL. Section 4 presents the
experimental plan, and Section 5 presents the experimental results. Section 6 concludes the
paper.

https://github.com/stateafl/stateafl
https://github.com/stateafl/stateafl
https://github.com/profuzzbench/profuzzbench
https://github.com/profuzzbench/profuzzbench

 191 Page 4 of 31 Empir Software Eng (2022) 27:191

2 RelatedWork

Generation-based fuzzers address stateful protocols by generating fuzz inputs using amodel
of the protocol, to be provided by a human analyst (Beyond Security 2020; Synopsis Inc
2020; Rapid7 2020). The model specifies both the format of protocol messages (e.g., field
types, message separators, etc.) and their sequencing over a session (Poll et al. 2015), typi-
cally in the form of a graph, such as finite state machines, prefix acceptor trees, and Markov
chains. The completeness of the model is critical for the effectiveness of fuzzing, but it can
be difficult to achieve, since protocol specifications (which are typically written in natural
language) are prone to misinterpretations and costly to analyze, and do not cover proprietary
protocol extensions (Antunes and Neves 2011).

Several model learning techniques have been proposed to compensate for these issues,
by (semi-)automatically inferring the types and formats of messages, and protocol state
machines. Passive learning techniques infer from a corpus of network traces, using sequence
alignment techniques (e.g., the Needleman-Wunsch algorithm) and statistical techniques
(e.g., clustering into message types, and correlation of message fields) (Duchene et al. 2018;
Kleber et al. 2018). Active learning techniques interact with the protocol server during the
learning process, in order to refine the model and to elicit new protocol behaviors (e.g.,
based on Angluin’s L∗ algorithm and derivates) (De Ruiter and Poll 2015; Fiterau-Brostean
et al. 2020). Both passive and active learning techniques provide valuable support for the
human analyst, but cannot fully automate the process. For example, active learning can suf-
fer from convergence issues and are applicable to finite input alphabets of modest size; thus,
it needs an ad-hoc mapper to abstract protocol messages from/to the learner, to be tailored
for the system-under-test (e.g., TLS-Attacker for the TLS protocol) (Somorovsky 2016).
More powerful solutions leverage static and dynamic binary analysis (e.g., taint propaga-
tion analysis) to achieve full automation (Comparetti et al. 2009; Caballero et al. 2007), but
in practice these solutions are difficult to implement and to port across different systems,
which limits their adoption (Harman and O’Hearn 2018).

Coverage-driven fuzzing techniques have been adopted by AFL, LIBFUZZER, and other
derivative tools (Manès et al. 2019) as a more practical and automated solution. This form
of fuzzing only relies on lightweight metrics collected from the target system at run-time
(e.g., about code blocks and branches covered by the fuzz inputs), and iteratively mutates
the fuzz inputs to maximize these metrics. Therefore, the fuzzer can start from an initial
set of fuzz inputs (i.e., a seed corpus) to automatically evolve them, without any a-priori
knowledge about the protocol.

Only recently, coverage-driven fuzzing has been investigated for stateful protocols.
AFLNET (Pham et al. 2020) extended AFL for fuzzing network protocols, by: structuring
fuzz inputs into messages and applying mutation operators at message-level (e.g., by cor-
rupting, dropping or injecting individual messages in a session); by learning a protocol state
machine, where states are represented by response codes from the system-under-test; and
by using the protocol state machine to prioritize mutations. SNIPUZZ (Feng et al. 2021) tai-
lored coverage-driven fuzzing to IoT protocols, where the system-under-test could not be
instrumented to collect coverage information, because of lack of access to the firmware.
Thus, SNIPUZZ also analyzes response codes, using them as indicators to identify sensitive
bytes of the inputs (snippets) that trigger different paths in the target.

This paper proposes a new approach for stateful protocol fuzzing. Our approach infers
a protocol state machine on the basis on richer feedback than traditional coverage-driven
fuzzing. The approach is not limited to analyze response codes, since response codes may

Empir Software Eng (2022) 27:191 Page 5 of 31 191

provide a poor indication of the current state of the server. For example, in an HTTP-based
protocol, successful GET and POST requests may both receive the same response code
(200), but POST requests may have side-effects on the state of the server, which are not
reflected in the response code. Moreover, the protocol may lack response codes, such as in
the case of TLS, thus leaving the fuzzer without any guidance about the current protocol
state. Finally, even when response codes available, the fuzzer must be tailored for the target
protocol, in order to extract and parse response codes from the response messages. For these
reasons, our approach does not rely on response codes, but adopts compile-time instrumen-
tation to get more information from the system-under-test and to infer the current protocol
state. Moreover, the proposed approach relieves the user from providing custom message
parsers.

3 Proposed Approach

We designed STATEAFL to drive fuzzing based on protocol states covered during execu-
tions. In general terms, a protocol state guides the behavior of a process, by defining which
actions the process is allowed to take, which events it expects to happen, and how it will
respond to those events (Holzmann and Lieberman 1991). For example, most Internet pro-
tocols standardize the protocol states and their transitions in Request for Comments (RFC)
documents, by describing them using prose in natural language or, in few cases, using finite
state machines. Covering protocol states is a prerequisite for deeper code coverage of a
protocol implementation, as some of its parts are only executed when the protocol reaches
specific states. Moreover, exploring the protocol state space can uncover unintended or spu-
rious behaviors of the protocol implementation that deviate from the protocol specification
(Poll et al. 2015).

The STATEAFL approach is designed around the fundamental receive-process-reply loop
implemented by network servers. In this scheme, two parties (e.g., a client and a server)
establish a session, which consists of a series of request messages and their corresponding
reply messages (Poll et al. 2015). As the session progresses, the current protocol state is
updated accordingly. The fundamental loop can be summarized by the following simplified
pseudo-code:

The key idea of STATEAFL is to infer the current protocol state by inspecting the contents
of process memory at each iteration of this loop. The current protocol state is necessar-
ily stored into data structures, such as in heap and stack memory, which are updated at
each request-reply exchange. In particular, the protocol state is represented by long-lived
data, whose lifetime goes beyond an individual request-reply exchange, and spans across
an entire session. Examples of such data are the current authentication status of a client, the

 191 Page 6 of 31 Empir Software Eng (2022) 27:191

current working directory, and enqueued inputs to be processed (Natella and Pham 2021).
Conversely, short-lived data have a short lifetime, as they store data only needed by one or
few request-reply exchanges (such as, a buffer that temporarily holds the reply message).
STATEAFL follows the evolution of long-lived data structures thorough a session, and dis-
cards short-lived data. When fuzzing succeeds at reaching a new protocol state, the new
state results in new contents of the long-lived data structures. Thus, the proposed approach
takes a snapshot of such data at the end of each request-reply exchange. Then, it uses this
snapshot as a proxy for the current protocol state, by assigning a unique state identifier to
each unique memory state through fuzzy hashing.

Figure 1 shows the fundamental loop, with an overview of long- and short-lived data over
a session. We refer to an individual request-reply exchange as an iteration of the fundamen-
tal loop. For the purpose of example, in addition to the loop in the previous pseudocode, the
figure also shows the typical case of a main thread that listens for connection requests, and
spawns a worker thread for each session. Long-lived data can be allocated both by the main
and the worker thread. At the beginning of a session, the worker may optionally perform
a SEND() to transmit an initial banner message that welcomes the client. Then, the worker
performs one or more RECEIVE()s to get a request from the client, processes the request,
and performs one or more SEND()s to communicate a reply to the client. The worker can
allocate short-lived data both before the RECEIVE()s (e.g., a buffer for the incoming request)
and after them (e.g., data for intermediate computations). Similarly, it can free short-lived
data both before and after the SEND()s. We note that the end of a request/reply iteration (and
the beginning of the next one) is denoted by a RECEIVE() after one or more SEND()s.

STATEAFL has been designed on the basis of the fundamental loop of network servers.
Similarly to AFL and other coverage-driven fuzzers, STATEAFL is a mutation-based fuzzer,
which automatically produces fuzz inputs by mutating previous ones, and gets feedback
from the target program about the coverage achieved by the previous fuzz inputs. This feed-
back is important for coverage-driven fuzzers to prioritize which previous inputs to mutate,
where to mutate them, and which mutation operators to apply. Differently from other
fuzzers, STATEAFL gets feedback not only about code coverage (e.g., which statements and
branches were executed), but also about protocol states reached during an execution.

Figure 2 provides an overview of STATEAFL. In the first step, STATEAFL compiles the
source code of the target program. During this process, we apply compile-time instrumen-
tation techniques to introduce additional code in the binary executable generated by the

MAIN

THREAD

WORKER

THREAD

re
ce

ive
(s

)

se
nd

(s
)

SHORT-
LIVED DATA

LONG-
LIVED DATA

se
nd

re
ad

/w
ri

te

re
ad

/w
ri

te

re
ad

/w
ri

te

al
lo

ca
te

al
lo

ca
te

fr
ee

al
lo

ca
te

al
lo

ca
te

fr
ee

al
lo

ca
te

fr
ee

al
lo

ca
te

fr
ee

al
lo

ca
te

fr
ee

al
lo

ca
te

fr
ee

fr
ee

fr
ee

cr
ea

te

jo
in

request/reply
iteration #1

request/reply
iteration #2

request/reply
iteration #3

re
ce

ive
(s

)

se
nd

(s
)

re
ce

ive
(s

)

se
nd

(s
)

Fig. 1 The fundamental loop of network servers

Empir Software Eng (2022) 27:191 Page 7 of 31 191

Compilation +
Instrumentation

pass
Fuzzer

Shared Memory

Req. 3 Req. 2 Req. 1

Reply 1 Reply 2 Reply 3

State 1 State 2 State 3

Target
Server

TCP/IP

Target
source
code

Target
binary,

instrumented

Fig. 2 Overview of STATEAFL

compiler. The instrumentation adds code to collect feedback about the coverage of proto-
col states, in a similar manner to instrumentation code added by other fuzzers for analyzing
code coverage. Note that this approach requires the availability of the source code of the
target server. This scenario represents relevant use cases for stateful network fuzzing, such
as developers that need to fuzz their own software (e.g., as part of an automated V&V pro-
cess), and users of open-source software that need to gain additional security evidence. We
leave the fuzzing of binary-only software out of the scope of this work.

After the instrumentation, the STATEAFL fuzzer runs the target server by launching the
binary. To exercise the target server with fuzz inputs, STATEAFL exchanges TCP/IP mes-
sages with the target, in the same way of a client. A fuzz input is managed as a sequence
of request messages: for each request message in the sequence, the fuzzer sends it through
TCP/IP, waits for a reply message, and moves to the next request message. In addition, the
STATEAFL fuzzer collects information about protocol states reached by the target server,
through a side channel (a shared memory area). The feedback consists of a sequence of
states, one for each request/reply iteration. Note that StateAFL works on application-level
messages, as demarked by the fundamental loop of SEND() and RECEIVE() primitives. The
application messages may be (or may be not) divided among multiple packets by the TCP/IP
stack, transparently to the fuzzer.

Our current design focuses on TCP/IP (including both the TCP and UDP transport pro-
tocols), since this protocol suite is the most commonly adopted by network servers. It is
possible to easily adapt the design to other communication protocols, such as RPC servers.
This design also focuses on client-server communication; fuzzing through multiple chan-
nels (e.g., multi-party protocols) represents a separate, still open research problem (Natella
and Pham 2021), which we leave out of scope of this paper.

3.1 Instrumentation Probes

To collect feedback about protocol states, compile-time instrumentation weaves probes into
the code of the target server. Probes are inserted at specific points of the code that allocate
and free memory, and that send and receive data on the network. A probe consists of a
call instruction, which invokes an external function, in order to perform actions when the
server executes the instrumented points of interest. In some cases, the probe passes run-
time information about the process to the external function (e.g., the address and size of a
memory area).

The compile-time instrumentation links the target program to a library provided by
STATEAFL, which contains the external functions to be invoked by the probes. These library
functions will collect and analyze data for inferring protocol states. In particular, the library
provides the following functions:

 191 Page 8 of 31 Empir Software Eng (2022) 27:191

– ON ALLOCATE: This function is invoked when a heap or stack memory area has been
allocated (e.g., using MALLOC). It takes in input the address and size of the memory
area. It keeps track of all data structures, regardless that they are long- or short-lived
(which cannot be determined at the moment of the allocation, but only afterwards).

– ON FREE: This function is invoked when a heap or stack memory area has been deallo-
cated (e.g., using FREE). It takes in input the address of the memory area. The function
updates the status of data structures that were tracked by ON ALLOCATE.

– ON SEND and ON RECEIVE: These functions are invoked when the server transmits or
receives data to/from the client (e.g., a write or read on a socket), and keep track of the
fundamental loop of the network server.

– ON PROCESS START: Executes at the start-up of the network server. It initializes the
internal data structures (e.g., ALLOC RECORDS MAP and ALLOC DUMPS QUEUE), the
internal state machine, and the shared memory area to communicate with the fuzzer.

– ON PROCESS END: Executes at the termination of the network server. It analyzes the
data structures that were allocated by the network server during its execution, identifies
which data are long-lived, and computes the sequence of protocol states, to be shared
with the fuzzer.

STATEAFL keeps track of the iterations of request/reply exchanges, by probing send()s
and receive()s made by the network server. On these operations, ON RECEIVE and ON SEND

update an internal state machine according to Fig. 3. These functions (Algorithms 2 and 3)
represent the current iteration using the global integer variable current iter no, allocated
by the STATEAFL library and initially set to 0 (Algorithm 1). The state machine identifies
the end of an iteration, by looking for a series of receive()s and, after some processing of the
request, a send() (or, the first of a sequence of send()s). By the time that the server starts to
send a reply, the long-lived data have been updated by the network server, and reflect a new
protocol state. Therefore, on the first send() event, the iteration is considered as terminated,
and a new one as started. We update the current iteration, by increasing current iter no by
one. Please note that the lifetime of short-lived data could end right before or right after the
end of an iteration, depending on the network server. However, this does not pose a problem
for STATEAFL, since short-lived data are going to be ignored by later analysis, regardless
of which iterations they span over.

During the execution, when a memory area is allocated on the heap or on the stack,
the probes trigger the function ON ALLOCATE (Algorithm 4). This function records the
allocation using the ALLOC RECORD data structure, which includes: (i) the number of the
iteration at which the memory area was allocated, (ii) the number of the iteration at which
it was deallocated (to be filled by ON FREE), (iii) the address of the memory area, and (iv)
the size of the memory area. The ALLOC RECORD data structure is stored into a map (i.e.,

SENDING RECEIVING

send()

send() /
take state snapshot, advance to next iteration

receive()
receive()

Fig. 3 State machine to keep track of protocol iterations

Empir Software Eng (2022) 27:191 Page 9 of 31 191

Algorithm 1 Triggered when the server starts.

Algorithm 2 Triggered when the server retrieves a message.

Algorithm 3 Triggered when the server sends a message.

an associative array), using as key the address of the memory area. The memory area is
initialized to zero: STATEAFL relies on the contents of the memory area as a proxy for the
current protocol state, and must not contain random data. Since heap and stack memory
areas in standard C are not automatically initialized, their contents are unpredictable and
not correlated to the protocol state, until they are written by the program. Therefore, we
initialize the heap and stack memory areas to assure that their unused parts have still a fixed
and predictable value, which does not mislead the inference of protocol states. When the
memory area is freed, the ON FREE function updates its ALLOC RECORD structure with
the iteration number at which the area was freed (Algorithm 5). Still, the ALLOC RECORD

structure lasts until the termination of the network server. As an optimization, Algorithm 4
only records allocations that are made during the first iteration. The allocations made by the
subsequent iterations do not span the entire lifetime of the process, and are considered as
short-lived.

The ALLOC RECORD data structures are inspected by STATEAFL when the current iter-
ation terminates, and the state machine moves to the next iteration (i.e., the transition
from RECEIVING to SENDING, see Fig. 3). On this event, the ON SEND function calls
DUMP CURRENT STATE (Algorithm 6), which iterates over all of the currently-allocated
heap and stack areas in ALLOC RECORDS MAP.

The DUMP CURRENT STATE function takes a snapshot (a dump) of the contents of
every memory area, by saving them into an ALLOC DUMP data structure. Moreover,

 191 Page 10 of 31 Empir Software Eng (2022) 27:191

Algorithm 4 Triggered when the server allocates memory.

Algorithm 5 Triggered when the server frees memory.

the ALLOC DUMP will track the iteration number at which the snapshot was taken, and
a reference to the ALLOC RECORDS MAP for the memory area. Even if the network
server deallocates the memory area, its ALLOC RECORD structure is still saved and ref-
erenced by the ALLOC DUMP structure. All ALLOC DUMP structures are enqueued into
ALLOC DUMPS QUEUE.

Figure 4 provides an example of the ALLOC RECORD and ALLOC DUMP data struc-
tures. In this example, the network server initially allocates a long-lived data structure at
address addr0, and represented by addr record0. For this long-lived area, iter no init

is initialized to 0, since it has been allocated before the first iteration could complete.
Then, the network server iterates for three request/reply exchanges. At every iteration, the

ALLOC

RECORDS

MAP

ALLOC

DUMPS

QUEUE

addr0 alloc_record0
• iter_no_init = 0
• iter_no_end = 3
• addr = addr0
• size = ...

addr1 alloc_record1
• iter_no_init = 0
• iter_no_end = 1
• addr = addr1
• size = ...

addr2 alloc_record2
• iter_no_init = 1
• iter_no_end = 2
• addr = addr2
• size = ...

addr3 alloc_record3
• iter_no_init = 2
• iter_no_end = 3
• addr = addr3
• size = ...

alloc_dump0
• iter_no_dumped = 0
• record = alloc_record0
• contents = ...

alloc_dump1
• iter_no_dumped = 0
• record = alloc_record1
• contents = ...

alloc_dump2
• iter_no_dumped = 1
• record = alloc_record0
• contents = ...

alloc_dump3
• iter_no_dumped = 1
• record = alloc_record2
• contents = ...

alloc_dump4
• iter_no_dumped = 2
• record = alloc_record0
• contents = ...

alloc_dump5
• iter_no_dumped = 2
• record = alloc_record3
• contents = ...

included in
state #1

ITERATION #1 ITERATION #2 ITERATION #3

skipped
from state #1

long-lived
(lifetime spans across all iterations)

short-lived
(lifetime limited to only one or few iterations)

included in
state #2

skipped
from state #2

included in
state #3

skipped
from state #3

Fig. 4 Example of data structures (alloc record and alloc dump), after an execution with three iterations,
with one long-lived area allocated at the beginning and freed at the end, and three short-lived areas allocated
and freed at each iteration

Empir Software Eng (2022) 27:191 Page 11 of 31 191

Algorithm 6 Takes snapshots of memory areas.

server allocates a short-lived data structure before processing the request, and deallocates
it after sending the reply. Thus, the server allocates in total 3 short-lived memory areas
(addr record1, addr record2, and addr record3, respectively). The alloc dump struc-
tures for the short-lived data are annotated with the iteration in which they were allocated
(iter no init = 0, 1, 2, respectively) and deallocated (iter no end = 1, 2, 3, respectively).
We remark that allocations performed after the first iteration (1, 2, . . .) are not actually
tracked by our algorithm, but are included in this discussion as an example of short-lived
data.

In the example of Fig. 4, the DUMP CURRENT STATE function is triggered 3 times, at
the end of each iteration. At the first iteration, DUMP CURRENT STATE dumps the cur-
rent contents of the long-lived data structure (alloc dump0), and the contents of the first
short-lived data structure (alloc dump1). Note that the ALLOC DUMP structures have a
reference to the ALLOC RECORD structures. Similarly, at the end of the second and third
iterations, DUMP CURRENT STATE dumps again the current contents of the long-lived data
structure (alloc dump2 and alloc dump4). The dumps alloc dump0, alloc dump2, and
alloc dump4 are from the same long-lived data structure, but they can hold different con-
tents, as the network server updates long-lived data at each iteration. Finally, the Fig. 4
includes the dumps alloc dump3 and alloc dump5 for the other two short-lived area, taken
respectively at the end of the second and third iteration.

3.2 Post-execution Analysis

The dumps in ALLOC DUMPS QUEUE are later analyzed at the end of the execution, after
that all request/reply iterations for the fuzz input have been completed. After the last itera-
tion, the network server is forcefully terminated, and the ON PROCESS END FUNCTION is
triggered (Algorithm 7). In turn, it calls the SAVE STATE SEQ FUNCTION.

Algorithm 7 Triggered when the server terminates.

 191 Page 12 of 31 Empir Software Eng (2022) 27:191

The SAVE STATE SEQ function (Algorithm 8) iterates over the ALLOC DUMPS QUEUE.
As result, SAVE STATE SEQ generates a sequence of states, with one state for each iteration
made by the network server. A state is represented by a unique integer value (state id), based
on the contents of long-live data at the end of the iteration. Therefore, if long-lived data are
updated between an iteration and the next one, the two states will be represented by two
distinct integer values. Otherwise, if the long-lived data stay unchanged between iterations,
the states are represented by the same integer value. Of course, it is possible that the same
integer value (i.e., the same state) appears multiple times at distant times in the sequence,
as the network server can return to a previous state, depending on the server behavior. In
the example of Fig. 4, SAVE STATE SEQ generates a sequence of three states, represented
by three integer values, which can be different or identical depending on any changes made
to the long-lived data structure.

Algorithm 8 iterates over ALLOC DUMPs. The algorithm identifies dumps of long-lived
data, by looking for those whose lifetime spans across all iterations. The algorithm skips
a dump as short-lived data if its memory area has been allocated after the first iteration
(iter no init > 0), or if it has been deallocated before the termination of the last iteration
(iter no end < total iterations, except iter no end = −1 that denotes an area never
deallocated). In the case of Fig. 4, the first state is obtained only from alloc dump0 (i.e.,
the first dump of the long-lived area); similarly, the second and third states are only based
on alloc dump2 and alloc dump4 (i.e., second and third dump of the long-lived area).

When iterating over the dumps, the algorithm computes a hash function over the union
of all dumps for the same protocol iteration. The hash value is adopted to map the mem-
ory contents to a unique state identifier. The hash value is computed incrementally, by
updating it with one dump at a time. When the algorithm finds a dump for a new iteration
(d .iter no dumped > prev iter no), the state identifier for the previous iteration is final-
ized and pushed to the sequence, and the analysis is repeated for the next iteration, until all
dumps have been analyzed.

A potential drawback of using hash functions is that the state identifier could be over-
sensitive to small, negligible variations of the memory contents not correlated with the
protocol state, because of non-deterministic factors. For example, as the fuzzer executes the
target server multiple times, the process may get from the OS different descriptors for socket
and file I/O, or its data may be allocated at different addresses of the virtual memory space.
In turn, these values can be copied to long-lived data structures (e.g., pointer variables).
Most hash functions are designed to be sensitive to small changes, and to generate largely
different hash values even if the inputs are similar. Therefore, small, non-deterministic vari-
ations would lead to different, redundant state identifiers, even if the variations do not affect
the behavior of the server. Disabling OS randomization mechanisms reduces, but does not
prevent such variations.

To mitigate this issue, our algorithm adopts Locality-Sensitive Hashing (LSH). In LSH,
two similar inputs (e.g., differing only for few bits) result in two hash values that are differ-
ent, but similar (Jafari et al. 2021). This form of hashing has applications in several domains,
such as document retrieval, plagiarism detection, and bioinformatics. In the field of software
security, LSH has most often been adopted for analyzing malware similarity (Oliver et al.
2013; Ali et al. 2020). In one previous work, LSH has been used on path constraints of sym-
bolic execution states, in order to speed-up the search for previously-solved states (Cady
2017). In general, LSH enables the quick look-up of items that are similar to the one under
analysis, by looking for items with a similar hash value according to some distance metric.

Empir Software Eng (2022) 27:191 Page 13 of 31 191

Algorithm 8 Generates a sequence of protocol states.

In particular, in this work we adopt the Trend Micro Locality Sensitive Hash (TLSH),
a popular algorithm that has shown high robustness against small differences in the inputs
(Oliver et al. 2013; Ali et al. 2020). TLSH computes a distribution of the bit patterns

 191 Page 14 of 31 Empir Software Eng (2022) 27:191

in the data, and generates a digest from this distribution. TLSH also comes with a dis-
tance metric between hash values, which approximates the Hamming distance between two
hash digest bodies. The function GET STATE ID (Algorithm 8) takes in input the TLSH
hash of long-lived data for the current iteration, and performs a nearest neighbor search
for the previous most similar hash value, within a maximum distance of ε. If a similar
hash value is found, the algorithm returns its mapped state identifier; otherwise, a new
pair {t lsh hash, state id} is stored using a new, unique state identifier. The algorithm
uses a Multi-Vantage Point (MVP) tree data structure to store the pairs, and to perform
look-ups based on the TLSH hash and on the TLSH distance metric. We use a MVP
tree for computationally-efficient nearest-neighbor search, as it avoids expensive pair-wise
comparisons with previous values in the tree (Bozkaya and Ozsoyoglu 1997, 1999).

The distance threshold ε is dynamically calibrated for the target server under test, accord-
ing to Algorithm 9. Before fuzzing, STATEAFL performs a calibration stage, by executing
the server multiple times using the seed inputs, and by computing a sequence of hash values
at each iteration of each repetition. In our implementation, we run one “reference” execution
plus 3 additional repetitions for each seed input. Since the server is executed with the same
inputs, the distance threshold ε should be calibrated such that the sequence of state identi-
fiers is the same across repetitions. Therefore, the calibration stage compares the hash value
at each iteration of the first execution (ref erence hashes seq[i]) with the correspond-
ing hash value of every other repetition (new hashes seq[i]), and collects the distances
between the hash values (distances). Then, it takes the 90th percentile of these distances
as a conservative choice for ε. The rationale for choosing the 90th percentile is that the dis-
tances across calibration runs should fall within the threshold (i.e., clustered in the same
state), since these runs process the same requests starting from the same initial state. Taking
a higher threshold (e.g., the maximum distance) would be too conservative, since it would
be influenced by sporadic outliers caused by non-determinism. Taking a lower threshold
(e.g., a lower percentile) would make the approach prone to redundant states, since two
occurrences of the same state may not be recognized as such.

After calibrating ε, it is expected that the server often returns to a previously known
state, and that it visits new states infrequently (e.g., the fuzzer triggers a new corner case
in the protocol). However, it is possible that the threshold is set too low if the initial seed
inputs are too few or too short, since only few states are visited during the calibration. This
case often occurs when a security assessor undertakes a fuzzing campaign for a new or
unfamiliar system. Therefore, STATEAFL provides a threshold adjustment procedure as a
fallback option to compensate for an under-estimated threshold. The adjustment is based
on the observation that, if the threshold is too low, then a high number of new states will
quickly occur during fuzzing. To handle this case, the fuzzer increases the threshold when
new states are added for 5 consecutive fuzz inputs, which is very unlikely to happen for a
well-calibrated threshold, since new states should be infrequent. The threshold is increased
by 10, which is a relatively low value to account for small corrections, but also not too
low, in order to react quickly. As in the original proposal of TLSH, we vary the threshold ε

between 5 and 100.
Ultimately, the SAVE STATE SEQ function returns the sequence of states to the

STATEAFL fuzzer. The fuzzer incrementally grows a state machine after each fuzz input,
based on the returned sequence of states. For example, when a fuzz input covers a new state,
the state machine is updated by adding a new state and a new transition from the previous
state in the sequence. Similarly, a new transition is added to the state machine when a pair
of states appears consecutively in a sequence for the first time.

Empir Software Eng (2022) 27:191 Page 15 of 31 191

Algorithm 9 Threshold calibration.

During the fuzzing process, STATEAFL uses the state machine to generate new fuzz
inputs, in order to further increase code coverage and to explore the protocol. Heuristics
from previous model-based fuzzing techniques can be leveraged for this purpose (Pham
et al. 2020), to: (i) select a target state from the state machine; (ii) identify a previous fuzz
input that reached the selected state; and (iii) apply a mutation operator on the message that
is sent from the target state. Figure 5 provides an example of inferred protocol state machine,
and related information that is tracked by the fuzzer for state selection purposes: #fuzzs is
the number of previous mutated inputs that have exercised that state; #paths is the number of
times that the code or state coverage increased when the state was previously selected; and
#selected is the number of times that the state was previously selected. Moreover, the table
tracks inputs that covered each state and that are “interesting”, i.e., that increased code or
state coverage. The target state is selected with a probability that is inversely proportional to
#fuzzs and #selected, and proportional to #paths. After selecting a state, the fuzzer randomly
selects one of the previous interesting inputs that covered that state (Inputs). Finally, the
fuzzer identifies the message in the input that reaches the selected state, and it targets for
mutation the subsequent message in the same input. For example, in Fig. 5, if the fuzzer
targets S4, it will generate a fuzz input beginning with messagesM1 andM4, followed by a
mutated version of messageM5.

 191 Page 16 of 31 Empir Software Eng (2022) 27:191

M1
S0 S1 S2 S3

M2, M6 M3, M7

M4
S4

M5

States Inputs #fuzzs #paths #selected

S1 {M1,M2,M3}, {M1,M6,M7}, {M1,M4,M5}

S2 {M1,M2,M3}, {M1,M6,M7}

S3 {M1,M2,M3}, {M1,M6,M7}

S4 {M1,M4,M5}

Fig. 5 Example of protocol state machine inference and state selection

The mutations include both byte-level operators and message-level ones (Table 1). The
byte-level operators are derived from the AFL fuzzer (Zalewski 2021), and modify the
content of an individual message. There are two types of byte-level mutation operators:
deterministic and stacked. The deterministic ones systematically mutate all of the bits, bytes,
words, and double words in the original input. For example, in the “single walking bit flip”
mode, the fuzzer iterates sequentially over all of the bits in the original input, and generates
a distinct fuzz input by inverting each of these bits. Figure 6 shows the case of three different
fuzz inputs generated by inverting three different bits of the original input. This approach
is meant to discover sensitive parts of the original input (e.g., headers) that increase cover-
age when mutated, and that are interesting to further mutate. Afterwards, the fuzzer applies
stacked mutations, where multiple types of mutations are applied on the same fuzz input. In
this case, the mutated parts of the inputs are randomly selected. For example, in Fig. 6 three
mutation operators are applied on the same input, respectively a random bit flip, a random
byte set to a random value (CC), and a random value added to a random byte (+3). Four
more mutation operators at the message-level are derived from the AFLNET fuzzer (Pham
et al. 2020). These mutations replace, insert, and duplicate a message at the location of
the message for selected fuzzing. The message-level operators are stacked with byte-level
operators.

3.3 Implementation

We implemented STATEAFL on top of the codebase of AFL and AFLNET. For compile-
time instrumentation, we extended the AFL-CLANG-FAST utility, which is provided by AFL
to compile the target program, and which adds a compiler pass to introduce instructions for
coverage profiling. In the compiler pass, we add further instrumentation to introduce probes
in the program, as discussed in Section 3. We focus on the case where the source code of
the target server is available for fuzzing.

Probes are injected on heap allocation sites that invoke the standard C library functions
MALLOC, REALLOC, CALLOC and FREE, and the C++ operators NEW and DELETE, in order
to call ON ALLOCATE and ON FREE. The probes take the size of the allocated memory

Empir Software Eng (2022) 27:191 Page 17 of 31 191

Table 1 Mutation operators

Mutation Type Fuzzer

Single, two, or four walking bit flips Deterministic AFL

One, two, or four walking byte flips Deterministic AFL

Walking 8-, 16-, or 32-bit arithmetics Deterministic AFL

Walking 8-, 16-, or 32-bit innteresting values Deterministic AFL

Walking overwrite with user-supplied dictionary values Deterministic AFL

Walking insertion of user-supplied dictionary values Deterministic AFL

Splicing multiple inputs Deterministic AFL

Flip single random bit Stacked AFL

Set random byte, word, or double word to interesting value Stacked AFL

Subtract value at a random byte, word, or double word Stacked AFL

Add value at a random byte, word, or double word Stacked AFL

Set random byte to random value Stacked AFL

Delete random bytes Stacked AFL

Clone random bytes Stacked AFL

Insert block of constant bytes in random position Stacked AFL

Overwrite bytes with randomly selected ones Stacked AFL

Overwrite bytes with fixed bytes Stacked AFL

Replace message with a random one from a random input Stacked AFLNET

Insert random message from a random input, before the target message Stacked AFLNET

Insert random message from a random input, after the target message Stacked AFLNET

Duplicate message Stacked AFLNET

area from the input of the allocation, and its memory address from the output. Similarly,
allocation sites of stack memory are probed, by identifying PUSH and POP operations on
the stack that modify the stack pointer register. The probes compute the address and size
of the allocated memory area from the stack pointer register. In order to avoid excessive
overhead that may be caused by probing all stack allocations, we only probe allocations of
data structures larger than a threshold (64 bytes), since in practice small allocations typically
represent temporary variables and do not hold long-lived data structures. Data in globals
and TLS are handled as memory areas with a lifetime spanning the entire execution.

Probes are also injected on call sites to standard library functions that send and receive
network data, such as SEND, SENDTO, and SENDMSG (to trigger ON SEND), RECV,
RECVFROM, and RECVMSG (to trigger ON RECEIVE). We also probe the standard library

Fig. 6 Examples of mutated inputs

 191 Page 18 of 31 Empir Software Eng (2022) 27:191

functions READ, WRITE, FPRINTF, FGETS, FREAD, and FWRITE, with an additional check
that the file descriptor in input is a network socket. We allow the user to specify (using
an environment variable) any program-specific function that should be instrumented for
intercepting network communication. For example, for a server that implements a HTTP-
based protocol using the libevent API, the user can instruct STATEAFL to instrument the
EVHTTP REQUEST * and EVHTTP SEND * API functions, to trigger the external functions
ON RECEIVE and ON SEND, respectively. Finally, our probes invoke ON PROCESS START

and ON PROCESS END on start-up and termination of the target program.
After the compiler pass, we link the program executable with a library that implements

the event handlers, to be called by the probes. The library shares a UNIX SysV shared
memory to exchange state sequences. We replaced the protocol-specific message parsers
of AFLNET with a single, generic function that read the state sequence from the shared
memory, without parsing response codes from the messages. We reuse the test automation
from AFL and AFLNET to execute the target program (e.g., the fork server), and to mutate
fuzz inputs.

As an optimization for speeding-up fuzzing, STATEAFL can be configured to perform
heavy-weight post-execution analysis of long-lived memory only when strictly needed. Fuzz
inputs are normally processed without performing the post-execution analysis, to have a
high fuzzing throughtput; when a fuzz input covers a new program path (i.e., increases the
code coverage), it is processed again in order to the post-execution analysis. The analysis
returns a sequence of states reached by the fuzz input, which is stored by the fuzzer. This
information is used by the fuzzer to generate more fuzz inputs starting from each state in
the sequence.

4 Experimental Plan

We evaluate STATEAFL by fuzzing real-world network servers from popular open-source
projects. The experimental plan addresses the following research questions:

RQ1: How STATEAFL compares to state-of-the-art network fuzzing? We evaluate
them with respect to both code coverage, which is a typical indicator of the depth of fuzz
testing, and crashes of the targets, which indicates that a fuzzer can uncover potential
security issues (Klees et al. 2018).
RQ2: How accurate are the inferred protocol states? This is a difficult question,
since we lack a ground truth for the protocols to be inferred, and since the protocol state
machine depends on the specific protocol implementation of the network server (Poll
et al. 2015). We address this question through a qualitative analysis on one of the tar-
get network servers, by manually analyzing its source code, to check that the inferred
states are not redundant and reflect the expected behavior of the protocol. As a further
term of comparison, we also compare the inferred state machines by STATEAFL with the
ones inferred by custom protocol-specific fuzzing, in terms of number of states and other
graph complexity metrics.
RQ3: Can STATEAFL achieve a high fuzzing performance? The main principle for
effective fuzzing is to generate large amounts of inputs over a long period of time. In
order to assure that STATEAFL can perform a high number of tests in the long run, it
is important to minimize its overhead on the execution of the server under test. Thus,
we evaluate the performance slow-down of the instrumented targets compared to non-
instrumented execution.

Empir Software Eng (2022) 27:191 Page 19 of 31 191

To assess the feasibility of the approach and to support reproducible experimentation,
we implemented STATEAFL and integrated it with PROFUZZBENCH, a public benchmark
for network fuzzers (Natella and Pham 2021). The benchmark includes 13 open-source net-
work servers (Table 2). These targets are quite diverse with respect to several aspects: they
cover 10 network protocols that have been typical targets of previous fuzzing studies; they
are implemented both in C and in C++; they include both TCP and UDP, and both binary
and text protocols; they adopt a variety of APIs (e.g., SEND/RECV vs. FWRITE/FREAD for
networking, PTHREADS vs. FORK for multiprocessing). PROFUZZBENCH automates the
setup and the execution of the target servers using Docker containers, in a reproducible
way. Moreover, PROFUZZBENCH configures the servers according to the best practices for
coverage-driven fuzzing. In particular, the targets are patched to disable sources of ran-
domness (e.g., pseudo-random number generators) in order to have reproducible behavior
(i.e., if the program is executed again with the same input, then the same execution path
is covered), which is an implicit assumption for coverage-driven fuzzing techniques. The
experiments adopt the seed inputs from the PROFUZZBENCH project, where both practi-
tioners and researchers contributed with both benchmark targets and with seeds for these
targets. These seeds reflect typical basic usage of the servers according to their experience.
The seeds include correct authentication and passwords (otherwise, the fuzzer would waste
significant time before getting access to the server), and other frequent commands for the
protocol (e.g., for FTP, the seeds get the list of files on the server, create directories and
move across them, etc.). Table 2 provides the number of unique commands in the seeds for
each target server. We remark that the need to provide initial seeds for the target server is
a problem for any greybox fuzzing approach, in terms of automation and ability to work
out-of-the-box for new software to test. We leave this aspect out of the scope of this work.

The experimental evaluation compares STATEAFL with two baseline fuzzers. The base-
line fuzzers were selected such that: (i) They are not limited to specific network protocols,
but are applicable to a large set of network targets, including the ones in PROFUZZBENCH;

Table 2 Benchmark targets

Target Protocol Type Transport Lang. Multiproc. Seeds

Bftpd FTP Text TCP C fork 54

Dcmtk DICOM Binary TCP C++ pthreads 4

Dnsmasq DNS Binary UDP C fork 9

Exim SMTP Text TCP C fork 9

Forked-daapd DAAP Text TCP C pthreads 65

Kamailio SIP Text UDP C fork 3

LightFTP FTP Text TCP C pthreads 10

Live555 RTSP Text TCP C++ N/A 33

OpenSSH SSH Binary TCP C fork 22

OpenSSL TLS Binary TCP C N/A 8

ProFTPD FTP Text TCP C fork 54

Pure-FTPd FTP Text TCP C fork 54

TinyDTLS DTLS Binary UDP C N/A 5

 191 Page 20 of 31 Empir Software Eng (2022) 27:191

this leaves out fuzzers that are highly-customized for a specific protocol (e.g., TLS (De
Ruiter and Poll 2015), DTLS (Fiterau-Brostean et al. 2020)) but are not applicable to other
protocols; (ii) They adopt state-of-the-art greybox, coverage-driven techniques, in order to
evaluate how the proposed greybox solution relates to them. The two baseline fuzzers are:

– AFLNWE: It is a “network-enabled” version of AFL, with minor changes to send
mutated inputs over a TCP/IP socket instead of using file I/O. It adopts the same
mutation operators and coverage analysis from AFL.

– AFLNET: It is another fork of AFL, with extensive modifications for stateful network
fuzzing. It organizes an input as a session of multiple messages, and adds mutation
operators at the message level (e.g., dropping or duplicating individual messages, rather
than bytes or blocks). Moreover, it relates each input message to a protocol state reached
by that message, where the protocol state is represented by the “status” code from the
response by the server.

These two tools represent different points in the design space of greybox network fuzzers.
On the one hand, AFLNWE is a pure greybox, coverage-driven fuzzer, and it is a baseline
to evaluate the relative merit of stateful fuzzing compared to plain coverage-driven fuzzing.
On the other hand, AFLNET is a stateful network fuzzer that performs protocol state infer-
ence. Differently from the proposed STATEAFL fuzzer, AFLNET relies on the contents of
response messages to infer protocol states. Therefore, to be applicable, AFLNET must be
customized with protocol-specific parsers, in order to extract status codes from the messages
(where available). Therefore, AFLNET comes with parsers for a set of common protocols,
and PROFUZZBENCH extended AFLNET with more parsers to support the network servers
under test (Table 2). For some protocols (e.g., TinyDTLS), response messages do not have
status codes; thus, the protocol parsers generate status codes from other fields (e.g., in
DTLS, by joining the content type field from the header, and the message type field from
the payload), based on protocol knowledge of AFLNET’s developers.

STATEAFL overcomes the need for protocol-specific parsers, by instrumenting the target
process and analyzing its memory at run-time, in order to be more broadly applicable with-
out the need for manual customizations. In our evaluation, we analyze whether the protocol
state inference by STATEAFL can overcome the lack of protocol parsers. The experimental
plan consists of a total of 156 experiments, with 4 repeated fuzzing experiments for each
of the 13 target servers and of the 3 fuzzers, over a period of 24 h for each experiment. We
execute experiments on the Google Cloud Platform, using E2 high-memory VM instances
with 4 vCPUs, with a dedicated vCPU for each replication.

In our evaluation, the STATEAFL fuzzer could successfully run on all of the tar-
get servers, without any protocol customization. STATEAFL automatically instruments
I/O APIs from the standard C library, to trigger ON SEND (on SEND, SENDTO,
SENDMSG, WRITE, FPRINTF, and FWRITE) and to trigger ON RECEIVE (RECV, RECVFROM,
RECVMSG, READ, FGETS, FREAD). In only one of the targets (Forked-daapd), which per-
forms network I/O through the libevent API, we needed to configure STATEAFL to probe
the EVHTTP REQUEST GET URI and EVHTTP SEND REPLY API functions, in order to keep
track of its request/reply loop. The information about the names of these APIs is easily
available to developers, and can be learned from a quick inspection of the target server. No
modification of STATEAFL was needed, as it instruments these APIs in the same way of
other APIs.

Empir Software Eng (2022) 27:191 Page 21 of 31 191

5 Experimental Results

5.1 Coverage and Vulnerabilities

In Table 3 and Fig. 7, we report respectively on crashes and on coverage for each target and
for each fuzzer, after 24 h of fuzzing. For coverage, we focus on edge coverage and do not
show line coverage for the sake of space, as it exhibits similar results to edge coverage.

For coverage (Fig. 7), we have different outcomes depending on the target. For 6 tar-
gets (Bftpd, Dcmtk, Dnsmasq, Live555, OpenSSH, ProFTPD), we notice that all of the
fuzzers achieved a similar coverage. In the other cases, the stateful fuzzers (STATEAFL and
AFLNET) achieved higher coverage than the non-stateful AFLNWE fuzzer. In particular, for
three targets (LightFTP, Exim, TinyDTLS), the gap is larger, while for the remaining targets
(OpenSSL, Pure-FTPd, Forked-daapd, Kamailio), the gap is relatively small, but there is a
higher variability between experimental runs.

In the 6 targets with similar coverage, both of the stateful fuzzers could not increase
coverage compared to plain greybox fuzzing. A possible reason is that the server behavior
is only weakly correlated to the current state of the process, as it is influenced mostly by the
current input. Therefore, stateless fuzzing could eventually catch up with the stateful fuzzers
over the course of the experiment. In the other 7 cases, the stateful fuzzer benefited from
inferring protocol states. When a message succeeds at discovering a new state, it uses the
state (and the messages sent up to that point) as a starting point to generate more inputs. For
example, the fuzzer can add further messages after that starting point, and cover new parts
that are enabled by the current protocol state. Instead, a stateless fuzzer does not reason in
terms of sequences of states, and focuses on mutating the “interesting bits” of the input that
recently changed the coverage, slowing down the effectiveness of fuzzing. This is further
discussed in the analysis of the next subsection (Section 5.2).

The availability of “status codes” in the response also seems to have an influence, as
in the case of TinyDTLS and, to a minor degree, in the case of OpenSSL. These projects
implement binary protocols, and lack a “status” code in the response message. For these
protocols, the custom parsers in AFLNET produce surrogate values, which are computed
from other fields in the header and payload. Therefore, the server gives a weaker indication
about the current protocol state. In STATEAFL, the (un)availability of status code in the
response does not affect the fuzzing process, as the protocol state is automatically inferred
from the analysis of the memory of the target server.

For bugs, we focus on identifying which are the targets where a fuzzer found any
crash. We do not consider the absolute number of crashes reported by the fuzzers (“unique
crashes”), which is widely acknowledged as an unreliable metric, since the crashes are

Table 3 Unique bugs found by the fuzzers after 24 h of fuzzing. The� denotes unique bugs, and the numbers
in parentheses denote average non-deduplicated crashes

Target AFLNWE AFLNET STATEAFL

Dcmtk � (1) � (10) � (9)

Dnsmasq � (54) � (57) � (66)

Live555 � (175) � (211) � (187)

ProFTPD – – � (1,051)

TinyDTLS � (20) � (37) � (56)

 191 Page 22 of 31 Empir Software Eng (2022) 27:191

Fig. 7 Edge coverage after 24 h of fuzzing

duplicates of the same underlying vulnerability. For example, the “unique crashes” ter-
minology has recently been dropped by the community working on AFL-based fuzzers
(AFLplusplus Project 2021). Therefore, to deduplicate bugs (i.e., to identify crashes that
are caused by the same root cause), we first grouped the crashes with respect to their call
stack at the time of the crash. Then, we manually analyzed the call stacks, in order to estab-
lish whether two groups of crashes with different call stacks where still due to the same
bug. Even if different groups of crashes had small differences in the call stack, they were
still accounted to the same unique bug due to their semantic similarity. For example, for
Live555, two different call stacks with handleCmd SETUP are both related to the SETUP
command in the RTSP protocol, and were considered as effect of the same bug.

Table 3 provides information on the targets that crashed in the experiments. The check-
mark symbol “�” denotes a unique bug found by fuzzing (in these experiments, at most
one for each target listed in the table). STATEAFL was able to crash the same targets of
both AFLNWE and AFLNET (Dcmtk, Dnsmasq, Live555, TinyDTLS), but without relying
on protocol customizations. Moreover, STATEAFL was the only fuzzer able to find crash-
inducing inputs for the ProFTPD target. The other fuzzers did not find any bug not found by
STATEAFL. The underlying bug is a heap buffer over-read, which could not be triggered by
the other fuzzers since it is difficult to reproduce. ProFTPD introduces its own heap mem-
ory allocator on top of the GNU C library, by allocating memory blocks from pre-allocated
pools. Therefore, the buffer overrun could not be reliably detected since the buffer over-
run can still access to valid memory areas in the same pre-allocated pool. In the case of
STATEAFL, the bug was triggered since the fuzzer put more stress on the memory allocator,
thus fragmenting the data and making the buffer over-run more likely to access to invalid
memory areas.

All of these crashes were found within one hour of fuzzing. For the other targets, none of
the fuzzers were able to find deeper vulnerabilities within 24 h. However, as discussed later
(Section 5.2), STATEAFL is able to restrict the set of inferred protocol states, which con-
tributes to find deep bugs in the long run, by avoiding repeating the same tests on redundant
states. For example, inferring two redundant states (i.e., the server does not actually exhibit
different behaviors in these states) leads the fuzzer to repeatedly apply the same fuzz input
on both the two states, causing a waste of computational efforts. We remark that the main
contribution is the increase in automation (as it avoids the user to write protocol-custom
code) and in broadening the scope of fuzzing (as it can support more protocol types with
lower effort), while keeping a performance level comparable to existing fuzzers in terms of
coverage and bugs found.

Empir Software Eng (2022) 27:191 Page 23 of 31 191

5.2 Protocol State Inference

To get a better understanding of the protocol state machine inferred by STATEAFL, we first
analyze one of the targets in a qualitative way. We focus on the FTP protocol, since it is
a plain-text protocol that is simple to be manually interpreted, and that has been targeted
by many fuzzing studies (Natella and Pham 2021). Moreover, the FTP protocol is simple
enough to be modeled with a small state machine derived from the protocol specification,
which can serve as a ground truth for our analysis. In particular, we consider as reference
the model by Antunes and Neves (2011) based on the RFC 959, shown in Fig. 8. The initial
states of the protocol represent the phases of user authentication (S1, S2, S3); most of the
commands do not affect the protocol state (e.g., reading or updating the configuration of the
server), as they leave the server in state S4; only a small set of commands (e.g., REST for
resuming a transfer) introduce additional states.

Among the four FTP servers from the benchmark, we focus on LightFTP. In order to
interpret the state machine inferred by STATEAFL, we manually analyze both the source
code of the server and the inputs that covered the states. This implementation of FTP is the
simplest one and amenable for our manual analysis, as the core of the protocol implementa-
tion (not considering the parsing of the configuration file and of the command line) consists
of about 1.7 kLoCs, and is limited to only one source file and one header file (ftpserv.c
and ftpserv.h), thus mitigating the risk of an incorrect manual interpretation. The long-
lived state of the server is all included within one data structure (FTPCONTEXT) allocated
on the stack, which contains the socket handles, IP port numbers and addresses for the client
and the server, the currently-opened file and access mode, the current working directory,
and handles for a worker thread and for a mutex. Among the FTP commands implemented
in this server, only few ones update the state of the server. Differing from the state machine
based on the standard (Fig. 8), some commands have side effects on long-lived data, since
they launch a worker thread to access the file system and to transfer data back to the client
through a separate connection (e.g., the LIST and MLSD commands for listing the contents
of a folder; the STOR, RETR, and APPE commands for file transfer); other commands,

Fig. 8 Reference state machine for the FTP protocol, by Antunes and Neves (2011)

 191 Page 24 of 31 Empir Software Eng (2022) 27:191

such as PORT, PASV, EPSV, and PBSZ change the configuration of the server (e.g., the
client port to be used for the data connection).

Figure 9 shows a protocol state machine inferred by STATEAFL for the LightFTP server.
The state machine starts from a “dummy” initial state 0; the other states represent unique in-
memory states of long-lived data in the target server, identified by an incremental number;
an edge represents a request/reply pair between the server and the client; the edges can be
self-transitions in the same state, which is the case of messages without side effects (e.g.,
read-only operations); or, the edges can bring the server to a different state, which reflect
changes in long-lived data. As in the reference model, the states 0, 1 and 2 are followed
during user authentication. In the case of unsuccessful authentication, the state machines
moves to state 7. Most of the commands are stateless as in the reference model, and are
represented by the self-transition in state 2. In this case, STATEAFL correctly recognizes
that the server is not changing state from the analysis of process memory, thus avoiding to
add more states when stateless commands are issued. The server moves to the other states
in the case of the PORT command (states 3, 6, and 10) and the LIST command (states 4, 5,
8, 11). Ideally, the state machine should use fewer states to represent the conditions that the
data connection has been configured (PORT) and that the worker thread has been launched
(LIST). However, the contents of the long-lived data vary across different executions of
these commands, since the data depend on the parameters of the PORT command, and on
non-determinism in the initialization of the worker thread. STATEAFL performs locality-
sensitive hashing to cluster these different contents of the long-lived data into few states of
the inferred state machine, thus limiting the growth of redundant states.

To get more insights about the state machines inferred by AFLNET and STATEAFL, we
analyzed the overlap between their state machines for the LightFTP server. Figure 10a and b
show respectively the state machine for STATEAFL and AFLNET, by running the same two
seed inputs. These inputs establish a session by logging-in, and perform basic operations

Fig. 9 State machine for
LightFTP inferred by STATEAFL
after 24 h

0

1 7

2

3

4

5

6

8

10

11

Empir Software Eng (2022) 27:191 Page 25 of 31 191

0 1

220,
331,
200,
150

2

230,
215,
257,
200,
150

3

451

4

257

0 220

1

331

1

230

2

215

2

257

2,4

200

2,1

150

2,1
451

3

Fig. 10 Inferred state machine for LightFTP using two seed inputs. States are annotated with the correspond-
ing states for the other fuzzer

such as listing files in the root folder, querying the OS version of the server, setting the data
connection, creating a folder, and quitting the session. In each figure, the states inferred by
one fuzzer are annotated (nearby the vertex of the graph) with the label of the corresponding
state of the other state machine. The set of status codes returned by the server (i.e., 220, 331,
etc., used by AFLNET, in Fig. 10b) is larger than the set of unique in-memory states reached
by the target server (i.e., 1, 2, 3, and 4 inferred by STATEAFL, in Fig. 10a). This overlap
highlights an important difference between status codes and the concept of “state”. The sta-
tus code only reflects the outcome of the most recent command (i.e., the latest request/reply
iteration), regardless of which operations were previously performed on the server, which
side effects have (or have not) accumulated within the target process, and how the server
will behave in response to future commands. In this example, several commands return dif-
ferent status codes but do not have side effects on long-lived data of the server, such as the
self-transitions in states 1 and 2 in Fig. 10a. The additional states inferred by AFLNET are
redundant for stateful fuzzing, since applying the same fuzzed message starting from any of
the redundant states (e.g., 230, 215, 257, 200, and 150 in Fig. 10b) results in the same behav-
ior of the server, since the in-memory state of the process is always the same. In turn, these
additional states result in wasted attempts by AFLNET to fuzz the server under (apparently)
different conditions.

Table 4 provides statistics about the inferred protocol state machines, for both AFLNET

and STATEAFL, over all of the 13 target servers. The values in the table are the mean across
repetitions. In the case of AFLNET, the vertexes represent the “status” code returned by
the server in a request/reply iteration, while in STATEAFL the vertexes represent unique
memory states. The number of states for STATEAFL is lower than AFLNET for almost all
of the targets. Therefore, the other metrics in Table 4 also tend to be lower for STATEAFL
(number of edges; longest distance between the root node and other nodes; the degree of
output transitions from a state; the number of circuits). STATEAFL infers recurring states
for most of the protocols, as for LightFTP in Fig. 10a.

AFLNET and STATEAFL inferred different protocol state machines from the four FTP
servers (LightFTP, Bftpd, Pure-FTPd, ProFTPD). Despite these servers implement the same
protocol, it is typical for different implementations to cover a different subset of the protocol
specification, or to include extensions from later standards or from the vendor (Antunes and

 191 Page 26 of 31 Empir Software Eng (2022) 27:191

Table 4 Metrics about the inferred protocol state machines

target fuzzer vertexes edges longest dist. from root out degree circuits

Bftpd AFLNET 24 183 4 7 >1M

STATEAFL 3 6 1 2 3

Dcmtk AFLNET 4 3 1 1 1

STATEAFL 15 31 1 1 13

Dnsmasq AFLNET 88 278 5 3 >1M

STATEAFL 52 145 5 2 >20K

Exim AFLNET 12 57 3 4 353

STATEAFL 21 45 3 2 19

Forked-daapd AFLNET 7 19 2 2 6

STATEAFL 4 4 1 1 1

Kamailio AFLNET 13 105 1 7 >315K

STATEAFL 2 2 1 1 1

LightFTP AFLNET 23 176 3 7 >1M

STATEAFL 11 26 3 2 17

Live555 AFLNET 10 75 2 7 >37K

STATEAFL 16 31 2 1 12

OpenSSH AFLNET 111 246 8 2 >250K

STATEAFL 153 467 4 3 >1M

OpenSSL AFLNET 17 26 4 1 5

STATEAFL 2 2 1 1 1

ProFTPD AFLNET 26 241 4 9 >1M

STATEAFL 4 9 1 2 5

Pure-FTPd AFLNET 29 294 4 10 >1M

STATEAFL 10 29 1 2 15

TinyDTLS AFLNET 7 19 2 2 15

STATEAFL 9 18 1 1 6

Neves 2011; Poll et al. 2015). In all cases, the state machines inferred by STATEAFL have a
lower number of states and closer to the reference model of Fig. 8.

In two cases (Kamailio and OpenSSL), the protocol state machine inferred by STATEAFL
consists of only two states, including the dummy state 0 and only one, fixed state over
the course of the session. In the case of Kamailio, the default configuration only performs
stateless routing of SIP requests, which are only based on the contents of the request; stateful
processing needs to be enabled by configuring an optional module, as it is more resource-
demanding and aimed for advanced use cases (Nick vs Networking 2019). By analyzing
the dumps collected by STATEAFL, we found that long-lived data indeed do not change
across iterations for these servers. In the case of OpenSSL, the fuzzer could not identify
new states, since it is a highly-structured binary protocol, for which it is difficult to generate
new sequences of valid messages. This is a general limitation of mutation-based fuzzers,
that could be addressed by means of structure-aware fuzzing techniques (Serebryany et al.
2017). In both cases, STATEAFL can detect that the inputs hit the same state, thus avoiding
to perform redundant tests.

Empir Software Eng (2022) 27:191 Page 27 of 31 191

5.3 Performance

Finally, we evaluated the performance overhead of the instrumentation code injected by
STATEAFL in the target process. Figure 11 reports the execution time of the target servers
when running seed inputs. The execution time under STATEAFL is normalized with respect
to the execution time without instrumentation (e.g., a 1.1x slowdown means that the execu-
tion takes 10% more time to complete). The instrumentation code mainly consists of: (i) the
probes injected where the target server allocates memory and performs network I/O, to make
callbacks for data collection (Algorithms 2 to 6); (ii) post-execution analysis (Algorithms 7
and 8). Therefore, we separately evaluate the impact of these two types of instrumentation
code.

Figure 11 shows the slowdown respectively when only the probes are injected without
any post-execution analysis (labeled with Probes), and when the instrumentation code also
includes the post-execution analysis (labeled with Full). For some targets, the relative slow-
down is negligible (i.e., close to 1×). The relative slowdown is noticeable for those target
servers that take less time to execute the inputs, and that allocate a larger amount of long-
lived data to be analyzed. In these cases, the slowdown was around 1.5× the execution time
of the non-instrumented server, and around 3× in the worst case of Dcmtk. In these cases,
the non-instrumented execution time takes less than 100 ms to process the inputs. Most of
the slowdown comes from the post-execution analysis, which computes hashes from mem-
ory snapshots. This analysis takes fractions of ms in the best cases, and around 100 ms in
the worst cases. Instead, for those targets that take longer to process the inputs (e.g., Forked-
daapd), the relative weight of the post-execution analysis becomes negligible. Moreover,
the slowdown caused by STATEAFL is balanced by a reduction of redundant states in the
inferred state machines, leading to less states to be explored by fuzzing and less wasted
inputs, thus achieving similar or better code coverage.

Finally, Fig. 12 reports the throughput of the fuzzers, in terms of executions of the target
server per second, averaged over 24 h of fuzzing and 4 repetitions. The AFLNWE achieved
the highest throughput across most of the benchmark targets. Compared to the other two
fuzzers, AFLNWE is not a message-oriented fuzzer, as it sends fuzz inputs as an uninter-
rupted stream of bytes. Instead, AFLNET and STATEAFL are message-oriented fuzzers,
which alternate between sending request messages and receiving (and analyzing) response

Fig. 11 Slowdown of execution time under STATEAFL, respectively when the target is only instrumented
with callbacks for data collection (probes), and when the instrumentation also performs post-execution
analysis (full). The slowdown is normalized with respect to execution without instrumentation

 191 Page 28 of 31 Empir Software Eng (2022) 27:191

Fig. 12 Fuzzing throughput (executions of the target server per second), averaged over 24 h of fuzzing and
4 repetitions

messages, which introduces short delays. AFLNET and STATEAFL achieved a compara-
ble fuzzing throughput for most of the benchmark targets. For few targets (OpenSSH and
Dcmtk), STATEAFL exhibited a significantly lower fuzzing throughput than AFLNET. In
the case of Dcmtk, we can attribute this gap to the combined effect of short absolute exe-
cution time of the target, and the higher slowdown caused by the instrumentation (Fig. 11).
For OpenSSH, the lower throughput was caused by an additional delay between request
messages, which was configured to make the analysis of in-memory states more deter-
ministic. A potential extennsion to avoid the need for such delays, and in general for
improving the fuzzing throughput, is represented by ongoing research on snapshot-based
fuzzing, which saves and restores the state of the entire server process at selected times
(Li et al. 2022; Andronidis and Cadar 2022). Please note that snapshot-based fuzzing is
complementary area of research to STATEAFL, which infers states from a fine-grained anal-
ysis of process memory, and would guide the snapshot-based process by identifying unique
application-level states.

6 Conclusion

This paper presented STATEAFL, a coverage-driven fuzzer for stateful network servers. We
designed the fuzzer to not rely on manual customizations for the protocol under test, in
order to make stateful fuzzing more broadly applicable. The fuzzer leverages compile-time
instrumentation to insert probes, which take snapshots of long-lived data at each proto-
col iteration. Then, the fuzzer uses fuzzy hashing to map the snapshots to a unique state
identifier, in order to infer protocol states.

We implemented and released STATEAFL as open-source software, and experimentally
evaluated it on a benchmark of network servers. The experimental evaluation showed that
STATEAFL can match a protocol-custom fuzzer in terms of both code coverage and vul-
nerabilities, and can even exceed it for some targets. Moreover, STATEAFL only introduces
a limited overhead on the execution of the server under test. We also presented a qualita-
tive analysis of the states inferred by STATEAFL. The qualitative analysis pointed out an
important insight about stateful fuzzing: the response codes returned by many protocols are
often not representative of the current state of the server, but only reflect the outcome of the
last request. For this reason, inferring states for response codes can significantly inflate the

Empir Software Eng (2022) 27:191 Page 29 of 31 191

protocol state machine, leading to redundant fuzz tests. Having knowledge about the actual
state of the server can be exploited by the fuzzer to avoid the redundant tests.

We expect that future work on stateful network protocol fuzzing will develop new
solutions based on this observation. Potential directions for future research include new
solutions from inferring states from memory analysis, such as by using techniques for static
and dynamic program analysis, and new heuristics for generating fuzz inputs tailored for
stateful protocols, such as algorithms for selecting which protocol states to fuzz and which
portions of the input to mutate. Early work on these areas include Ba et al. (2022) and Li
et al. (2022) for efficient definition of states based on program analysis, and Liu et al. (2021)
on state selection algorithms. We also leave to future work the application of the proposed
approach to binary-only programs. Since the instrumentation is limited to identifying and
changing calls to library APIs, without changing the control and data flow, binary rewrit-
ing techniques represent good candidates for further research on this aspect (Dinesh et al.
2020; Duck et al. 2020). Finally, we expect future work to explore more applications of
stateful fuzzing beyond network protocols, such as for the security testing of local stateful
applications based on inter-process communication.

Acknowledgements I am grateful to Van-Thuan Pham (University of Melbourne) for the constructive dis-
cussions and the encouragement during this work. This work has been partially supported by the Google
Cloud research credits program, and by the FRA programme (project OSTAGE) at Università degli Studi di
Napoli Federico II.

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-
CARE Agreement.

DataAvailability The software presented in this paper is available as open-source software on https://github.
com/stateafl/stateafl and https://github.com/profuzzbench/profuzzbench.

Declarations

Conflict of Interest No conflict of interest exits in the submission of this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AFLplusplus Project (2021) Pull request #1200—rename. https://github.com/AFLplusplus/AFLplusplus/
pull/1200/commits

Ali M, Hagen J, Oliver J (2020) Scalable malware clustering using multi-stage tree parallelization. In: 2020
IEEE International conference on intelligence and security informatics (ISI). IEEE, pp 1–6

Alrahem T, Chen A, DiGiuseppe N, Gee J, Hsiao SP, Mattox S, Park T et al (2007) Interstate: a stateful
protocol fuzzer for SIP. Defcon 15:1–5

Andronidis A, Cadar C (2022) SnapFuzz: an efficient fuzzing framework for network applications.
arXiv:220104048

https://github.com/stateafl/stateafl
https://github.com/stateafl/stateafl
https://github.com/profuzzbench/profuzzbench
http://creativecommons.org/licenses/by/4.0/
https://github.com/AFLplusplus/AFLplusplus/pull/1200/commits
https://github.com/AFLplusplus/AFLplusplus/pull/1200/commits
http://arxiv.org/abs/220104048

 191 Page 30 of 31 Empir Software Eng (2022) 27:191

Antunes J, Neves N (2011) Automatically complementing protocol specifications from network traces. In:
Proceedings of the 13th European workshop on dependable computing, pp 87–92

Ba J, Böhme M, Mirzamomen Z, Roychoudhury A (2022) Stateful Greybox Fuzzing. arXiv:220402545
Banks G, Cova M, Felmetsger V, Almeroth K, Kemmerer R, Vigna G (2006) SNOOZE: toward a stateful

NetwOrk prOtocol fuzZEr. In: International conference on information security, pp 343–358
Beyond Security (2020) beSTORM Black Box testing. https://beyondsecurity.com/solutions/bestorm.html.

Online; Accessed 10 Dec 2020
Boehme M, Cadar C, Roychoudhury A (2021) Fuzzing: challenges and reflections. IEEE Softw 38(3):79–86
Böhme M, Falk B (2020) Fuzzing: on the exponential cost of vulnerability discovery. In: Proceedings of

the 28th ACM joint meeting on European software engineering conference and symposium on the
foundations of software engineering, pp 713–724

Bozkaya T, Ozsoyoglu M (1997) Distance-based indexing for high-dimensional metric spaces. In: Proceed-
ings of the 1997 ACM SIGMOD international conference on management of data, pp 357–368

Bozkaya T, Ozsoyoglu M (1999) Indexing large metric spaces for similarity search queries. ACM Trans
Database Syst (TODS) 24(3):361–404

Caballero J, Yin H, Liang Z, Song D (2007) Polyglot: automatic extraction of protocol message format using
dynamic binary analysis. In: Proceedings of the 14th ACM conference on computer and communications
security, pp 317–329

Cady CJ (2017) A tree locality-sensitive hash for secure software testing. Tech. rep. Air Force Institute of
Technology

Comparetti PM, Wondracek G, Kruegel C, Kirda E (2009) Prospex: protocol specification extraction. In:
2009 30th IEEE symposium on security and privacy. IEEE, pp 110–125

De Ruiter J, Poll E (2015) Protocol state fuzzing of TLS implementations. In: 24th USENIX security
symposium, pp 193–206

Dinesh S, Burow N, Xu D, Payer M (2020) Retrowrite: statically instrumenting COTS binaries for fuzzing
and sanitization. In: 2020 IEEE symposium on security and privacy (SP). IEEE, pp 1497–1511

Duchene J, Le Guernic C, Alata E, Nicomette V, Kaâniche M (2018) State of the art of network protocol
reverse engineering tools. J Comput Virol Hacking Tech 14(1):53–68

Duck GJ, Gao X, Roychoudhury A (2020) Binary rewriting without control flow recovery. In: Proceedings of
the 41st ACM SIGPLAN conference on programming language design and implementation, pp 151–163

Feng X, Sun R, Zhu X, Xue M, Wen S, Liu D, Nepal S, Xiang Y (2021) Snipuzz: black-box fuzzing of IoT
firmware via message snippet inference. In: ACM conference on computer and communications security

Fiterau-Brostean P, Jonsson B, Merget R, de Ruiter J, Sagonas K, Somorovsky J (2020) Analysis of DTLS
implementations using protocol state fuzzing. In: 29th USENIX security symposium

Google Inc (2021) OSS-Fuzz: continuous fuzzing for open source software. https://github.com/google/
oss-fuzz. (Online; Accessed 10 Jan 2021)

Guo M, Wang G, Hata H, Babar MA (2021) Revenue maximizing markets for zero-day exploits. Auton
Agent Multi-Agent Syst 35(2):1–29

Harman M, O’Hearn P (2018) From start-ups to scale-ups: opportunities and open problems for static and
dynamic program analysis. In: 2018 IEEE 18th international working conference on source code analysis
and manipulation (SCAM). IEEE, pp 1–23

Hawkes B (2019) 0day “In the Wild”. https://googleprojectzero.blogspot.com/p/0day.html, (Online;
Accessed 10 Jan 2021)

Holzmann GJ, Lieberman WS (1991) Design and validation of computer protocols, vol 512. Prentice Hall,
Englewood Cliffs

Jafari O, Maurya P, Nagarkar P, Islam KM, Crushev C (2021) A survey on locality sensitive hashing
algorithms and their applications. arXiv:210208942

Kleber S, Kopp H, Kargl F (2018) NEMESYS: network Message syntax reverse engineering by analysis
of the intrinsic structure of individual messages. In: 12th USENIX workshop on offensive technologies
(WOOT)

Klees G, Ruef A, Cooper B,Wei S, HicksM (2018) Evaluating fuzz testing. In: ACM conference on computer
and communications security, pp 2123–2138

Korczynski D, Korczynski A (2021) Fuzzing 100+ open source projects with OSS-Fuzz—lessons learned.
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz. (Online; Accessed 10 Jan
2021)

Li J, Li S, Gang S, Chen T, Yu H (2022) SNPSFUzzer: a fast greybox fuzzer for stateful network protocols
using snapshots. arXiv:220203643

Liu D, Pham VT, Ernst G, Murray T, Rubinstein BI (2021) State selection algorithms and their impact on
the performance of stateful network protocol fuzzing. arXiv:211215498

http://arxiv.org/abs/220402545
https://beyondsecurity.com/solutions/bestorm.html
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://googleprojectzero.blogspot.com/p/0day.html
http://arxiv.org/abs/210208942
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
http://arxiv.org/abs/220203643
http://arxiv.org/abs/211215498

Empir Software Eng (2022) 27:191 Page 31 of 31 191

Manès VJM, Han H, Han C, Cha SK, Egele M, Schwartz EJ, WooM (2019) The art, science, and engineering
of fuzzing: a survey. IEEE Trans Softw Eng

Metzman J, Szekeres L, Simon L, Sprabery R, Arya A (2021) Fuzzbench: an open fuzzer benchmarking
platform and service. In: Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering, pp 1393–1403

Natella R, Pham VT (2021) Profuzzbench: a benchmark for stateful protocol fuzzing. In: Proceedings
of the 30th ACM SIGSOFT international symposium on software testing and analysis, pp 662–665.
https://doi.org/10.1145/3460319.3469077

Nick vs Networking (2019) Kamailio bytes—stateless SIP proxy. https://nickvsnetworking.com/
kamailio-bytes-stateless-sip-proxy/

Oliver J, Cheng C, Chen Y (2013) TLSH—a locality sensitive hash. In: 2013 Fourth cybercrime and
trustworthy computing workshop. IEEE, pp 7–13

O’Neill PH (2021) 2021 has broken the record for zero-day hacking attacks. https://www.technologyreview.
com/2021/09/23/1036140/2021-record-zero-day-hacks-reasons/. (Online; Accessed 23 Sep 2021)

Pham VT, Böhme M, Roychoudhury A (2020) AFLNET: a greybox fuzzer for network protocols. In:
International conference on software testing, verification and validation (testing tools track)

Poll E, De Ruiter J, Schubert A (2015) Protocol state machines and session languages: specification,
implementation, and security flaws. In: 2015 IEEE security and privacy workshops. IEEE, pp 125–133

Rapid7 (2020) Metasploit vulnerability & exploit database. https://www.rapid7.com/db/?q=fuzzer&
type=metasploit, (Online; Accessed 10 Dec 2020)

Serebryany K (2017) OSS-Fuzz—Google’s continuous fuzzing service for open source software (invited
talk). In: USENIX Security symposium

Serebryany K, Buka V, Morehouse M (2017) Structure-aware fuzzing. https://llvm.org/devmtg/2017-10/
slides/Serebryany-Structure-awarezing

Somorovsky J (2016) Systematic fuzzing and testing of tls libraries. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pp 1492–1504

Synopsis Inc (2020) Defensics fuzz testing. https://www.synopsys.com/software-integrity/security-testing/
fuzz-testing.html. (Online; Accessed 10 Dec 2020)

Wheeler DA (2020) How to prevent the next heartbleed. https://dwheeler.com/essays/heartbleed.html.
(Online; Accessed 07 Nov 2022)

Zalewski M (2021) American fuzzy lop. https://lcamtuf.coredump.cx/afl/. (Online; Accessed 08 Jan 2021)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/3460319.3469077
https://nickvsnetworking.com/kamailio-bytes-stateless-sip-proxy/
https://nickvsnetworking.com/kamailio-bytes-stateless-sip-proxy/
https://www.technologyreview.com/2021/09/23/1036140/2021-record-zero-da y-hacks-reasons/
https://www.technologyreview.com/2021/09/23/1036140/2021-record-zero-da y-hacks-reasons/
https://www.rapid7.com/db/?q=fuzzer&type=metasploit
https://www.rapid7.com/db/?q=fuzzer&type=metasploit
https://llvm.org/devmtg/2017-10/slides/Serebryany-Structure-awarezing
https://llvm.org/devmtg/2017-10/slides/Serebryany-Structure-awarezing
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://dwheeler.com/essays/heartbleed.html
https://lcamtuf.coredump.cx/afl/

	StateAFL: Greybox fuzzing for stateful network servers
	Abstract
	Introduction
	Related Work
	Proposed Approach
	Instrumentation Probes
	Post-execution Analysis
	Implementation

	Experimental Plan
	Experimental Results
	Coverage and Vulnerabilities
	Protocol State Inference
	Performance

	Conclusion
	References

