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Abstract
Lesion segmentation in medical images is difficult yet crucial for proper diagnosis and treatment. Identifying lesions in 
medical images is costly and time-consuming and requires highly specialized knowledge. For this reason, supervised and 
semi-supervised learning techniques have been developed. Nevertheless, the lack of annotated data, which is common in 
medical imaging, is an issue; in this context, interesting approaches can use unsupervised learning to accurately distinguish 
between healthy tissues and lesions, training the network without using the annotations. In this work, an unsupervised learn-
ing technique is proposed to automatically segment coronavirus disease 2019 (COVID-19) lesions on 2D axial CT lung 
slices. The proposed approach uses the technique of image translation to generate healthy lung images based on the infected 
lung image without the need for lesion annotations. Attention masks are used to improve the quality of the segmentation 
further. Experiments showed the capability of the proposed approaches to segment the lesions, and it outperforms a range 
of unsupervised lesion detection approaches. The average reported results for the test dataset based on the metrics: Dice 
Score, Sensitivity, Specificity, Structure Measure, Enhanced-Alignment Measure, and Mean Absolute Error are 0.695, 0.694, 
0.961, 0.791, 0.875, and 0.082 respectively. The achieved results are promising compared with the state-of-the-art and could 
constitute a valuable tool for future developments.
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1 Introduction

Due to the recent pandemic of new coronavirus disease 
(COVID-19), the world is experiencing a global health cri-
sis [1, 2]. According to the Center for Systems Science and 
Engineering at Johns Hopkins University (updated 06-06-
2022) 532,143,171 cases have been identified, includ-
ing 6,299,644 deaths worldwide. For COVID-19 screen-
ing, accurate and fast segmentation of COVID-19 lesions 
within the lung, computed tomography (CT) images are 
widely used. However, the homogeneity of lesion tissues, 
the abnormality of lesion form, and similarities between the 
imaging features of lesions surrounding normal tissues make 
segmenting lung lesions in CT images difficult. Manually 

segmenting lesions is time-consuming and subjective due 
to variations in skills, knowledge, and experience across the 
operators [3–6].

In literature, several studies have been published that use 
machine learning (ML) (deep learning (DL)) techniques to 
detect COVID-19 infection regions within the lung region in 
CT images. COVID-19 recognition in CT slices is still chal-
lenging due to a few factors: (1) The significant diversity in 
texture, size, and location of the lesion in CT slices makes 
identification challenging; (2) gathering sufficient annotated 
material for training the DL model is problematic. There are 
a few studies in the literature that have examined unsuper-
vised infection segmentation in CT slices, despite several 
methods to segment COVID-19 infection in clinical practice 
[7, 8]. Our group proposed an unsupervised approach for CT 
axial slices to overcome this issue. First, unhealthy (U) lung 
image slices are translated into healthy (H) image slices. 
Thus, the final segmentation result is the difference between 
translated and the original image (Table 1).

The remainder of the paper is structured as follows. After 
discussing the related work in Section 2, our group describes 
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the material and proposed method in Section 3. Results are 
presented in Section 5 and discussed in Section 6. Section 7 
draws our conclusions by summarizing the main results of 
the work.

2  Related work

Generative adversarial networks (GANs)–based techniques 
[9] are applied on various domains like computer vision [10, 
11], semantic segmentation [12], augmentation [13], image 
translation [14], and image synthesis.

In several cases, the segmentation of lesions in the medi-
cal images depends on texture information. The accuracy of 
the reconstruction is limited since the decoder looses some 
texture information [15]. Manjunath et al. [16] proposed the 
U-Net algorithm for automatic liver and tumor segmentation 
in CT images using supervised learning. The most recent 
work presented for the COVID-19 lesion segment using 
U-Net++ was proposed by Zhou et al. [17]. Most recent 
work focuses on image translation, segmentation [18], and 
generation of synthetic images [19] using supervised and 
semi-supervised learning to overcome this issue and to train 
the network for unsupervised segmentation, GAN, Cycle-
GAN [14], and variational auto-encoder [20] are used. Other 
unsupervised approaches using similar generative models for 
image-to-image translation are DualGAN [21] and UNIT 
[22]. The GAN model can be used to segment several types 
of diseases, translate images from one image modality to 
another, and examine several other options.

Several COVID-19 segmentation techniques [23–26] 
based on artificial intelligence (AI) have recently been pub-
lished and proved to be faster and more accurate and are 

given preference over the manual testing technique. At the 
beginning of the pandemic, Wang et al. [27] proposed a 
weekly supervised approach for COVID-19 classification. 
Wang et al. [28] took advantage of earlier consideration and 
extended their work for more discriminative COVID-19 
detection. Ouyang et al. [29] proposed dual-sampling atten-
tion for COVID-19 diagnosis. CT imaging is a common and 
popular method for detecting and diagnosing lung disorders 
[30]. But it is harder for the COVID-19 segmentation task 
because of the absence of labeled data on the different tex-
tures of the infection [31].

Keshani et al. [32] detected the lung nodule in chest CT 
using a support vector machine (SVM) classifier. Wang et al. 
[33] segmented lung nodules from heterogeneous CT slices 
using a central focused convolutional neural network. In 
practice, crucial information can be obtained by segmenting 
different organs, and lesions from chest CT slices [34]. To 
overcome the issue of annotated data, Ma et al. [35] anno-
tated 20 CT volumes from coronacases1 and radiopedia2. Fan 
et al. [36] proposed a semi-supervised architecture called 
Semi-Inf-Net. All these models relied upon information 
with annotations. Vidal et al. [37] provided the U-Net based 
transfer learning approach to diagnose the COVID infection 
in mobile devices. Saood et al. [38] utilized U-Net and Seg-
Net to segment using CT scans. Yao et al. [39] introduced a 
method based on NormNet to differentiate between normal 
tissues and COVID-19-infected tissues. In this approach, 
NormNet was trained based on a fully unsupervised manner.

Ahrabi et al. [40] proposed the COVID-19 infection in 
lung CT using an unsupervised approach based on Auto-
Encoder. Chen et al. [41] proposed the approach using unsu-
pervised GAN for COVID-19 infection segmentation and 
domain adaptation. Another weekly supervised GAN-based 
approach for COVID-19 prediction on chest CT was pro-
posed by Uemura et al. [42].

In this work, our group proposed an unsupervised 
approach using CycleGAN without any need for annotated 
data.

3  Materials and methods

3.1  Proposed architecture without attention 
guidance

Our task is to segment the infection out of the lung part, 
keeping the healthy part of the lung unchanged. The intuition 
is that if a COVID-19 infected lung image is correctly trans-
lated into its healthy-looking representation, the translator 

Table 1  Definition of abbreviation

Abbreviation Definition

COVID-19 Coronavirus disease 2019
ML Machine learning
DL Deep learning
AI Artificial intelligence
CT Computed tomography
GAN Generative adversarial network
G Generator
GU2H Generator (unhealthy to healthy)
GH2U Generator (healthy to unhealthy)
D Discriminator
DH Discriminator for healthy domain
DU Discriminator for unhealthy domain
U Unhealthy data
H Healthy data
GT Ground truth

1 https:// coron acases. org/
2 https:// radio paedia. org/ artic les/
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network has learned what a COVID lesion is and how it can 
be segmented.

Thus, the difference between the H and U images can be 
used to segment the lesion region within the image. Fol-
lowing the proposal of Zhu et al. [14], our main framework 
is based on CycleGAN as given in Fig. 2. Two generators 
(translators) and two discriminators make up the CycleGAN 
framework.

Generator (G) G in our framework is the improved architec-
ture of the ResNet architecture [43]. ResNets have exhib-
ited significant performance across numerous benchmarks. 
ResNet contains seven residual blocks in our architecture, 
which provides identity mapping with information propa-
gation bypassing the non-linear layer utilizing the shortcut 
connections. A residual block comprises convolutional, rec-
tified linear unit (ReLU), and batch normalization layers. 
The detailed information about each layer with kernel, filters 
and stride is shown in Fig. 2 and Table 2. Our generators 
GU2H and GH2U consist of an encoder, transformer (residual 
block), and decoder. The residual block connects the encoder 
and decoder block. The features are under-sampled with the 
stride function in convolution layers and up-sampled in the 
de-convolution layers.

Encoder: It extracts the feature from the images by using 
convolutional layers. The filter size plays an important 
role in this part because to extract the features of the input 
image, a window based on our filter size is moved consid-

ering the stride given for each step. Higher-level features 
of every image are extracted with a convolution layer.
Transformer: It consists of two convolution layers with 
the ReLU activation function. This block ensures that the 
properties of the previous layer are not lost for the next 
layers. Otherwise, the output will not have the charac-
teristics of the input image. Residual networks are used 
because it keeps the characteristics of the input size and 
shape of the object.
Decoder: This step works like the inverse of the encoder 
part. It takes the feature vectors and converts them into 
low-level features. De-convolution or transpose convolu-
tion layers are used to achieve the required features. These 
low-level features are used in the final layer to generate 
the image.

Discriminator (D) PatchGAN [44, 45] is used as D and the 
architecture is given in Fig. 2. The discriminators DU and 
DH consist of five convolutional layers that provide a single 
logit that tells if the image is H or U. Except for the first 
and last layers, all other layers are preceded by the batch 
normalization function. The ReLU activation function is uti-
lized for all the hidden units. PatchGAN divides images into 
patches, and this method assigns a probability to the patches 
based on the content of the features rather than assigning a 
probability to each pixel. For this reason, its performance 
does not depend on the content but its features. The detailed 

Table 2  The network 
architecture of the ResNet 
generator

Layers Input Filter Stride Instance Activation Output
size normalization function

Convolution 1 256*256*1 7*7 1 X ReLU 256*256*64
Convolution 2 256*256*64 3*3 2 X ReLU 128*128*128
Convolution 3 128*128*128 3*3 2 X ReLU 64*64*256
Residual Block(RB)x7
Convolution 1 RB 64*64*256 3*3 1 X ReLU 64*64*256
Convolution 2 RB 64*64*256 3*3 1 X − 64*64*256
De-Convolution 1 64*64*256 3*3 2 X ReLU 128*128*128
De-Convolution 2 128*128*128 3*3 2 X ReLU 256*256*64
Convolution 4 256*256*64 7*7 1 − tanh 256*256*1

Table 3  The network 
architecture of the PatchGAN 
discriminator

Layers Input Filter Stride Instance Activation Output
size normalization function

Convolution1 128*128*1 4*4 2 − Leaky ReLU 128*128*64
Convolution2 128*128*64 4*4 2 X Leaky ReLU 64*64*128
Convolution3 64*64*128 4*4 2 X Leaky ReLU 32*32*256
Convolution4 32*32*256 4*4 1 X Leaky ReLU 31*31*512
Convolution5 31*31*512 4*4 1 − − 30*30*1
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information about each layer with kernel, filters, and stride 
is shown in Fig. 2 and Table 3. Its working is opposite of G, 
and due to that reason, sometimes the loss grows exponen-
tially (discriminating all real images perfectly). It is advised 
to put some noise while training to train D much better.

CycleGAN Network The main neural network in our model 
is the G that takes an U image and generates a H image. The 
CycleGAN model has two mapping functions GU2H: U → H 
and GH2U: H → U , as well as two associated adversarial 
discriminators DH and DU. GU2H is encouraged by DH to 
translate U into outputs indistinguishable from domain H, 
while GH2U is encouraged by DU to translate H into outputs 
that are indistinguishable from domain U.

Cycle consistency loss is adopted in this network to regularize 
the mappings and transform the infected image into H by aiding 
the learning of the G. Generators learn and share additional infor-
mation between U and H images using cycle consistency loss.

Our proposed architecture is given in Fig. 1. To further 
simplify, our group divided our proposed architecture into 
three phases:

• Pre-processing phase: In this phase, all images from the 
dataset are passed through the U-Net trained on the lung 
image dataset to extract only the lung part in the image.

• Image Generation phase: In this phase, the images are 
passed through the Image generation phase described in 
Fig. 1. These images are passed through our proposed 
CycleGAN described in Fig. 2

• Post Processing phase: This phase is designed to seg-
ment the final lesion based on the difference between 
the real image and generated image. As described in 

Fig. 1 The final segmentation is obtained with the fol-
lowing steps:

– Remove the extra edges of the contours. The extra 
edge or contours are removed by using the binary 
mask of the input image.

– Compute the difference between the real image and 
the generated image.

– Apply threshold to the image received from the 
previous step to get the lesion part.

3.2  Proposed architecture with unsupervised 
attention guidance

This architecture is the extension of the architecture 
defined above. The following steps are followed to extract 
the lesion using this architecture:

• Pre-Processing phase is similar to the above architec-
ture without attention guidance.

• Attention Mask Generator phase receives the image 
input shown in the Fig. 3 producing an attention map as 
proposed by Mejjati et al. [46]. Same G network is used 
for the unsupervised mask generation but in the last layer 
sigmoid function is used to generate the binary mask of 
only infected region avoid the healthy region of the lung.

• Image translation using Mask generates the image using 
the attention mask and it’s inverse as given in this equation:

(1)I = Ia

⨀
GU2H(I) + (1 − Ia)

⨀
I

Fig. 1  Proposed architecture  
is divided into three parts:  
Pre-Processing, Image  
Generation and Post  
Processing. Proposed  
CycleGAN for image  
generation phase is further 
described in Fig. 2

3206 Medical & Biological Engineering & Computing (2022) 60:3203–3215
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where, I is the image, and Ia is the attention mask.
• Post Processing phase is similar to the above architec-

ture without attention guidance.

This attention map provides us the pixel-wise information 
regarding the infection, and this provides the information to 
the network to focus on the only infected part of the lung CT. 

This attention network plays a key role because it locates the 
areas to be translated in each image, and the given area is 
translated significantly, keeping the healthy part unattended. 
Our approach would fail if the attention map provided all 
ones, which would cause the entire image to change. As long 
as the attention map shows all zeroes, the generated image 
would not change, and the G would never deceive the D.

Fig. 2  Proposed CycleGAN 
architecture. where GU2H 
denotes Generator (unhealthy to 
healthy), GH2U denotes Genera-
tor (healthy to unhealthy), DH 
denotes Discriminator (healthy 
domain), DU denotes Discrimi-
nator (unhealthy domain), LGAN 
denotes Adversarial Loss, and 
LCC denotes Cycle Consistency 
loss. Generator is described 
in the upper part of the image 
highlighted with yellow and 
Discriminator is described in 
lower part highlighted with pink

3207Medical & Biological Engineering & Computing (2022) 60:3203–3215
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Loss functions Our main loss function consists of two dif-
ferent loss functions, which focus on minimizing over G 
and maximizing over discriminator. Our main loss function 
is given as:

where, LFULL is the full loss, LGAN is the adversarial loss, 
λcc is constant parameter used to weight the forward and 
backward cycle loss and Lcc is the cycle consistency loss. 
Explanation of each terms are given below:

Adversarial loss (LGAN) Our group implemented adversarial 
losses to both mapping functions. For the mapping function 
G: U to H and its D DH, the loss function is given as:

where, GU2H attempts to generate U images that appear to 
be like images from H images , while Discriminator (DH) 
expects to recognize generated samples GU2H(U) and real 
sample H. G aims to limit this goal against the D that 
attempts to maximize it, i.e., minGU2H

 maxDH
 LGAN (GU2H, DH, 

U, H). A similar adversarial loss for the mapping function 
GH2U: H → U and its discriminator DU also: i.e., minGH2U

 
maxDU

 LGAN (GH2U, DU, H, U).

Cycle consistency loss (Lcc) Our group adopted a cycle 
consistency term [35] to generate H images from infected 
images and aid learning of GH2U and GU2H. Adversarial loss 
alone can not guarantee that the learned function can map 

(2)LFULL = LGAN + �CCLCC

(3)

LGAN(GU2H ,DH ,U,H) = �
H

∼
pdata(H)

[logDH(H)]+

�U∼pdata(U)[log(1 − DH(G(U))]

one U into a H. The cycle consistency loss function allows 
us to communicate more information between H and U 
images. The bidirectional cycle consistency learns a bet-
ter model than unidirectional consistency terms alone. Our 
group needed to implement the instinct that these mappings 
ought to be inverts of one another and that the two mappings 
ought to be bijections. Cycle consistency loss encourages 
GH2U(GU2H(U)) ≈ U and GU2H(GH2U(H)) ≈ H. Our main loss 
function consists of two different loss functions, which focus 
on minimizing over G and maximizing over discriminator.

4  Experimental analysis

4.1  Dataset description

Two medical imaging datasets were used for the evaluation 
of lung lesion segmentation in axial CT scans. Other recent 
open COVID-19 CT Dataset with automatic classification of 
lung tissues for radiomics is also made available by Zaffino 
et al. [47].

A. COVID‑19 CT Segmentation dataset 3, which consists of 
100 axial CT images from different COVID-19 patients. All 
CT images were collected by the Italian Society of Medical 
and Interventional Radiology4. The radiologist segmented 
all CT images using the labels for lung infection detection. 
However, because it is the first open-access COVID-19 data-
set, it has a limited sample size of only 100 CT images. This 

Fig. 3  Proposed architecture 
with attention mask

3 http:// medic alseg menta tion. com/ covid 19/
4 https:// www. sirm. org/ categ ory/ senza- categ oria/ covid- 19
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dataset was used for the baseline methods, and our group 
tested our approach with other baseline methods using this 
dataset as the test set.

B. SARS‑COV‑2 CT scan dataset 5, which consist of 1252 CT 
scans that are positive for COVID-19 and 1230 CT scans for 
patients not infected by COVID-19 scans. This data has been 
collected from real patients in a hospital in Sao Paulo, Bra-
zil. This dataset is the unpaired dataset for COVID-19 U and 
H images. Our group used this dataset to train our network.

As seen in Fig.  4, the COVID-infected areas on CT 
images are of various shapes and sizes. Furthermore, many 
CT images are collected so that more noise-like artifacts are 
introduced. As a training dataset, 1275 U lung CT images 
were used, as well as 1230 H lung CT images, while as a 
testing dataset, all images from the COVID-19 dataset were 
used.

Baselines The proposed method was compared with INF-
NET [36], Semi-INF-Net [36] and other classical segmenta-
tion models commonly used for segmentation in the medical 
domain. i.e., U-Net [48], U-Net++ [18].

Evaluation metrics Our group evaluated the results using 
some widely adopted metrics, i.e., Dice Similarity Coeffi-
cient (DSC), Sensitivity (Sen.), Specificity (Spec.), Precision 
(Prec.), Structure Measure, Enhance-alignment Measure, 
and mean absolute error (MAE).

1. Dice Similarity Coefficient. This metric is widely used 
to assess the repeatability of manual segmentations as 
well as the accuracy of automated probabilistic frac-
tional segmentation in terms of spatial overlap.

2. Sensitivity. The metric that measures a model’s ability 
to predict true positives in each accessible category is 
called sensitivity.

3. Specificity. The metric that measures a model’s ability 
to predict true negatives in each accessible category is 
called specificity.

where, TP= algorithm correctly classified the pixel com-
parable to ground truth (GT). FP= pixels not classified 
as lung in GT, but classified as lung by algorithm. TN= 
pixels not classified as lung in GT and by algorithm. 
FN= pixels classified as lung in GT, but not classified 
as lung by algorithm.

4. Structure Measure (Sα). Fan et al. [49] provided the 
metric to evaluate region-aware and object aware struc-
tural similarities between the generated image and the 
GT. This metric offers salient object detection evalua-
tion. Our group reported Sα using the default settings 
suggested in the paper.

(4)DSC =
2TP

2TP + FP + FN

(5)Sensitivity =
TP

TP + FN

(6)Specificity =
TN

TN + FP

Fig. 4  First row contains 
COVID-19 infected images, 
while second row contains there 
respective healthy transla-
tion and last row contains the 
healthy images used for training

5 www. kaggle. com/ plame nedua rdo/ sarsc ov2- ctscan- datas et

3209Medical & Biological Engineering & Computing (2022) 60:3203–3215

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset


1 3

where, S0 = Object aware similarity. Sr = Region aware 
similarity. α is a balance factor between S0 and Sr. Sα 
using the default setting (where α = 0.5) as suggested in 
the original paper. [49]

5. Enhance-Alignment Measure (Eϕ). Fan et al. [50] 
recently proposed this metric to evaluate both local and 
global similarities between two binary map. The formula 
is provided below:

where, pixel coordinates in GT are given as (x, y), and 
width and height as w and h. Enhanced alignment matrix 
is mentioned as symbol ϕ. A binary mask using thresh-
old is converted by prediction Sp to obtain a set of Eϕ.

6. Mean Absolute Error (MAE). This metric is used 
to determine the image’s pixel-by-pixel inaccuracy 
between the image and GT, which is defined as:

4.2  Training phase

During the training phase, only one input channel was used. 
All images were set to grayscale as we used our framework 
with the grayscale parameter enabled.

The described workstation was used to run the follow-
ing tests: Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz , 
Ubuntu 16.04.6 LTS, CUDA tools, release 11.0, V11.0.194, 
NVIDIA Quadro p6000 24gb. For training, our group set 

(7)S� = (1 − �) ∗ S0(Sp,G) + � ∗ Sr(Sp,G)

(8)E� = 1∕w × h

a∑

x

h∑

y

�(Sp(x, y),G(x, y))

(9)MAE = 1∕w × h

a∑

x

h∑

y

|Sp(x, y) − G(x, y)|

λ cc = 10, to optimize, our group used ADAM optimizer 
with β1 = 0.5 and β2 = 0.999. The learning rate to train the 
network for 200 epochs is fixed at 2 ×  10− 4 and batch size 
= 8. The implementation of the code is based on pytorch, 
and it works well with torch version 1.4, torchvision ver-
sion 0.5, dominate version 2.4.0, and visdom version 0.1.8.8. 
The implementation and dataset of the code are available 
on https:// github. com/ mkshe rwani/ Unsup ervis ed- atten tion- 
based- Cycle GAN- for- COVID- lesion- segme ntati on. git

5  Results

Our group compared the experimental results of our 
approach with some of the well-known previous baseline 
approaches, including U-NET, U-NET++, INF-Net, and 
Semi INF-Net. The quantitative results based on the defined 
metrics are given in Table 4. Table 4 depicts the best results 
in favor of our approach concerning the unsupervised learn-
ing keeping in mind the ground truth images.

The results described in Table 4 and Figure 5 are the best 
results achieved by training our model. In order to obtain this 
result, several trainings are run to determine the best optimized 
model. During hyper-parameter tuning, the loss values of the 
generators and discriminators were observed along with the 
synthetic images generated during training. Some results from 
the models while hyper-parameter tuning is shown in Table 5

As given in the Table 5, results from some of the opti-
mized models using different configuration for hyper-param-
eter tuning is given. Parameters for training phase are given 
in the section based on training phase. But based on the 
table, we made changes in some parameters while training 
1, 2, 3, and 4.

For train 1, we used the Stochastic Gradient Descent 
(SGD) as optimizer replacing ADAM with same parameters. 

Table 4  Quantitative results of infected region on our COVID-19 data

 For each column, the  score is highlighted in red color and  best values are highlighted in blue color
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For train 2, we changed the learning rate = 0.00005 and also 
the batch size = 16. For train 3, we split the train and test 
set. For training 75% of the images were used to train the 
network and 50% for testing. For train 4, we used ADAM 
optimizer changing its β1 and β2 also changing the batch size 
= 4 and epoch = 120.

5.1  Ablation study

Ablation studies depend on removing certain parts of the 
network to understand the impact and the behavior of the 
network [51]. The thought is that certain boundaries of a 
referenced network contribute very little or, on the other 

hand, nothing to the network’s performance, making them 
irrelevant and, in this manner, ready to be taken out. Our 
group needs to utilize this ablation approach not to work on 
the size and speed of a neural network but to get capabili-
ties into the effect of each progression on the performance, 
resulting in an interpretable model. Table 6 shows the Dice 
Similarity Coefficient scores in the ablation study.

Impact of Generator model Several studies have been con-
ducted to compare different G models. Yu et al. [52] presented 
the study for image synthesis comparing different G models, 
including U-Net, ResNet, and ResU-Net. Another study con-
ducted by Lee et al. [53] provided the optimal generative model 

Fig. 5  Visual comparison of lung lesion segmentation result

Table 5  Quantitative results of 
infected region on our COVID-
19 data based on different 
training for hyper-parameter 
tuning

# of trainings DSC Sens. Spec. Sα E
mean

�
MAE

1 0.672 0.646 0.958 0.747 0.869 0.085
± 0.125 ± 0.111 ± 0.028 ± 0.082 ± 0.064 ± 0.049

2 0.683 0.65 0.958 0.763 0.87 0.088
± 0.133 ± 0.091 ± 0.047 ± 0.081 ± 0.071 ± 0.049

3 0.668 0.593 0.956 0.703 0.869 0.088
± 0.112 ± 0.09 ± 0.029 ± 0.094 ± 0.059 ± 0.05

4 0.685 0.691 0.960 0.783 0.844 0.083
± 0.129 ± 0.117 ± 0.038 ± 0.087 ± 0.063 ± 0.047
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for the CycleGAN architecture for medical image synthesis. In 
the study, ResNet performed better in terms of image quality 
while U-Net quality was not comparable to ResNet, and it took 
a much longer time to train on the same sample and consumed 
high memory. Their study also concluded that U-Net performed 
much better for image segmentation than ResNet. Based on the 
intuition and the literature review, our group also tested U-Net 
as G to compare the difference between the generated images 
and the network’s performance with our proposed ResNet. As 
per the results given in Table 6, our proposed approach perfor-
mance in terms of all the metrics performed better than U-Net 
but the training time with U-Net was much faster as compared 
to ResNet. Based on the results produced with both the Gs, 
our group used ResNet for our training and testing because the 
results proved to be better than U-Net.

Impact of Loss function In this study, our group introduced a 
loss function to avoid using the attention mask G. The main 
idea of using that loss function was to test if the image gen-
eration’s performance is improved compared to our proposed 
approach. For this study, our group used images with annota-
tions. The loss function was based on Binary Cross-Entropy 
(BCE), which compared the infected part with annotation 
while training the network. For each image fed while train-
ing, the generated image was subtracted from the real image, 
and the remaining part was compared with the ground truth. 
The loss function was given as follows:

here X = real image - generated image and C = ground truth 
of the image fed. A constant value is input as weight to avoid 
the error of zero (if the segment looks exactly the same as 
the ground truth).

Impact of Hidden network layers ResNet with different number 
of residual blocks can have impact on the network. Changing 
the residual block can improve or affect the accuracy of the 
image translated. In this study, our group studied the impact 
of changing the residual block and its layer on the image gen-
eration process as proposed by Wu et al. [54], and Yao et al. 
[55]. Our group trained the ResNet network with the different 
number of hidden layers in the residual block to improve the 

(10)Loss = BCE(X,C) ∗ weight

performance in terms of improved healthy representation and 
improve our experiment’s training time. Several studies have 
been conducted based on the different layers in the residual 
block. Some studies were also conducted based on the convo-
lutional layer in the residual block, but the results show that our 
approach resulted in higher DSC and other evaluated metrics.

6  Discussion

CT scans for detecting any disease, including COVID-19, 
is easier because it is available at any nearby hospital. 
Our GAN-based approaches provided promising perfor-
mance. Considering the lack of freely available annotated 
data for training a neural network, this approach could be 
beneficial because it does not require annotated data for 
diagnosing any disease. Some of the H samples generated 
by both the approaches used are given in Fig. 4.

Our group compared the lesion segmentation with base-
line methods U-Net, U-Net++, INF-Net, and Semi-INF-
Net. Qualitative results based on baseline methods are 
shown in Fig. 5. The qualitative result shows that U-Net 
and U-Net++ segmentations were blurry, and most of the 
lesion segments are missing. However, comparing INF-Net 
and Semi-INF-Net lesion segmentation was better than 
U-Net and U-Net++, but Semi-INF-Net outperformed all 
other methods. Comparing our approaches with Semi-INF-
Net, the lesion segment is comparable to the ground truth.

More detailed quantitative results are given in Table 4 based 
on different evaluation metrics. It shows that our methods out-
performed all baseline methods except Semi-INF-Net, and it 
has extracted the infection region closely comparable to the 
GT with fewer mis-segmented tissues. Even though quantita-
tive results show that our approach did not improve the results 
compared to Semi-INF-Net, our approach shows that it can 
train the network without the need for annotation, and the net-
work can be trained with the unpaired data. This approach can 
be utilized for different medical image infection segmentation.

With other approaches used as the baseline, these 
results are not possible without the paired data or annota-
tion, and the baseline methods showed the limitations that 

Table 6  Quantitative results 
based on different ablation 
studies

Method DSC Sens. Spec. Sα E
mean

�
MAE

Impact of
Generator model 0.666 0.685 0.921 0.756 0.786 0.097
Impact of
Loss function 0.608 0.677 0.911 0.732 0.760 0.102
Impact of
Hidden network layers 0.672 0.689 0.858 0.788 0.821 0.099
Ours 0.695 0.694 0.961 0.791 0.875 0.082
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make our approach favorable. U-Net has provided unsat-
isfactory results with a large number of mis-segmented 
tissues. However, U-Net++ performed better than U-Net. 
Comparing INF-Net and Semi-INF-Net, Semi-INF-Net 
performance is much better than INF-Net. Our approach 
with unsupervised attention CycleGAN performed better 
than the CycleGAN without attention.

After conducting the ablation study based on the result 
evaluated on the testing dataset, our group observed that the 
proposed approach had the highest score for all evaluated met-
rics compared with the ablation studies conducted. Our pro-
posed approach result showed the effectiveness of the model.

6.1  Limitations

Despite the improvement contrasted with existing unsu-
pervised lesion segmentation techniques, there is still an 
open problem between our approach and other supervised 
and unsupervised techniques. After studying some failure 
segmentation, our group concluded:

• The network missed some small infections as given in 
Fig. 6 (image a & c) and consider the infected region 
as healthy tissues.

• The network misidentified some of the pixels in the 
infected part considering it to be healthy tissues as 
shown in Fig. 6 (image b).

• Since the hyper-parameter tuning was performed manu-
ally, our group consider this point as a limitation and this 
limitation should be considered in the future prospects. 
Automatic hyper-parameter tuning is one of the impor-

tant aspect because it help us optimize the hyper-param-
eters and without it, we can have sub-optimal results.

7  Conclusion

Our paper proposed a GAN-based approach to translating 
the lung CT containing COVID lesion into the equivalent 
healthy representation of that lung image, which utilizes 
the generators and discriminators for the image translation. 
Moreover, our paper also extended this solution, using an 
unsupervised attention mask generator, which uses the same 
network as above but also generates the attention masks of 
only the lesion region to improve the translation without 
changing the healthy part of the lung in CT. The proposed 
models can recognize the pixels with infection and healthy 
tissues.

To improve the performance of COVID-19 lesion seg-
mentation, our future approach would be to extend this 
work in the following aspects: (1) To improve the loss 
function for D that can improve the discrimination pro-
cess and better images can be generated. (2) To extend this 
approach to train using semi-supervised learning. Besides 
COVID-19 data, it is also possible to use this approach 
with other medical image datasets. This approach can gen-
erate a healthy representation of any lesion/tumor region. 
Our group will investigate other medical data in the future 
as well.

Funding Open access funding provided by Università della Calabria 
within the CRUI-CARE Agreement.

Fig. 6  Failure cases in the 
segmentation. where, upper 
row contains testing images and 
lower row contains infection 
segmentation overlaid on the 
ground truth. (Pixels represent-
ing true positive = yellow, false 
positive = pink, false negative = 
blue, and true negative = black.)
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