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Wood flour particleboards (WFP), like other wood-based items, require the addition of fire retardants (FRs) to reduce their high
flammability. In this work, a waste lignosulfonate (CaLS) from paper mill is used as a low-cost FR to reduce WFP flammability.
CaLS is purified by dialysis and the dialysed lignosulfonate (LD) is used, alone or combined with ammonium polyphosphate
(APP), as a FR additive in the preparation of urea-formaldehyde WFP. The fire behaviour of the modified WEPs is studied
by cone calorimetry. The use of 15wt.% LD reduces the peak of heat release rate (HRR) and total smoke production by 25%,
also increasing char formation. HRR peak is further reduced up to 40%, if APP is introduced in the formulation. This work
discloses a viable and cost-effective strategy for improving the fire retardancy performance of WEP by partial replacement of

a commercial FR with a fully renewable additive, isolated through a green and cost-effective process.

1. Introduction

Lignocellulosic biomass is the most abundant renewable
material and is widely employed for industrial and agricul-
tural purposes. Its use involves the production of a great
amount of lignocellulosic waste that is usually landfill dis-
posed or burnt as an energy source. A non-negligible portion
of this byproduct comes from pulp and paper mills and
bioethanol production [1].

In particular, pulp and paper industry produces lignosul-
fonates (LS) through sulphite process, in which lignin is
removed from wood chips by means of sulphite salts to iso-
late almost pure cellulose fibers [2]. The sulphite treatment
involves the cleavage of ether linkages between the phenyl-
propanoid moieties, and the introduction of sulfonic acid

groups on the aliphatic chains of lignin, resulting in the for-
mation of water soluble and surface-active LS [3]. The latter
are used as dispersants [4], emulsion stabilizers [5], flocculat-
ing agents [6], and source of low-molecular weight aromatic
chemicals [7, 8]. Alongside these applications, waste LS have
been applied as reinforcing filler or additive in polymer com-
posites and related materials, providing benefits in terms of
production costs, potential biodegradability, and reinforce-
ment features [9-12]. However, notwithstanding these appli-
cations, only 1% of the lignosulfonates produced all over the
world are used. Therefore, new routes for the exploitation of
these coproducts are desirable [3].

Another research approach that has been preliminarily
investigated deals with the use of lignins and lignosulfonates
as fire retardant (FR) charring additives. One of the most
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common methods to increase fire resistance of highly flam-
mable materials consists in the incorporation of FRs, i.e.,
additives able to interfere with combustion [13]. The use of
FRs was reported in thermoplastic polymers [14, 15] as well
as in wood [16, 17] and wood-based products such as parti-
cleboards and fiberboards [18-20]. Most FRs are inorganic,
halogenated, or phosphorous compounds, such as hexabro-
mocyclododecane or ammonium polyphosphate (APP).
They are usually effective as flame suppressors, but they also
show high toxicity, as in the case of halogenated FRs, or
other remarkable drawbacks related to their preparation.
APP is considered one of the most sustainable commercial
FRs, due to its low toxicity. However, its synthesis involves
harmful chemicals such as phosphorous pentoxide, which
is difficult to handle [21]. Moreover, the use of FRs leads
to a cost increase of the final product. On the other side,
LS, similarly to other lignins, are potential substitutes of
commercial FRs due to their renewable character, high car-
bon content, and aromatic structure. The last two features
allow to reduce the combustion rate during a fire, promoting
the formation of an insulating char that preserve the mate-
rial from further burning [22-24]. Such effect was evidenced
in fire tests performed on lignin-modified polypropylene/-
wood composites [25]. In addition, LS are easily available
on a large scale and cost-effective when compared to com-
mercial FRs, e.g., calcium LS is about five times cheaper than
APP [26].

The high charring tendency of lignins during combustion
[27] make them potential substitutes of traditional fire sup-
pressors. Their use in this field dates back to the eighties
[28]; however, over the years, much more interest has been
devoted to lignin rather than lignosulfonates, and the poten-
tiality of the latter in fire retardancy has not been fully
explored yet. In addition, although the published works
report an improvement in flame suppression properties, the
applicability of the proposed methods remains hampered
by the difficult procedures for preparing samples. Indeed,
the most typical are based on layer-by-layer deposition of lig-
nin on the polymeric substrates [9] or its chemical modifica-
tion [29, 30]. Based on these issues, nowadays, the attention
has been moving towards the use of nonmodified lignins in
order to reduce both the amount of chemicals and the cost
of the additive [31].

Following this path, in this work calcium LS (CaLS) was
purified and used as an additive in wood flour particleboards
(WEFP) bound with urea-formaldehyde (UF) resin. The aim
of the paper is to isolate the lignin component of CaLS by a
simple and green procedure and to directly test it as a fire
suppressor to improve the fire performances of the WFP in
a technologically feasible and cost-effective way. Raw CaLS
was purified through dialysis against water, affording a
carbohydrate-free dialysed lignin (LD). Then, the effect of
LD was evaluated by analysing fire performance, thermal
degradation behaviour, and mechanical properties of the pre-
pared composites. For the sake of comparison, samples mod-
ified with the commercial fire retardant APP, as well as with
both APP and LD, were characterized. The main properties
of the obtained composites were analysed in the perspective
of using them in furniture or green building applications.
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2. Materials and Methods

2.1. Materials. CaLS was kindly provided by the Burgo
Group, Italy. Wood flour (WF) (particle size <400 wpm)
and urea-formaldehyde (UF) resin QI110T were provided
from Beologic, Belgium, and KRONOSPAN Chemicals,
respectively. Fire retardant Exolit AP 420 aqueous solution
(45wt.% solid content of a short-chain ammonium poly-
phosphate (APP)) was purchased from Clariant. Milli-Q
water was used to perform the dialysis of CaLS solutions.
Concentrated sulfuric acid (95-98%) was purchased from
Sigma-Aldrich.

2.2. Lignosulfonates Purification and Characterization

2.2.1. Dialysis. CaLS was submitted to filtration and dialysis
to remove hemicelluloses, simple sugars, and inorganic con-
taminants from the feedstock. Dialysis was performed using
the Spectra/Por 3 tubes of regenerated cellulose with a molec-
ular mass cut-off of 3.5kDa, 29 mm diameter, and 45 mm flat
width. CaLS aqueous solution at 10 wt.% concentration was
filtered on paper (porosity 1-11 ym), and the brown, cloudy
filtrate was dialysed against water for 12 h. After the dialysis,
the solution was evaporated to dryness under reduced pres-
sure, at 80°C. The obtained product, referred to as LD, was
turther oven-dried under vacuum at 60°C.

2.2.2. Chemical Characterization. Solid-state >°C CP MAS-
NMR characterization was performed on CaLS and LD. Mea-
surements were carried out using a Bruker Avance II 400
spectrometer operating at 100.47 MHz. Samples were spun
at 10kHz in 4 mm zirconium oxide rotors. Spectra were col-
lected using a single pulse excitation sequence with a '*C 90°
pulse width of 3.2 s, a recycle delay of 25, and a contact time
of 2ms by averaging 16,384 scans.

The dialysate was analysed before and after acid hydroly-
sis with H,SO, [32] by a Thermo Scientific Dionex Ultimate
3000 High-Performance Liquid Chromatography (HPLC)
device equipped with an Aminex Bio-Rad HPX87H column
and a refractive index detector.

2.2.3. Thermal Analysis. Thermogravimetric investigation
(TGA) was carried out by means of a PerkinElmer Pyris
Diamond TG/SDTA thermobalance with alumina pans
using about 5+ 0.5mg of CaLS or LD. Measurements were
carried out in nitrogen atmosphere under a flow rate of
30mLmin~'. Each sample was analysed according to the
following thermal program: heating from 30 to 90°C at
10°Cmin”", isotherm at 90°C for 20 min, and heating from
90 to 500°C at 10°C min™". A temperature of 5% weight loss
(T'sy,), temperature of maximum decomposition rate (T, ),
and char yield at 500°C (Charg,,..) were measured. Tests
were carried out in duplicate.

2.3. Particleboard Preparation and Characterization

2.3.1. Particleboard Preparation. Particleboards were pre-
pared using WF as filler, UF resin as binder, and LD and
APP as FR additives. UF was used at 15wt.% with respect
to the total solid amount (150 g). First, WF was soaked in
about 380¢g of water. Then UF, LD, and APP were added,
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and the sludge was vigorously stirred in order to homogenize
it. The prepared formulations were poured in vessels and
evaporated in an oven at 60°C overnight. Next, the samples
were ground, sieved (using a sieve of 500 ym porosity), and
vacuum-dried in oven at 50°C for 1 h. Finally, particleboards
were obtained through compression moulding by means of a
Cortazar Especial platen press. The compounds were pre-
heated for 1 min at 220°C, then pressed for 3 min at 100 bar,
and cooled down to room temperature. The particleboard
codes and compositions on a dry basis are reported in
Table 1.

2.3.2. Mechanical Tests. Flexural tests were performed on
7.00 x 0.50 x 1.00 cm® specimens cut from the particleboard
plates by means of an Instron model 4505 dynamometer, at a
deformation speed of 1 mm min "' with a span of 48 mm. Four
specimens were used for each formulation.

2.3.3. Thermal Analysis. TGA investigation was carried out
on particleboards by means of a Mettler-Toledo TG-SDTA
851 thermobalance equipped with a differential thermal ana-
lyser, using alumina pans under nitrogen flow (35 mL min™").
After a rapid heating from 25 to 100°C at 20°Cmin™" to
remove absorbed moisture, the samples were kept in isother-
mal conditions for 30 min and then heated up to 700°C at
10°Cmin"". The weight of each sample was kept within 7 +
1 mg. A temperature of 5% weight loss (T's,), temperature
of maximum decomposition rate (T,,,,), and char yield at
700°C (Char..) were measured.

max

2.3.4. Cone Calorimeter Tests. The particleboards (density
around 0.6gcm™) were cut to obtain 10x 10 x 0.5cm’
plates. All the plates were stored in a conditioning chamber
at 23°C and 48% relative humidity for a week before being
tested. Combustion experiments were performed on the
plates by means of a cone calorimeter (Fire Testing Technol-
ogy, FTT), at an incident heat flux of 35kW m™ and a dis-
tance of 25mm from the heater. The experiments were
carried out in an 800s time span. Heat release rate (HRR,
kW m™), total heat release (THR, MJ m™2), mass loss (ML,
%), total smoke production (TSP, m?), and specific extinction
area (SEA, m” kg'') were measured. All tests were performed
in triplicate and in accordance with ISO 5660-1:2002.

3. Results and Discussion

3.1. Purification and Characterization of Lignosulfonates.
Characterization of CaLS was performed by SEM (see Fig. S1
in Supplementary Materials) and '?C CP MAS-NMR spec-
troscopy. NMR spectra are reported in Figure 1(a), while res-
onance assignments and a detailed discussion of NMR signals
are provided in Supplementary Materials (see Table S1 and
chemical analysis of lignosulfonates). From Figure 1(a),
CaLS spectrum (blue trace) shows resonances ascribed to
the main lignocellulosic macromolecular components,
namely, lignin and hemicellulose polysaccharides. In order
to remove the polysaccharide contaminant, CalS was
submitted to dialysis against water. The spectrum of the
dialysed sample (LD) (Figure 1(a), red trace) exhibits only
the typical signals of lignin materials. Resonances centred at

3
TaBLE 1: Particleboard codes and compositions (wt.%).

Sample WF APP LD
WF100 100 — —
WEF95-LD5 95 — 5
WE85-LD15 85 — 15
WE95-APP5 95 5 —
WE85-APP5-LD10 85 5 10

72, 94, and 177ppm, relative to the sugar units of
hemicellulose and certain lignin structures are almost
absent. This feature confirms the successful removal of the
polysaccharide fraction along with some lower molecular
weight sulfonated lignin fragments.

3C CP MAS-NMR analysis evidences that, upon dialysis,
a remarkable amount of contaminants is removed from the
feedstock. This outcome is in agreement with the significant
weight drop (around 50 wt.%) recorded after purification.

The dialysate, before and after acid hydrolysis, was ana-
lysed through HPLC in order to assess the chemical compo-
sition of the carbohydrate fraction removed from CaLS.
Most of the products present in the dialysate were cyclic
monosaccharides, mainly a fraction of xylose, mannose, and
galactose (XMG) and a minor part of arabinose and glucose
(Table S2 in Supplementary Materials). Therefore, HPLC
data demonstrated that the contaminating carbohydrates
present in CaLS were in a form of oligo/monosaccharides,
typically belonging to hemicelluloses. Then, dialysis treatment
allowed to efficiently remove hemicellulose sugars from the
lignosulfonate, yielding an almost pure lignin.

The thermodegradative behaviour of CaLS and LD was
investigated through TGA. The thermograms and the DTG
curves are shown in Figure 1(b) while the average thermal
data are reported in Table 2. The TGA plot of plain CaLS
shows three weight loss steps (100-160°C, 160-250°C, and
250-500°C temperature ranges), corresponding to different
thermodegradative phenomena. On the basis of literature
evidences [3, 33], the first weight drop can be attributed to
the loss of adsorbed water; the second to the evolution of
CO, CO,, SO,, and water due to dehydration reactions from
hemicellulose and aliphatic lignin chains; and the third to the
formation of CO and CO, due to the decomposition of the
aromatic skeleton of lignin. As observed in literature, gener-
ally, the main mass loss stage for lignosulfonates occurs
between 190 and 360°C [34]. At higher temperatures, cross-
linking between degraded products takes place, giving rise
to the formation of a carbonaceous char.

The thermogram relative to LD is characterized by a
Tsy equal to 241°C, which is remarkably higher than that
of CaLS (186°C). Moreover, the curve shows a single weight
loss step, with a T, of 304°C that corresponds to the third
mass loss step of CaLS (T',,.; 300°C). The lack of the low-
temperature decomposition stages, between 100 and 250°C,
further confirms the effective removal of oligo/monosac-
charides in the sample after dialysis. Therefore, TGA out-
comes are in agreement with '*C CP MAS-NMR and
HPLC analyses that demonstrate that CaLS contains a rele-
vant amount of hemicellulose components alongside the
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Figures 1: (a) 1*C CP MAS-NMR spectra of CaLS and LD. (b) TGA and DTG curves of CaLS and LD.

TaBLE 2: Thermal data of CaLS and LD measured through TGA.

TABLE 3: Main flexural properties of WFP.

° Tmaxl TmaxZ Tmax3 Charsoo°c
Sample Ts, (°C) Re RS o) (%)
CalS 186+3.2 133+3.3 200+£3.5 300+4.2 51+1.2
LD 241 +2.4 — — 304+3.8 61+1.0

lignin fraction. Moreover, TGA analysis shows that, through
purification, the thermodegradative stability of the dialysed
lignosulfonate is improved in a remarkable way. This finding
is noteworthy for applications where good thermal perfor-
mances are required.

3.2. Mechanical Properties and Morphological Analysis of
WEFP. Mechanical properties of the prepared WEP were
evaluated by flexural tests. Table 3 lists modulus (Ef) and
strength (o) values measured through flexural experiments,

while Fig. S2 in Supplementary Materials shows the SEM
micrographs of the fracture surfaces after failure upon
mechanical testing.

Compared to the plain particleboard, the samples con-
taining solely LD show a decrease of both the flexural param-
eters. This outcome can be related to the lack of chemical
interaction between the LD and the urea-formaldehyde resin
used as binder in the particleboards. The reactivity of the
binder towards LD depends on the presence, in the phenyl-
propanoid units of lignin, of free ortho positions close to
nonetherified phenolic moieties [35]. The measurement of
phenolic hydroxyl content in LD, performed by ultraviolet
difference spectroscopy [36], showed a concentration below
1 wt.% (details in Supplementary Materials, UV spectroscopy
of LD, Fig. S3). This value is low if compared to other lignin
products [37, 38] and is a hint of low reactivity. As a conse-
quence, LD behaves as an inert or deteriorating agent
towards the UF resin. A similar effect was reported for
another urea-formaldehyde system modified with lignosulfo-

Sample E; (MPa) of (MPa)
WE 100 146 + 35 0.50+0.21
WEF95-LD5 115+ 39 0.36 £ 0.07
WE85-LD15 36+9 0.13+£0.02
WE85-APP5-LD10 121 £ 28 0.49 £ 0.09
WEF95-APP5 233+ 72 0.88+0.16

nates [39]. Conversely, an improvement in mechanical
performances was recorded for the WF95-APP5 composite,
which was modified with APP. The enhancement was
detected on modulus and strength as well, and it can be
attributed to the reinforcing action of APP towards UF resin
due to the good physical interactions between the two com-
ponents [40]. The good compatibility between APP and UF
resin has also been used in other FR formulations [41].

Finally, the WF85-APP5-LD10 sample, containing both
lignosulfonates and APP, shows no variation or only a slight
decrease of the flexural parameters with respect to the plain
WEP. These results are probably related to the presence of
the APP additive that partly compensates the detrimental
action of the lignin component.

3.3. Thermal Analysis and Fire Behaviour of WFP. The ther-
modegradative behaviour of WFP was assessed through TGA
measurements performed in nitrogen. The TGA curves,
along with the DTG graphs, are reported in Figure 2, while
thermal parameters are listed in Table 4.

From TGA curves, plain WEP exhibited a single-step
weight loss (Figure 2(a)) with a T, of 260°C, a T, equal
to 366°C, and a Char, ;. of 22%. The addition of LD to the
particleboards produced nearly no effect on the thermal
parameters. As for the APP-based specimens, both of them
exhibit a small peak in their DTG curves below 200°C, related
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F1GURE 2: (a) TGA and (b) DTG curves of WFP.

TaBLE 4: Thermal data of WFP measured through TGA.

Sample T4, (CC) T CC) Char,q.c (%)
WF100 260 366 22
WF95-LD5 257 368 23
WEF85-LD15 262 367 25
WEF95-APP5 220 306 32
WE85-APP5-LD10 225 306 35

to the decomposition of thermally unstable structural groups
of APP [42], followed by the main degradative phenomenon.
The WF95-APP5 particleboard showed a T's,, 0f 220°C and a
T hax €qual to 306°C. These values appeared to be much lower
if compared to the WF100 sample. Such a result was ascribed
to a noticeable decrease in thermal resistance of the material
that can be related to the decomposition of APP. Conversely,
the char-forming capability of the WF95-APP5 particleboard
resulted considerably higher, with a Char,,. equal to 32%.
WE85-APP5-LD10 showed a moderate increase of Tgg,
(225°C) and char yield (35%) comparable to the composite
modified with only APP.

The efficiency of LD as a FR, alone or along with the
commercial fire retardant APP, was studied by cone calo-
rimeter tests on WFP. The selection of the thermal attack
used in the analysis is a critical point in the research on fire
retardancy [43]. In this work, an average value (35 kW m)
with respect to those typically used in this kind of studies
was chosen, according to ISO/TS 5660-3:2012. Figure 3
shows the visual appearance of some of the particleboards
prior to the cone calorimeter tests (a) and after the combus-
tion process (b).

Prior to the test, the samples appeared as compact and
sufficiently homogeneous plates. By a visual examination,

the reference WF100 and the lignosulfonate-modified parti-
cleboards were brittle and dusty, while the samples contain-
ing APP were more compact and stiffer, with a more
brilliant colour than the others. After the combustion tests,
WEF100 and particleboards filled with LD showed a carbon-
ized aspect with several cracks and no morphological differ-
ences were noticed. Conversely, the fire-retarded samples
filled with APP appeared black, solid, and characterized by
a thick and compact structure.

The main average cone calorimeter test results are
reported in Table 5, while Figure 4 shows the heat release rate
(HRR), the total heat release (THR), and the total smoke pro-
duction (TSP) as a function of combustion time.

HRR is one of the most important parameters for the
characterization of material flame performance because it
expresses the intensity of a fire. Typically, wood burns
according to the HRR curves shown in Figure 4(a). After an
initial heating induction time, a first peak is detected. It is
related to ignition which consists in heating the sample in
order to generate the emission of pyrolytic gases that are
ignited by an external spark. Combustion starts with heat
production and further emission of pyrolytic gases for ongo-
ing sustenance of combustion. After this first stage, an insu-
lating char layer forms on the surface of the material that
prevents the evolution of volatiles so the combustion process
slows down. The second peak of the graphs is generated by
the breakage of the insulating layer that allows the emission
of pyrolytic volatiles. From their combustion, more heat is
generated, and the second HRR peak appears [16]. Two
important features of the plots are ignition time (t;,), which
is the time for the ignition phenomenon to occur, and the
height of the second peak (HRR,,,,). As for the t;,, all the
tested samples were characterized by values in the range of
41-49sec and the effect of the additive resulted negligible.
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FIGURE 3: Photo of some of the prepared WFP, prior to the cone calorimeter test (a) and after combustion (b).

TABLE 5: Average results obtained from cone calorimeter characterization of WFP.

HRR, THR ML TSP SEA
Sample o B 9 2 2101

(kW m™) MJm™) (%) (m?) (m* kg™
WF100 310.8 £11.9 53.2+2.7 914+15 1.8+0.1 44,7 +3.9
WEF95-LD5 268.9 +£47.5 54.7+6.0 93.3+2.3 1.7+£0.3 50.7+5.6
WE85-LD15 230.5+20.4 50.8+2.6 87.3+2.1 1.3+0.1 34.4+10.9
WEF95-APP5 228.0+7.1 41.5+2.9 88.7+2.1 0.5+0.0 14.9+55
WEF85-APP5-LD10 187.6 £11.0 40.0+1.1 83.6+2.2 0.5+0.1 16.2+3.4

HRR,,.,, conversely, is strongly influenced by the composi-
tion of the compound (Table 5). Compared with the refer-
ence WF100, the samples modified solely with LD were
characterized by a decrease in HRR . (Table 5) achieving
a 25% reduction in the case of WF85-LD15. This result
suggests a moderate fire-suppressing effect ascribed to the
LD modifier towards the WEFP. As for the THR graph
(Figure 4(b)) that represents the area below the HRR plot,
it was observed that the addition of LD produced nearly no
effect on THR, with respect to the reference WF100.

Mass loss (ML) is another important parameter obtained
from the cone calorimeter tests. It is related to the char-
forming capability of the material, as the lower the mass loss
the higher the char residue during combustion. As shown in
Table 5, the addition of LD in the formulation produces a
slight effect on ML with respect to the plain WEP.

Smoke performance of fire-retarded materials is a signif-
icant index in fire safety. It is measured by the total smoke
production (TSP) which is reported in Figure 4(c). As it is
evident from Table 5, the particleboard containing 15 wt.%

LD released less smoke during combustion than the refer-
ence. This outcome is positive in terms of fire retardancy.
Most traditional fire retardants, indeed, besides retarding
fire evolution also decrease smoke production. Another
index of the smoke emission is the specific extinction area,
referred as SEA. It is a measure of the smoke yield: the
higher the SEA, the more the amount of smoke emitted
per kg of sample [44]. By comparing the SEA of neat
WF100 with that of LD-modified particleboards, it is
noticed that 15wt.% LD caused a decrease in this parameter
(Table 5).

In order to assess the role of LD in the presence of a
conventional FR, the flame performances of a particleboard
sample containing 10% LD and 5% APP, namely, WF85-
APP5-LD10, was investigated through a cone calorimeter.
Therefore, the combined effect of LD and APP was studied.
For comparison, a sample containing solely 5% of APP was
also tested. The fire behaviour of a particleboard at higher
APP content (15%) was tested as well. Results are reported
in Supplementary Materials, fire behaviour of WEP.
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AsforHRR, . the WF85-APP5-LD10 compositeshowed  venting the development of the combustion and decomposi-

a20% drop compared to its reference WF95-APPS5, resulting
in an overall 40% decrease with respect to WF100. A similar
behaviour was found regarding ML, which is related to the
char-forming capability of the material. In this case, the
addition of solely 5wt.% APP, compared to WF100, pro-
duced only a weak effect on ML. Conversely, the use of
10wt% of LD along with APP in WEF85-APP5-LD10
brought a more pronounced decrease of this parameter
and, consequently, a higher char yield. APP, indeed, when
exposed to a combustion, starts to decompose into poly(pho-
sphoric acid) and ammonia. Poly(phosphoric acid) reacts
with hydroxyl groups to form an unstable phosphate ester.
When the phosphate ester starts to dehydrate, a carbona-
ceous residue forms, thus creating the so-called charring
effect. The carbon foam acts as an insulating layer, thus pre-

tion of the material [14]. This charring mechanism appears
to be more effective when lignosulfonates are introduced in
the formulation along with APP. A similar outcome has been
found by Li et al. [27], who claim that APP acts as a charring
promoter towards lignin which helps the formation of a char
layer [15]. APP, indeed, is able to form char through the
cleavage of lignin C-O bonds, and its decomposition prod-
uct, polyphosphoric acid, catalyses crosslinking reactions
[27]. However, it should be pointed out that this charring
effect can be also attributed to the reaction of C-OH groups
of lignin and polyphosphoric acid moieties produced from
APP during combustion, with the production of phosphoric
esters that improve the char-forming performances [23, 45].

As regards the smoke emission, the TSP and SEA data
(Figure 4(c) and Table 5) evidenced that the addition of



5wt.% APP produced a noticeable drop of both parameters
with respect to WF100 and the LD-modified WEPs. The
introduction of LD along with APP did not result in a further
decrease of the smoke emission indexes.

Overall, a general improvement of LD-modified WEFP fire
performances, with respect to WF100, was evidenced. In
some cases, this effect was enhanced if APP was also intro-
duced into the formulation.

4. Conclusions

In conclusion, a dialysed waste lignosulfonate was used as a
low-cost additive to improve fire behaviour of urea formalde-
hyde WFP. Dialysis proved to be a simple and efficient tech-
nique for the purification of CaLS that allowed to recover a
polysaccharide free LD. The latter, when introduced into
the WFP, showed a fire-retardant activity, by reducing
HRR, THR, and TSP parameters and increasing char forma-
tion. The lignin aromatic component acts as a char former,
which represents a well-known mechanism in fire retardant
additives. Char, indeed, reduces the combustion rate of wood
hindering oxygen diffusion to the burning zone. This fire
behaviour improvement is magnified if a relatively small
amount of APP is added to the particleboard along with
LD. The interaction between the two components is probably
based on the catalytic crosslinking action of APP towards
LD or to the reaction of C-OH groups of lignin and poly-
phosphoric acid moieties produced from APP during com-
bustion. Overall, this work demonstrates that the use of
unmodified lignosulfonate represents an attractive and cost-
effective option to improve fire retardancy of WEP, widely
used in furniture or green building applications.
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