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ABSTRACT
Scheduling Mixed-Criticality (MC) workload is a challenging prob-

lem in real-time computing. Earliest Deadline First Virtual Deadline

(EDF-VD) is one of the most famous scheduling algorithm with op-

timal speedup bound properties. However, when EDF-VD is used

to schedule task sets using a model with additional or relaxed con-

straints, its scheduling properties change. Inspired by an application

of MC to the scheduling of fault tolerant tasks, in this article, we

propose two models for multiple criticality levels: the first is a spe-

cialization of the MC model, and the second is a generalization of

it. We then show, via formal proofs and numerical simulations, that

the former considerably improves the speedup bound of EDF-VD.

Finally, we provide the proofs related to the optimality of the two

models, identifying the need of new scheduling algorithms.
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• Computer systems organization → Embedded software; Real-
time systems; Reliability.
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1 INTRODUCTION
The real-time computing community, since the paper by Vestal

in 2007 [10], researched how to analyze and implement Mixed-

Criticality (MC) systems. Themotivation behind the use ofMC is the

excessive pessimism of the Worst-Case Execution Time (WCET) es-

timations. Indeed, modern computing platforms have complex char-

acteristics (e.g., multi-core, multi-level caches, advanced pipelines)

which make a tight WCET estimation very difficult. Indeed, WCET

analyses, that use the software and hardware descriptions to build

a timing model of the task, cannot cope with such complexity and
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need to introduce several approximations to compute a solution

in a feasible amount of time. These approximations led to very

large and over-estimated WCET. The MC model tries to mitigate

this problem by modeling the WCET of each task as a set of es-

timations performed at different assurance levels, from the most

pessimistic (but safe) to the less pessimistic (but possibly under-

estimated) WCET. This idea comes from the criticality concept of

many safety-critical standards. A criticality level is assigned to

each function of a safety-critical system depending on the level of

safety required (in real-time computing terms, the function can be

mapped to the task concept). For instance, in avionics, the Design

Assurance Levels (DALs) are used to classify the functions, from

A to E. Functions with a DAL of A are the most critical functions,

whose malfunction can have catastrophic consequences, while DAL

E includes all the functions which have no effect on flight safety.

1.1 MC Systems in the Real World
Industrial systems need to satisfy regulations in order to obtain the

certification by the authorities, especially if they are safety-critical

systems. Unfortunately, certifying MC systems is problematic due

to several issues. Focusing on timing, the certifiability of MC sys-

tems exploiting scheduling strategies developed by the scientific

community in the last 15 years is controversial. Indeed, the majority

of MC scheduling algorithms are based on the following concept:

if any task overruns a WCET estimation (for instance, the less pes-

simistic one), all the tasks with lower criticality are killed or are

scheduled with only a best-effort policy, in order to accommodate

the execution requirements of the higher criticality tasks.While this

behavior appears to make sense, it does not comply with most of

the safety-critical standards [6], that instead require all the tasks to

be functional independent [9], regardless of their criticality levels.

Besides timing requirements, standards require a system to meet

well-defined goals of dependability. Due to the intrinsic unreliabil-

ity of hardware components, fault tolerance methods must be taken

into account to satisfy the dependability constraints. Software tech-

niques to detect and recover from hardware faults are attractive

from an industrial perspective because reduce the amount of custom

hardware needed to achieve the dependability goals. However, such

fault tolerance techniques introduce additional challenges for hard

real-time schedulability. We will show that software mechanisms

for fault tolerance and the MC model are closely interrelated.

1.2 State of the Art
The seminal paper on the MC real-time model is the article by

Vestal [10] in 2007. Burns et al. [5] surveyed all the following papers

on the mixed-criticality topic, including the scheduling analyses.

Among them, we recall two scheduling algorithms, i.e., the Own
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Criticality-Based Priorities (OCBP) [3] and the Earliest Deadline

First Virtual Deadlines (EDF-VD) [1]. The latter has been thoroughly

analyzed in a subsequent article by the same authors [2], which

also proved EDF-VD to be speedup optimal for 2 criticality levels,

as later described in Section 2. For this reason, this is also the

main scheduling algorithm considered in this work. Regarding the

certifiability problem, Völp [11], Esper et al. [7], and Ernst et al. [6]

analyzed (and criticized) the MC scheduling theory with a careful

look at the certification process, i.e., the compliance with safety-

critical standards, highlighting the issues previously described in

Section 1.1. In the last years, several approaches tried to solve

the problem by providing graceful degradation [8] or sacrificing

different metrics such as energy instead of killing the tasks [4]. A

recent article [9] proposed to exploit the MC model and theory to

schedule task sets containing fault recovery tasks, claiming that

the approach should comply with safety-critical standards.

1.3 Contributions
In this article, we provide theoretical contributions to the scheduling

of real-time task sets satisfying two novel models, derived from

the traditional MC model and inspired by the MC fault tolerance

challenge proposed by Reghenzani et al. [9]. The first model, named

Mixed-Criticality with IntegerMultipleWCETs (MC-IMW), exploits

a specific derivation of the WCET values. We show that EDF-VD

has better speedup bounds when applied to MC-IMW rather than

a traditional MC. Nonetheless, we prove that EDF-VD remains

speedup optimal for 2 criticality levels. We also run a numerical

simulation to obtain the results when criticality levels are large and

difficult to compute analytically. The second model is, instead, a

generalization of the MC model that uses the Dropping Relation
(DR) concept. In this case, we show that state-of-the-art solutions,

including one based on EDF-VD, are not optimal. These results

make room for the development of novel scheduling algorithms

and strategies.

2 BACKGROUND
An MC system is composed of a set of tasks Γ = {𝜏1, 𝜏2, ..., 𝜏𝑛}. A
task 𝜏𝑖 is an abstract entity representing a program and identified by

the following tuple: (𝑇𝑖 ,𝐶𝑖 , 𝐷𝑖 , 𝜒𝑖 ), where 𝑇𝑖 is the period or inter-

arrival time, 𝐶𝑖 the list of WCETs, 𝐷𝑖 the relative deadline, and 𝜒𝑖
the criticality level. In this article, we focus on implicit deadline task

sets, i.e., 𝐷𝑖 = 𝑇𝑖 for all the tasks. At each period, a new job of each

task is released and must complete its execution by the following

period. The criticality level 𝜒𝑖 ∈ {1, 2, ..., 𝐿} represents the level

of assurance to guarantee for the task, where 1 is the lowest level

(least critical) and 𝐿 the highest (most critical) levels. In MC systems,

conversely to traditional real-time systems, theWCET is not a single

value but a list of 𝜒𝑖 WCET values 𝐶𝑖 = {𝐶𝑖 (1),𝐶𝑖 (2), ...,𝐶𝑖 (𝜒𝑖 )},
estimated at difference assurance levels. Only the highest WCET

value 𝐶𝑖 (𝐿) is guaranteed to not under-estimate the real WCET.

The system, at each time instant, runs in a mode 𝑀 (𝑡) ∈ {1, 2, ..., 𝐿}
with𝑀 (0) = 1. At time 𝑡 , only tasks with 𝜒𝑖 ≥ 𝑀 (𝑡) are admitted

to scheduling, while the others are killed or dropped
1
. When a job

of a task 𝜏𝑖 overruns its current WCET 𝐶𝑖 (𝑀 (𝑡)) and 𝜒𝑖 > 𝑀 (𝑡),

1
In this article, we interchangeably use the terms kill and drop to identify the action

of terminating all the jobs of a task or preventing the release of new jobs of a task.

then the system switches to the next mode 𝑀 (𝑡 + 1) = 𝑀 (𝑡) + 1.

This concept of system mode is the one most criticized for not

complying with safety-critical standards (see Section 1.1).

Utilization. The utilization value represents the execution require-

ment in percentage. In particular, in MC systems:

Definition 2.1 (Task utilization). The utilization of a task 𝜏𝑖 at a

given criticality level ℓ is defined as: 𝑢𝑖 (ℓ) = 𝐶𝑖 (ℓ)
𝑇𝑖

. This value is

well-defined only if ℓ ≤ 𝜒𝑖 .

Definition 2.2 (System utilization). The system utilization at a

given criticality level ℓ is defined as:𝑈𝑖 (ℓ) =
∑
𝜏𝑖 :𝜒𝑖 ≤ℓ 𝑢𝑖 (ℓ).

When the system has only one criticality level, it degenerates to

normal real-time scheduling. In such a case, to verify the schedula-

bility, it is possible to use the test of the optimal scheduling algo-

rithm EDF:𝑈1 (1) ≤ 1.

Scheduling MC task sets. The necessary condition for the schedu-

lability of any MC task set under any scheduling algorithm is [2]:

max

𝑘=1,...,𝐿

𝐿∑︁
ℓ=𝑘

𝑈ℓ (𝑘) ≤ 1 (1)

The rationale is immediate: at any system mode, the set of non-

dropped tasks, with WCET at that criticality level, must be at least

schedulable by considering only that single mode, i.e. the utiliza-

tion must be ≤ 1. This condition is also a sufficient condition for

a clairvoyant scheduling algorithm: if the scheduling algorithm

knows in advance whether the system switches or not to a given

system mode, the algorithm will schedule the tasks active at that

mode according to EDF, and Eq. (1) guarantees schedulability.

Speedup bounds. The Earliest Deadline First (EDF) scheduling
algorithm is able to schedule any MC task set provided that the

system runs on a processor with speedup 𝜎 = 𝐿. More precisely,

EDF would be able to schedule all the MC task sets of criticality

level 𝐿 if the tasks run on a processor 𝐿 times as fast, i.e., the

original values 𝐶𝑖 ( 𝑗) become 𝐶∗
𝑖
( 𝑗) = 𝐶𝑖 ( 𝑗)/𝐿. Instead, an optimal

scheduling algorithm would be able to schedule all the schedulable

task sets satisfying Eq. (1) with 𝜎 = 1. It has been proved that an

optimal non-clairvoyant scheduling algorithm for MC systems does

not exist [2]. For this reason, researchers introduced the concept of

speedup optimal.

Definition 2.3 (Speedup Optimal Scheduling Algorithm). An MC

scheduling algorithm is said speedup optimal if it is able to schedule
all the schedulable task sets according to Eq. (1) with a processor

having speedup 𝜎 = 𝜎 and no other non-clairvoyant scheduling

algorithm with 𝜎 = 𝜎 ′ < 𝜎 exists.

EDF-VD. EDF-VD [1] is a speedup optimal scheduling algorithm

for a generic MC task set with 2 criticality levels. If the task set

has implicit deadlines, the speedup bound is 𝜎 = 4

3
for 2 criticality

levels. EDF-VD works in a 2-criticality system as follows:

(1) A scaling parameter _ < 1 is computed as _ =
𝑈2 (1)

1−𝑈1 (1) .
(2) Tasks are scheduled with EDF, however, tasks of criticality

level 2 are scheduled according to a modified deadline, i.e.,

𝐷𝑖 = _ · 𝐷𝑖 . This new virtual deadline gives them a higher

priority than they would have had.
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(3) If any 2-level task overruns its𝐶𝑖 (1), then the system switches

to higher mode, and EDF schedules only 2-level tasks accord-

ing to their unmodified deadlines 𝐷𝑖 .

For an arbitrary number of criticality levels, the scheduling algo-

rithm is similar, with the exception that multiple system mode

switches can occur. The article of Baruah et al. [2] provides all the

details of the scheduling algorithm in such a case, including how

to compute _ when 𝐿 > 2.

2.1 Fault Tolerance via Re-Execution
The re-executionmechanism is a fault recovery technique that deals

mainly with transient faults, for instance, bit flips. This mechanism

works as follows: the job execution is monitored via appropriate

fault detection algorithms (such as control-flow-graph signatures,

acceptance tests, plausibility checks, etc.); if a transient fault is

detected, then the job is restarted to re-perform the same compu-

tation
2
. From a real-time perspective, the fault is detected, in the

worst-case, at the end of the computation, i.e., after 𝐶𝑖 time units.

After the job restart, the job can run for other 𝐶𝑖 time units, and if

another fault occurs, the job has to execute for other 𝐶𝑖 time units,

and so on. The maximum number of allowed re-executions depends

on the failure requirements for the specific tasks, which are usually

mapped to the criticality level and certification requirements.

3 MIXED-CRITICALITY WITH INTEGER
MULTIPLE WCETS MODEL

In this section, we propose a specialization of the MC traditional

model: the Mixed-Criticality with Integer Multiple WCETs (MC-

IMW) model. The model is identical with the MC model but the

WCET values cannot be freely chosen. Indeed, the WCET values

must be multiples of the lowest-criticality WCET and the number

of the criticality level. For instance, if 𝐶𝑖 (1) = 10, then 𝐶𝑖 (2) = 20,

𝐶𝑖 (3) = 30, and so on. Therefore, this model adds the constraint

𝐶𝑖 (𝑘) = 𝑘 ·𝐶𝑖 (1) for all 𝑘 ∈ 1, ..., 𝜒𝑖 . Note that the computation of

𝐶𝑖 (𝑘) can also be performed in the opposite direction: let us assume

that a task 𝜏𝑖 with criticality level 𝜒𝑖 = 3, for which we have a

pessimistic estimation of the WCET 𝐶𝑖 (3). We can then compute

𝐶𝑖 (2) and 𝐶𝑖 (1) by properly scaling 𝐶𝑖 (3), i.e., 𝐶𝑖 (2) = 𝐶𝑖 (3) · 2/3

and 𝐶𝑖 (1) = 𝐶𝑖 (3)/3. The constraints 𝐶𝑖 (𝑘) = 𝑘 ·𝐶𝑖 (1) of the MC-

IMW model allows us to rewrite the task and system utilizations:

𝑢𝑖 (𝑘) =
𝑐𝑖 (𝑘)
𝑇𝑖

= 𝑘
𝑐𝑖 (1)
𝑇𝑖

(2)

𝑈𝑖 (𝑘) =
∑︁

𝜏 𝑗 :𝜒 𝑗=𝑖

𝑢 𝑗 (𝑘) =
∑︁

𝜏 𝑗 :𝜒 𝑗=𝑖

𝑘𝑢 𝑗 (1)

= 𝑘
∑︁

𝜏 𝑗 :𝜒 𝑗=𝑖

𝑢 𝑗 (1) = 𝑘𝑈𝑖 (1)
(3)

This rewriting of the system utilization with the integer multiple

version allows us, in the following sections, to simplify the analyti-

cal calculus and improve the EDF-VD speedup bound.

Previous articles left unspecified the engineering process to de-

termine the exact values for the WCET computed at different criti-

cality levels. MC-IWM enforces this choice and perfectly fits fault

2
This mechanism, to correctly work, requires several assumptions, for instance, that

the fault must not affect the input data or persistent data that are not recomputed by

the job itself. However, this discussion is outside the scope of this paper.

tolerance systems running re-execution tasks as fault recovery

mechanisms, previously explained in Section 2.1. Indeed, 𝐶𝑖 is the

WCET of the single computation including all the overheads. When

re-executions occur, the total time is 2𝐶𝑖 , then 3𝐶𝑖 , etc. In this sce-

nario, 𝜒𝑖 represents the maximum number of restarts possible or,

in other words, the number of faults to tolerate.

Because the MC-IMWmodel is a specialization of the MC model,

EDF-VD can schedule MC-IMW task sets. However, its speedup

bounds need to be revised. We will show that EDF-VD improves its

speedup bounds and remains optimal for 𝐿 = 2.

3.1 Analytical bound for EDF-VD(2)
In a traditional MC model, EDF-VD(2) has a speedup bound of

𝜎 = 4

3
[2, Theorem 3.8]. By following the original proof of this

theorem, we prove the following:

Theorem 3.1. In a MC-IMW system with 2 criticality levels, any
task set Γ satisfying Eq. (1) is schedulable by EDF-VD on a processor
of speed 𝜎 = 1

2
(1 + 𝜙) ≈ 1.309, where 𝜙 is the golden ratio.

Proof. The schedulability condition of EDF-VD is [2, Eq. (3)]:

𝑈2 (1)
1 −𝑈1 (1)

≤ 1 −𝑈2 (2)
𝑈1 (1)

(4)

According to Eq. (3), we can rewrite this equation by replacing

𝑈2 (2) with 2𝑈2 (1). In addition, let us assume we have a processor

of speed 𝜎 ≥ 1 and replace the corresponding 𝑈𝑖 ( 𝑗) with
𝑈 ∗
𝑖 ( 𝑗)
𝜎 to

obtain:

𝑈 ∗
2
(1)

𝜎 −𝑈 ∗
1
(1) ≤

𝜎 − 2𝑈 ∗
2
(1)

𝑈 ∗
1
(1) (5)

To prove the claim, we find the largest
1

𝜎 such that the inequality

holds, and 𝜎 will be our speedup bound. EDF-VD must be able

to schedule all the schedulable task sets, i.e., satisfying Eq. (1), by

considering a processor of speed 𝜎 :

𝑈1 (1) +𝑈2 (1) ≤
1

𝜎
⇐⇒ 𝑈 ∗

1
(1)+𝑈 ∗

2
(1) ≤ 1 (6)

2𝑈2 (1) ≤
1

𝜎
⇐⇒ 2𝑈 ∗

2
(1) ≤ 1 (7)

The tightest situation condition occurs when equal signs in Eq. (6)

and Eq. (7) hold, i.e., when 𝑈 ∗
1
(1) = 𝑈 ∗

2
(1) = 1/2: 𝑈 ∗

2
(1) appears

in the numerator with the negative sign on the right-hand side,

and with the positive sign on the left-hand side; vice versa, 𝑈 ∗
1
(1)

appears in the denominator with the positive sign on the right-hand

side, and with the negative sign on the left-hand side. By replacing

these limits into Eq. (5), we obtain:

𝜎2 − 3

2

𝜎 + 1

4

→ 𝜎 =
3 ±

√
5

4

(8)

We exclude the solution with the negative sign because we defined

𝜎 ≥ 1, therefore 𝜎 =
3+

√
5

4
= 1

2
(1 + 𝜙). □

This result shows that, with the introduced restriction on the

WCET of the MC-IMW model, the speedup bound for 2 criticality

levels slightly improves from
4

3
down to

1

2
(1 + 𝜙). The new bound

implicitly violates the speedup-optimality theorem [2, Theorem

3.12], which states that a non-clairvoyant scheduling algorithm

with a speedup factor lower than
4

3
cannot exist. We will later show

in Section 3.4 that EDF-VD(2) is still optimal.
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3.2 Analytical bound for EDF-VD(3)
In a traditional MC model, EDF-VD(3) has a speedup bound of

𝜎 = 2 [2, Theorem 3.9]. We prove the following for MC-IMW:

Theorem 3.2. In a MC-IMW system with 3 criticality levels, any
task set Γ satisfying Eq. (1) is schedulable by EDF-VD on a processor

of speed 𝜎 =
11+

√
61

12
≈ 1.567.

Proof. The proof follows the same approach of the proof of

Theorem 3.1. In this case, two conditions are in logical disjunction [2,

Eq. (3)] to guarantee schedulability:

𝑈2 (1) +𝑈3 (1)
1 −𝑈1 (1)

≤ 1 −𝑈2 (2) −𝑈3 (3)
𝑈1 (1)

(9)

𝑈3 (2)
1 −𝑈1 (1) −𝑈2 (2)

≤ 1 −𝑈3 (3)
𝑈1 (1) +𝑈2 (2)

(10)

To prove the claim, we find the largest 0 < 1

𝜎 ≤ 1 such that at least

one of the two inequality holds, and 𝜎 will be our speedup bound.

The value 𝜎 must satisfy Eq. (1):

𝑈1 (1) +𝑈2 (1) +𝑈3 (1) ≤
1

𝜎
(11)

2𝑈2 (1) + 2𝑈3 (1) ≤
1

𝜎
(12)

3𝑈3 (1) ≤
1

𝜎
(13)

In both Eq. (9) and Eq. (10), increasing𝑈3 (1),𝑈2 (1), or𝑈1 (1) makes

the bound tighter. Therefore, the worst-case bound occurs when

Eq. (11), Eq. (12), and Eq. (13) have strict equal sign, i.e., when

𝑈 ∗
3
(1) = 1

3
, 𝑈 ∗

2
(1) = 1

6
, and 𝑈 ∗

1
(1) = 1

2
. See proof of Theorem 3.1

for the definition of𝑈 ∗
𝑖
( 𝑗). By replacing these values, we obtain for

Eq. (9):

1/2

𝜎 − 1/2

≤ 𝜎 − 4/3

1/2

⇒ 𝜎2 − 11

6

𝜎 + 5

12

= 0 (14)

which leads to 𝜎 = 11

12
+
√

61

12
≈ 1.56 (the other solution is not feasible

because 𝜎 < 1). Instead, for the second condition of Eq. (10):

2/3

𝜎 − 5/6

≤ 𝜎 − 1

5/6

⇒ 𝜎2 − 11

6

𝜎 + 5

18

= 0 (15)

which leads to 𝜎 = 5

3
≈ 1.67 (the other solution is not feasible

because 𝜎 < 1). The best speedup is the lowest of the two, thus the

best speedup bound is 𝜎 =
11+

√
61

12
. □

3.3 Numerical bounds for EDF-VD(L)
The speedup bound for EDF-VD(L) – i.e., for 𝐿 > 2 criticality levels

– is difficult to be analytically computed. The original paper [2]

runs a non-linear programming solver to obtain the result. We

also followed a numerical approach. Luckily, MC-IMW makes the

numerical algorithm simpler because it does not need to use a non-

linear programming solver. Instead, we run a numerical simulation

as follows:

(1) Start with 𝐿 = 2 and 𝜎prev = 1.

(2) The worst-case conditions in term of tightness can be easily

obtained simplifying Eq. (1) with the result of Eq. (3) and

observing that the EDF-VD(L) schedulability test formula [2,

Theorem 3.4, Eq. (3)] is tight when the equality of Eq. (1)

holds.

𝑛 MC MC-IWF
2 1.3333 1.309017

3 2.0000 1.567521

4 2.6180 1.778826

5 3.0811 1.948280

6 3.7321 2.066997

7 4.2361 2.173933

8 4.7913 2.270963

9 5.3723 2.359626

10 5.8551 2.441166

11 6.4641 2.507181

12 6.9487 2.567371

13 7.5311 2.624127

1 2 3 4 5 6 7 8 9 10 11 12 13 14

L

1

2

3

4

5

6

7

Sp
ee

du
p 

bo
un

d

MC
MC-IMW

Figure 1: EDF-VD(L) schedulability: comparison between MC
and MC-IMWmodel.

(3) Compute the worst-case 𝑈 ∗
𝑖
(1) values, and explore all the

possible 𝜎 from 𝜎prev upwards
3
, until the schedulability test

formula [2, Theorem 3.4, Eq. (3)] is satisfied with 𝑈𝑖 (1) =

𝑈 ∗
𝑖
(1)/𝜎 .

(4) The obtained 𝜎 is the best speedup bound for EDF-VD with

L criticality levels in MC-IMW systems.

(5) Set 𝜎prev = 𝜎 , increment 𝐿 and go to step (2) until the desired

criticality level is reached.

The open source code is publicly available
4
and the exploration of

the first 13 levels required a few minutes on a standard PC.

Figure 1 shows the results and the comparison of the MC and the

MC-IMW models. On the right plot, we see that the curve of MC-

IMW has a logarithmic trend, while the traditional MC is almost

linear. This means that increasing the number of levels requires a

linear increase of the processor speed to allow EDF-VD to schedule

the task sets, while MC-IMW requires only a logarithmic increase.

We can conclude that while the speedup bound improvement of

MC-IMWmodels is minimal for low values of 𝐿, the use of MC-IMW

makes the scheduling problem easier for large 𝐿 values.

3.4 EDF-VD(2) remains speedup optimal
After the proof that the MC lower-bound condition on speedup is

no more valid for MC-IMW, the question is whether EVD-VD(2) is

still speedup optimal or not. The answer is affirmative:

Theorem 3.3 (EDF-VD(2) is speedup optimal in MC-IMW).

In a MC-IMW system, the speedup bound of any non-clairvoyant
scheduling algorithm is at least 𝜎 = 1

2
(1 + 𝜙).

Proof. By Theorem 3.1, any MC-IMW schedulable task set is

schedulable by EDF-VD on a processor with speed 𝜎 = 1

2
(1 + 𝜙) =

3+
√

5

4
. We will prove that no scheduling algorithm can do better,

i.e., that no scheduling algorithm has a lower speedup bound 𝜎 .

To prove this we proceed by contradiction. Let us assume that a

3
We have chosen steps of 10

−7
and a 128-bit floating point numbers for all the calculus.

4
https://doi.org/10.5281/zenodo.7253716

https://doi.org/10.5281/zenodo.7253716
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scheduling algorithm having speedup 𝜎 =
3+

√
5

4+Y exists, where Y > 0

is an arbitrarily-small constant. The following task set must be then

schedulable because satisfying Eq. (6) and Eq. (7):

Task 𝜒𝑖 𝐶𝑖 𝑇𝑖

𝜏1 1

√
5 − 1

√
5 + 1

𝜏2 2 2 + Y/2

√
5 + 3

Indeed, 𝑈1 (1) =
√

5−1√
5+1

= 2

3+
√

5

and𝑈2 (1) = 2+Y/2

3+
√

5

. For the first jobs

of 𝜏1 and 𝜏2, any scheduler can proceed in only two ways:

• Schedule first 𝜏1 and then 𝜏2. In this case, because the sched-

uler is not clairvoyant, we cannot guarantee the HI-mode

deadline: indeed if 𝜏1 terminates at 𝑡 =
√

5 − 1 unit of times,

then there are only 4 time units left to run the 𝜏2 which may

potentially require 4 + Y unit of times to meet the deadline if

the mode switch occurs. Thus scheduling first 𝜏1 and then

𝜏2 is not a viable option.

• Schedule first 𝜏2 and then 𝜏1. In this case, the system violates

the LO-mode assumption: indeed if 𝜏2 terminates at 𝑡 =

2 + Y/2 unit of times, then there is no time for 𝜏1 to meet the

deadline, because 2+ Y/2+
√

5− 1 >
√

5+ 1. Thus scheduling

first 𝜏2 and then 𝜏1 is not a viable option.

In conclusion, we proved that this task set is not schedulable under

any non-clairvoyant algorithm on a processor with 𝜎 < 1

2
(1 + 𝜙).

This contradicts the hypothesis that a non-clairvoyant algorithm

exists with a better bound than EDF-VD(2). □

It is not known whether EDF-VD(L), with 𝐿 > 2, is speedup-

bound optimal or not. The large values of the speedup bounds for

large 𝐿 suggest it is not. Interestingly, in MC-IMW, the logarithmic

speedup bound trend of Figure 1 suggests that it may be speedup

bound optimal. However, no formal results are currently available.

4 A MORE GENERAL PARADIGM THAN MC
A recent article [9] proposed a generalization of the MC model

that introduces the concept of Dropping Relations (DRs). In the

traditional Vestal’s model, tasks are grouped according to their

criticality level. Instead, in the DR model, when a job overruns one

of its WCETs, a set of specific tasks linked to this event is dropped.

This model was designed for fault tolerance with re-execution as

the fault recovery mechanism (see Section 2.1). Consequently, the

DR model, as proposed in [9], is very similar to the MC-IMWmodel

of Section 3, with the exception that tasks are duplicated instead

of considering different WCETs. In the next section, we extend the

concept of the DRs, by removing the integer restriction of MC-IMW,

and making the DR model a generalization of the MC model.

4.1 DR model description
We reshape the original DR definition to make it more general.

Subsequently, we make it specific for the MC and MC-IMW cases.

We write 𝜏
( 𝑗)
𝑖

to identify the 𝑖-th task running in the 𝑗-th mode, i.e.,

when a job of 𝜏𝑖 overran the ( 𝑗 − 1)-th WCET.

Definition 4.1 (Dropping Relation). A dropping relation

𝑑 (𝜏 ( 𝑗)
𝑖

) = {𝜏 (𝑏)𝑎 , 𝜏
(𝑑)
𝑐 , ...}

𝜏
(2)
1

𝜏
(2)
2

𝜏
(3)
1

𝜏
(2)
2

𝜏
(2)
1

𝜏
(2)
2

𝜏
(3)
1

𝜏
(3)
1

Figure 2: The event tree of Example 4.2. Red nodes identify
conditions that could not occur due to the presence of DRs.

with 1 < 𝑗 < 𝜒𝑖 , 0 < 𝑏 < 𝜒𝑎, 0 < 𝑑 < 𝜒𝑐 , ... specifies the following

behavior: When task 𝜏𝑖 executes in 𝑗-th mode – i.e., it overruns

its WCET 𝐶𝑖 ( 𝑗 − 1) – then the task 𝜏𝑎 is immediately dropped as

soon as it enters in 𝑏-th mode, the task 𝜏𝑐 is immediately dropped

as soon as it enters in 𝑑-th mode, etc.

Example 4.2. A task set with re-execution as fault recovery

strategy is composed of 𝜏1, that potentially needs to re-execute

2 times, and 𝜏2, that potentially needs to re-execute 1 extra time.

The criticality level of 𝜏1 is then 𝜒1 = 3 with 𝐶1 (3) = 3𝐶1 (1) and
𝐶1 (2) = 2𝐶1 (1), while the criticality level of 𝜏2 is then 𝜒2 = 2 with

𝐶2 (2) = 2𝐶2 (2). Let us assume that, according to a failure analysis,

we add the following DRs: 𝑑 (𝜏 (3)
1

) = {𝜏 (1)
2

, 𝜏
(2)
2

}, 𝑑 (𝜏 (2)
2

) = {𝜏 (3)
1

}.
These DRs mean: if 𝜏1 overruns 𝐶1 (2), 𝜏2 is dropped; if 𝜏2 overruns

𝐶2 (1), 𝜏1 cannot execute for more than 𝐶1 (2) or it will be dropped.
These constraints cannot be expressed with the traditional MC

model: 𝜏1 overrunning 𝐶2 (1) drops 𝜏2, so 𝜒1 should be larger than

𝜒2, however, when 𝜏2 overruns 𝐶2 (1), it prevents 𝜏1 entering in

the 3-rd mode, and therefore 𝜒2 should be larger than 𝜒1 which

contradicts the previous result.

The presence of DRs replaces the system mode concept because

the dropping is performed more fine-grained than in a traditional

MC system. The DR model is a generalization of the MC model

because it is possible to map any MC model to the DR model:

Lemma 4.3 (DR is a generalization of MC). An MC task set
with maximum criticality level 𝐿, defined according to the notation
of Section 2, is equivalent to a DR model with dropping relations
satisfying the following relation:

∀ℓ∀𝜏𝑖∀𝜏 𝑗 : 1 < ℓ ≤ 𝐿 ∧ 𝜒𝑖 = ℓ ∧ 𝜒 𝑗 < ℓ ⇒ 𝜏 𝑗 ∈ 𝑑 (𝜏𝑖 )

Proof. The proof follows directly from the two definitions. □

From this Lemma, we can state that DR is also a generalization of

MC-IMW, being the latter a specialization of the MC model.

The event tree. The original paper proposed a tree as the online

representation of the system status according to the DRs. Let us

call this tree the event tree, because it represents the possible chain
of events potentially occurring at run-time. The event tree of Ex-

ample 4.2 is depicted in Figure 2. The system is initially in the root

node. If 𝜏1 overruns 𝐶1 (1), i.e., enters in the 2-nd criticality mode,

then the system moves to the left node on the second level of the

tree, following the edge 𝜏
(2)
1

, which represents the overrun event.

If then 𝜏1 overruns 𝐶1 (2) or 𝜏2 overruns 𝐶2 (1), the system moves
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to another node on level 3, and the same applies to the other nodes

and events. The red nodes are invalid nodes, because, for instance,

𝜏2 is dropped if it tries to overrun 𝐶2 (2) after 𝜏2 had overran 𝐶1 (2).
We can, in this way, redefine the concept of system mode which is

no more a single criticality level value, but a node in the event tree,

with a set of active tasks and a set of dropped tasks.

4.2 The need for new scheduling algorithms
Reghenzani et al. [9] proposed a scheduling strategy based on the

event tree and the EDF-VD scheduling test. The authors performed

a simulation and showed how the schedulability ratio improved

compared to normal EDF or EDF-VD. This scheduling strategy

consists in extracting all the root-to-leaf paths (excluding red nodes)

from the tree; each of the paths represents a single scheduling

problem coherent with the MC model. Therefore, if all the paths are

schedulable with EDF-VD and all the paths have one single common

scaling parameter _, then the whole tree is schedulable according to

that scaling parameter. Online, depending on the occurring events,

a specific instance of MC problem is “selected”. This strategy is,

however, sub-optimal. Indeed, we will prove in the next theorem

that the scheduling strategy is not only sub-optimal due to the

use of the EDF-VD test, but it would be sub-optimal even using a

clairvoyant scheduling test for the single path.

Theorem 4.4. The scheduling strategy is based on the event tree
and schedulability of all the single paths, described in [9, Section V.B],
is sub-optimal regardless of the considered scheduling test.

Proof. Let us consider the following MC-IMW task set and DRs:

Task 𝜒𝑖 𝐶𝑖 𝑇𝑖

𝜏1 2 2 4

𝜏2 2 1 2

𝑑 (𝜏 (2)
1

) = {𝜏 (1)
2

, 𝜏
(2)
2

} 𝑑 (𝜏 (2)
2

) = {𝜏 (1)
1

, 𝜏
(2)
1

}
The event tree is then composed of only two paths: the overrun of

the first WCET of 𝜏1 which prevents 𝜏2 to execute, and the overrun

of the first WCET of 𝜏2 which prevents 𝜏1 to execute:

𝜏
(2)
1

𝜏
(2)
2

𝜏
(2)
2

𝜏
(2)
1

In order to verify the schedulability of the event tree, we have to

check the schedulability of each path and thenmerge the scheduling

decisions into a single one
5
. Let us assume that we use, for each path,

an optimal MC clairvoyant scheduling test, i.e., having speedup

𝜎 = 1, which is the best theoretical scheduling algorithm. The test,

when applied to each path, outputs schedulable for all paths:

• Path 1: if 𝜏1 will overrun 2, then schedule 𝜏1 first, otherwise

schedule 𝜏2 so that it does not miss the deadline.

• Path 2: Always schedule 𝜏2 first.

5
For instance, in the case of EDF-VD, we need to find a common value for _.

However, we cannot merge these scheduling decisions for the two

paths into a single decision. Therefore, the task set is not schedulable

but is schedulable by a global clairvoyant scheduling algorithm:

• Always schedule 𝜏2 first, unless 𝜏1 will overrun 2.

We proved that a scheduling algorithm correctly scheduling more

task sets than the single-path approach [9, Section V.B] exists. □
Future scheduling algorithms, reasoning in a global perspective

on the tree, can potentially improve these results by exploiting the

flexibility added by the DR model. How to create the DRs is also

an open problem, because it involves both failure and scheduling

requirements, thus it is integrated in the scheduling analysis.

5 CONCLUSION
Inspired by the fault tolerance re-execution strategy, we presented

an approach to determine the WCET values, namely the MC-IMW

model. This model simplifies the scheduling problem and improves

the speedup bound of EDF-VD. We also proved that EDF-VD(2)

remains speedup optimal. Then, we generalized the MC-IMW and

MC models into the DR model and highlighted the open problems.

Future works can follow different paths. Regarding MC-IMW, we

need to prove if EDF-VD(L) with 𝐿 > 2 is speedup optimal or not.

If not, can the restrictions of MC-IMW help in developing new

scheduling algorithms? The same research question applies to the

DR model: can future scheduling algorithms, specifically developed

for the DR model, have better properties, e.g., schedulability?
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