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A B S T R A C T   

Complex physical models are the most advanced tools available for producing realistic simulations of the climate 
system. However, such levels of realism imply high computational cost and restrictions on their use for poli
cymaking and risk assessment. Two central characteristics of climate change are uncertainty and that it is a 
dynamic problem in which international actions can significantly alter climate projections and information 
needs, including partial and full compliance of global climate goals. Here we present AIRCC-Clim, a simple 
climate model emulator that produces regional probabilistic climate change projections of monthly and annual 
temperature and precipitation, as well as risk measures, based both on standard and user-defined emissions 
scenarios for six greenhouse gases. AIRCC-Clim emulates 37 atm-ocean coupled general circulation models with 
low computational and technical requirements for the user. This standalone, user-friendly software is designed 
for a variety of applications including impact assessments, climate policy evaluation and integrated assessment 
modelling.   

1. Software availability 

AIRCC-Clim can be downloaded at no cost from https://sites.google. 
com/view/aircc-lab-airccclim/aircc-clim. 

2. Introduction 

Climate change projections are one of the main inputs for assessing 
the potential consequences of different socioeconomic development 
pathways and international climate policy on natural and human sys
tems. Due to the complexity of the systems involved and their in
teractions, climate projections are inherently uncertain (Gay and 
Estrada 2010; Curry and Webster 2011; Knutti and Sedláček 2012). 
Moreover, computational and technical costs of state-of-the-art physical 

models allow exploration of only a small fraction of the range of possible 
climate futures and hinder assessing risk through probabilistic scenarios 
(Knutti et al., 2010; Sanderson et al., 2015). For most decision-makers 
and researchers, these costs make it infeasible to explore how current 
and hypothetical changes in international mitigation policy can influ
ence future warming and its consequences for society. In a time of 
proactive international mitigation policy, the dynamic nature of pro
jecting future climate becomes even more evident and decision-making 
requirements can go beyond fixed illustrative emissions scenarios, such 
as the RCPs (Estrada and Botzen 2021). For example, Nationally 
Determined Contributions (NDCs) that represent greenhouse gas emis
sion reductions that countries promise as their contributions to the Paris 
Agreement are currently a key focus of international climate policy. 
Moreover, due to the nonlinearity of most climate impacts, even small 
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deviations from a high-warming trajectory can produce large changes in 
the associated impacts (Estrada and Botzen 2021; Ignjacevic et al., 
2021). 

International efforts such as the Coupled Model Intercomparison 
Project (CMIP), which build and host large databases of climate models’ 
simulations publicly available, have significantly contributed to 
improving the accessibility and utilization of climate scenarios for the 
wider research community and decision-makers (Knutti and Sedláček, 
2012; Stocker et al., 2013; Taylor et al., 2012). However, many users 
still face the problem of processing large datasets for adapting them to 
their particular needs (e.g., temporal frequency and spatial domains). As 
such, studies and decisions are commonly based on a few illustrative 
greenhouse gases emissions trajectories and a handful of climate 
models’ simulations which are often selected due to their availability 
and ease of use, such as WorldClim (Fick and Hijmans 2017). Such a 
selection of climate model runs can hardly provide a good representa
tion of uncertainty and indicate if a model’s projections for a given re
gion may represent extreme realizations in comparison to the majority 
of other models (Weigel et al., 2010; Sanderson et al., 2015). Even in 
cases when climate models’ performance is assessed, the resulting se
lection of models does not guaranty that those projections of future 
climate are reliable (Altamirano del Carmen et al., 2021). Climate model 
selection remains an unresolved problem as commonly used metrics can 
be non-informative about the models’ ability to reproduce the observed 
climate change signal and indicate much less about their ability for 
projecting future climate (Knutti et al., 2010). 

Uncertainty is a key characteristic of climate change and how it is 
understood and included in climate impact assessments can have pro
found effects on the estimates of the consequences of this phenomenon 
and on the design of policies to address these consequences (IPCC-TG
ICA 2007; Gay and Estrada 2010). The development of tools and 
methods for better uncertainty management and for improving the 
usefulness of the large (thousands of terabytes) databases that are 
currently available are increasingly relevant research topics. More effi
cient, simple, and flexible approaches for taking advantage of the 
available databases can transform data into useful information and 
knowledge for better assessments of impacts, risks, and climate policy 
options. Reduced complexity models and emulators of more advanced 
models allow exploring –at low computational and technical costs for 
the user– a wide range of possible futures and emissions trajectories, 
parameterizations, as well as probabilistic assessment of risks for natural 
and human systems (Meinshausen et al., 2011a; Blanc 2017; Estrada 
et al., 2020). Integrated assessment modelling benefits from such models 
and emulators to provide tools for supporting decision-making and 
providing estimates for cases in which complex climate/impacts model 
runs are not available. 

A notable example of the usefulness of such models is the MAGICC 
software which has made significant contributions to climate change 
research, particularly in impact, vulnerability and adaptation (IVA) as
sessments, and integrated assessment modelling (Wigley 1995; Mein
shausen et al., 2011c, a). The MAGICC software has been regularly used 
in the IPCC reports when simulations produced by general circulation 
climate models are not available and also in the national climate change 
assessments of several countries (Conde et al., 2011; IPCC, 2018; 2021). 
MAGICC6 is able to produce probabilistic global temperature change 
projections and to capture uncertainties in radiative forcing, as well as in 
the climate and carbon-cycle responses (Nicholls et al., 2021). The 
MAGICC7 version is now on-line available (https://magicc.org/). 

Here we present AIRCC-Clim (Assessment of Impacts and Risks of 
Climate Change – Probabilistic Climate Model Emulator), a simple and 
flexible climate model emulator for producing probabilistic regional 
projections of monthly and annual temperature and precipitation, as 
well as risk measures. AIRCC-Clim has five main innovations compared 
to other reduced complexity models. First, it emulates the results from 
37 atm-ocean coupled general circulation models from CMIP phase 5 
(CMIP5) included in the Fifth Assessment Report of the IPCC (Stocker 

et al., 2013) with low computational and technical requirements on the 
user. Second, it produces spatially explicit (2.5◦ × 2.5◦) climate pro
jections which allows to explore climate change developments at the 
regional level which can be visualized on maps. Third, it generates 
global and spatially explicit probabilistic projections of climate change 
which allows to represent uncertainty about future climate conditions at 
different spatial scales. Fourth, the model allows constructing a variety 
of risk measures tailored to the needs of the user, such as the time for 
exceeding predefined thresholds of changes in climate variables and 
probabilities of exceedance. Fifth, AIRCC-Clim includes a graphical 
emissions editor to facilitate introducing new emissions trajectories 
defined by the user. Additionally, this editor can read external emissions 
scenarios from Excel files, and it also allows the user to directly modify 
the emissions scenarios in a table included within the interface. Another 
advantage that enables easy integration with other software applications 
is the capability of exporting results in netCDF and GeoTIFF formats, in 
addition to high quality PNG files. It is a standalone software for Win
dows and Linux operating systems that requires no programming or 
advanced technical skills from the user and runs on computers with 
standard memory and processing resources. AIRCC-Clim is designed for 
a variety of applications including IVA assessments, integrated assess
ment modelling, and the quick evaluation of the consequences on global 
and regional climate of user-defined experiments of international 
mitigation. 

The remainder of this paper is structured as follows: Section 2 de
scribes the AIRCC-Clim model structure and describes in detail each of 
its modules in terms of data sources, modelling approaches and 
methods, and their output. This section also describes the file options for 
exporting climate projections and their characteristics. An application of 
the model is shown in Section 3 in which the benefits of stringent in
ternational mitigation efforts are illustrated in terms of avoided warm
ing, changes in precipitation and risk reduction. Section 4 concludes and 
discusses model extensions and integration with IVA models. 

3. Model structure, data and methods 

AIRCC-Clim is composed of four main modules: greenhouse gas 
emission scenario editor; global climate models, a regional scenario 
generator; and a climate risk index generator (Fig. 1). In the following 
paragraphs each module is discussed, including detailed descriptions of 
the modelling approaches, methods and data sources. 

3.1. Emissions scenario editor 

AIRCC-Clim offers a graphic interface for constructing user-defined 
global emissions scenarios for six climate changing substances: Fossil 
and industrial carbon dioxide (CO2 in MtC/yr), methane (CH4; in 
MtCH4/yr), nitrous oxide (N2O; MtN2O–N/yr), chlorofluorocarbons 
(CFC11, CFC12 in kt/yr), and sulfur hexafluoride (SF6 in kt/yr). Four RCP 
emissions trajectories are included by default and the user can select one 
of them as starting point for editing. As shown in Fig. 2 AIRCC-Clim has 
three input options for global emissions: 1) by means of editing the 
values displayed on a table; 2) by selecting and plotting the substance of 
interest and modifying the emissions trajectories directly in a graph; 3) 
loading an Excel file (.xlsx) with user-defined emissions trajectories for 
each gas in a predefined format (see the AIRCC-Clim user guide included 
in the SI). The modified emissions scenario is saved in an Excel (.xlsx) 
file and used for generating the corresponding climate projections in 
AIRCC-Clim. 

3.2. Global climate projections 

Global temperature projections in AIRCC-Clim can be generated by 
running a simple climate model, as well as by using precalculated pro
jections from two reduced complexity climate models. As described in 
the following paragraphs, in all cases probabilistic projections are 
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constructed by means of stochastic simulation to represent uncertainty 
in the climate sensitivity (CS) parameter. 

3.2.1. Modified schneider-thompson model 
The Schneider-Thompson (ST) simple climate model (Schneider and 

Thompson 1981) includes three components that allows to calculate the 
atmospheric concentrations of greenhouse gases, the corresponding 
change in radiative forcing and the resulting increase in global tem
perature. Due to its flexibility and low computational cost, this climate 
model (and modified versions of it) is used in some of the most popular 
integrated assessment models, such as FUND and RICE (Nordhaus and 
Boyer 2003; Anthoff and Tol 2014a). 

The version of the ST model in AIRCC-Clim builds upon that used in 
the FUND integrated assessment model (Tol and Fankhauser 1998) 
which is available at http://www.fund-model.org/. In this section, the 
ST model and the modifications that are introduced in AIRCC-Clim. As 
described below, several AIRCC-Clim’s parameters are calibrated using 
MAGICC6 output (Meinshausen et al., 2011b), as well as the best esti
mates and likely ranges included in the IPCC’s Fifth Assessment Report 
(AR5). The MAGICC6 model was calibrated with climate projections 
from different general circulation models included in CMIP5 

(Meinshausen et al., 2011c, a). 
Calculation of atmospheric concentrations and radiative forcing. 
A five box-model (Maier-Reimer and Hasselmann 1987; Tol 2019a) 

is used to convert annual emissions of CO2 (MtC) into atmospheric 
concentrations (ppm). The initial value for CO2 concentrations is 278 
ppm which represent preindustrial times (circa 1750). The carbon cycle 
model is represented by the following equation: 

CCO2
i,t =(1 − αi)CCO2

i,t− 1 + γiβECO2
t (1)  

CCO2
t =

∑5

i=1
CCO2

i,t (2)  

where CCO2
i,t represents the atmospheric concentrations of CO2 in box i =

1,̇̇,5 at time t, Et are the CO2 emissions at time t, αi determines how long 
CO2 remain in box i, while γi is the proportion of emissions that enter box 
i, and β is a scale parameter (β = 0.00045). The αi and γi parameters are 
taken from the literature (Maier-Reimer and Hasselmann 1987; Ham
mitt et al., 1992; Tol 2019b), while the β is a calibration parameter 
obtained by minimizing the sum of squares of the differences between 
the MAGICC6 concentrations reported in (Meinshausen et al., 2011b) 

Fig. 1. Schematic representation of AIRCC-Clim 
model structure. Calculation modules are repre
sented by rectangles while output is denoted by 
rectangles with rounded corners. The four modules 
are: a) the emissions scenario editor; b) the climate 
module which produces annual global temperature 
change estimates; c) the regional climate scenario 
generator which produces probabilistic monthly and 
annual climate projections, and; d) the climate risk 
index generator that calculates risk measures defined 
by the user.   

Fig. 2. AIRCC-Clim’s graphic global emissions editor. 
Four RCP emissions trajectories can be loaded and 
edited by the user by means of: 1) modifying the 
values in the editor’s table (upper part); 2) by 
changing the trajectory in an interactive graph (lower 
part) and; 3) loading an Excel file with user-defined 
emissions trajectories. In the lower part of the 
figure, the dashed blue line shows the default values 
for the selected RCP scenario, while the continuous 
red line shows the trajectory edited by the user.   
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and those obtained from equations (1) and (2) under the RCP8.5 sce
nario. The CO2 emissions in AIRCC-Clim correspond to those of fossil 
and industrial emissions. These boxes are characterized by different 
decay times that resemble the slow and fast components of the carbon 
cycle. However, these boxes do not represent physical processes and are 
just simple mathematical devices that allow to approximate the 
observed concentrations (Schneider and Thompson 1981; Maier-Reimer 
and Hasselmann 1987; Tol 2019a). CCO2

t is the total concentration of CO2 
in the atmosphere at time t. Parameter values are reproduced in 
Table S1. We use a common parameterization for CO2 radiative forcing 
(Meinshausen et al., 2011a): 

FCO2
t = 5.35ln

(
CCO2

i,t

CCO2
pre

)

(3)  

where CCO2
pre = 278 represents the preindustrial atmospheric concentra

tions of CO2. 
CH4 concentrations are calculated using the following equation: 

CCH4
t =(1 − a1)CCH4

t− 1 + a1CCH4
pre + b1ECH4

t (4)  

where CCH4
t are the atmospheric concentrations of CH4 at time t, CCH4

pre =

721.89 is the preindustrial concentrations of CH4, ECH4
t are the emissions 

of CH4 at time t, a1 = 1/12 with 12 years representing the permanence 
of CH4 in the atmosphere (Stocker et al., 2013; Anthoff and Tol 2014b) 
and b1 = 0.2954 is a scaling factor and was obtained by minimizing the 
sum of squared differences between the MAGICC6 concentrations and 
those obtained from equation (4) under the RCP8.5 scenario. 

The atmospheric concentrations of N2O are calculated using an 
equation similar to that of CH4: 

CN2O
t =(1 − a2)CN2O

t− 1 + a2CN2O
pre + b2EN2O

t (5)  

where the emissions and atmospheric concentrations of N2O are denoted 
by EN2O

t and CN2O
t , respectively, while CN2O

pre = 272.96, a2 = 1/ 120, with 
120 years representing the persistence of the gas in the atmosphere 
(Stocker et al., 2013; Tol 2019b), and b2 = 0.1550, obtained by mini
mizing the sum of squared differences between the MAGICC6 concen
trations and those obtained from equation (4) under the RCP8.5 
scenario. 

Calculating the radiative forcing of CH4 and N2O involves an inter
action term between these gases to account for their overlap in the ab
sorption bands as represented in the following equations: 

IntCH4
t = f (M,N0) − f (M0,N0) (6)  

IntN2O
t = f (M0,N) − f (M0,N0)

′

(7)  

where these interaction functions are given by: 

f (M,N0)= p1ln
[
1+ p2

(
CCH4

t CN2O
t=0
)0.75

+ p3CCH4
t

(
CCH4

t CN2O
t=0
)1.52

]
(8)  

f (M0,N)= p1ln
[
1+ p2

(
CCH4

t=0 CN2O
t

)0.75
+ p3CCH4

t

(
CCH4

t=0 CN2O
t

)1.52
]

(9)  

f (M0,N0)= p1ln
[

1+ p2

(
CCH4

pre CN2O
t=0

)0.75
+ p3CCH4

pre

(
CCH4

pre CN2O
t=0

)1.52
]

(10)  

f (M0,N0)
′

= p1ln
[

1+ p2

(
CCH4

t=0 CN2O
pre

)0.75
+ p3CN2O

pre

(
CCH4

t=0 CN2O
pre

)1.52
]

(11)  

with p1 = 0.47, p2 = 2.01*10− 5, p3 = 5.31*10− 15 (Ramaswamy et al., 
2001; Anthoff and Tol 2014b; Tol 2019b). The radiative forcing of CH4 
and N20 is calculated as: 

FCH4
t = 0.036

[
(
CCH4

t

)0.5
−
(

CCH4
pre

)0.5
]

− IntCH4
t (12)  

FN2O
t = 0.12

[
(
CN2O

t

)0.5
−
(

CN2O
pre

)0.5
]

− IntN2O
t (13) 

CFC11 and CFC12 concentrations are calculated as follows: 

CCFC11
t =(1 − a3)CCFC11

t− 1 + b3ECFC11
t (14)  

CCFC12
t =(1 − a4)CCFC12

t− 1 + b4ECFC12
t (15) 

In which a3 and a4 are equal to 1/45 and 1/100, with 45 and 100 
years representing the permanence of CFC11 and CFC12 in the atmo
sphere (Stocker et al., 2013; Tol 2019b), while b3 = 0.0423 and b4 =

0.0481 were obtained by minimizing the sum of squared differences 
between the MAGICC concentrations reported in (Meinshausen et al., 
2011b) and those obtained from equations (14) and (15) under the 
RCP8.5 scenario, respectively. The radiative forcing from CFCs is 
calculated by multiplying it by a scaling factor equal to 0.25/1000 in the 
case of CFC11 and 0.32/1000 for CFC12 (Ramaswamy et al., 2001; 
Anthoff and Tol 2014b; Tol 2019b). 

Finally, the concentrations of SF6 are obtained using the following 
equation: 

CSF6
t =(1 − a5)CSF6

t− 1 + a5CSF6
pre + b5ESF6

t (16)  

where a5 = 1/3200, with 3200 years as the permanence of SF6 in the 
atmosphere (Forster et al., 2007), and b5 = 0.0393 was obtained by 
minimizing the sum of squared differences between the MAGICC con
centrations and those obtained from equation (16) under the RCP8.5 
scenario. The radiative forcing of SF6 is calculated as FSF6

t = 0.00052* 
CSF6

t (Ramaswamy et al., 2001; Tol 2019b). 
As shown in Fig. S1, the equations and parameterizations used for 

calculating the concentrations and radiative forcings from the green
house gases included in AIRCC-Clim can closely approximate those 
produced with MAGICC6. In all cases, the goodness of fit from running a 
regression between the output from AIRCC-Clim and MAGICC6 under 
the RCP8.5 scenario produces R2 values larger than 0.99 (Fig. S1). 
Fig. S2 shows the AIRCC-Clim and MAGICC6 concentrations and radi
ative forcing for the RCP8.5, RCP6, RCP4.5 and RCP2.6 for individual 
greenhouse gases and for the sum of their radiative forcing. The average 
differences in the sum of radiative forcing from the AIRCC-Clim and 
MAGICC6 output are 2%, 7%, 6%, 7% for the RCP8.5, RCP6, RCP4.5 and 
RCP2.6, respectively. 

Calculation of global temperature change. 
The ST model uses the following two interlinked equations to pro

duce annual mean global air and ocean surface temperatures: 

TA
t =TA

t− 1 + λ1
(
λ2Ft − TA

t− 1

)
+ λ3

(
TO

t− 1 − TA
t− 1

)
(17)  

TO
t = TO

t− 1 + λ4
(
TA

t− 1 − TO
t− 1

)
(18) 

Following Tol (2019a) we use the following parameter values as the 
initial calibration: λ1 = 0.0256, λ2 = 1.14891, λ3 = 0.00738, and λ4 =

0.00568. The CS of this model is calculated as λ2[5.35ln(2)] and it is the 
main parameter for calibrating the model to reproduce observed or 
projected annual mean global air surface temperature. A limitation with 
this approach is that the accuracy of its projections will depend on which 
temperature series is used for calibration. To illustrate this, we use the 
projections obtained from the MAGICC6 model for the RCP8.5, RCP6, 
RCP4.5 and RCP2.6 for the period 2005–2100. These simulations are 
obtained using the total radiative forcing factors, not only the 6 gases 
described above. For parameter calibration, the temperature change 
projections of the ST model are calculated using the same total radiative 
forcing used to produce those of MAGICC6. The calibration procedure 
used was to minimize the sum of the squared residuals between the ST 
and the MAGICC6 projections using ordinary least squares. The optimal 
CS values that calculated for each scenario are 3.27 (RCP8.5), 2.70 
(RCP6), 2.64 (RCP4.5) and 2.23 (RCP2.6). Choosing any single value of 
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this parameter to project all the RCP scenarios would lead to over- or 
underestimating future temperatures, particularly in the case of extreme 
scenarios (RCP2.6 and RCP8.5). As such, this approach could have an 
impact on, for example, the evaluation of the benefits of mitigation 
policies. 

The level of warming is closely related to the total cumulative 
emissions of CO2 (TCRE; Fig. S3). The relationship between global 
temperature change and TCRE is relatively constant over time and in
dependent from the emissions scenario used, but it is dependent on the 
global climate model CS and transient climate response (Collins et al., 
2013). Fig. S3 shows the differences in the temperature change pro
jections of MAGICC6 and the ST as a function of total cumulative 
emissions of CO2 from different RCP scenarios. In this figure, the ST 
projections are shown for when the CS is fixed and calibrated for a 
particular RCP and for when the CS is allowed to vary across RCP sce
narios. When the CS is calibrated using one of the RCP scenarios and it is 
used for projecting temperature change for the other RCP scenarios, the 
differences between the ST and the MAGICC6 projections can be as large 
as 1.55 ◦C. These differences are much smaller when the CS value is 
allowed to change for different RCPs (the mean and maximum differ
ences are 0.02 ◦C and 0.17 ◦C, respectively), which suggest that the 
emulating capacity of the ST model could be greatly improved if the CS 
value is allowed to vary across cumulative emissions. Simple climate 
models such as ST are based on extremely stylized representations of the 
climate system and necessarily ignore several relevant aspects of, for 
example, climate feedbacks and other processes that determine the re
sponses to changes in external forcing and, thus, the CS. While the CS in 
the climate system and in complex climate models is an emergent 
property, in reduced complexity climate models is a parameter to be 
calibrated. The ST ignores many climate feedbacks and other radiatively 
active compounds, which also contributes to the differences in temper
ature projections obtained with MAGICC6. A sensible calibration of the 
CS can help compensate the omissions in simple models and increase 
their ability to reproduce the output of more complex models. We stress 
that the CS specification in AIRCC-Clim is as a useful device for 
approximating more closely temperature change projections for the 
range of RCPs projections, but that the parameterization of the CS 
should not be interpreted as a physical statement about how the climate 
system operates. 

Fig. 3 shows a linear relationship between cumulative CO2 emissions 
and the CS value the ST model requires to better approximate the tem
perature change projections from MAGICC6. Given this relationship, we 
propose a dynamic CS parameter for the ST model that is calculated 

based on the cumulative CO2 emissions, which are dominant in any RCP, 
SRES or other realistic emissions scenario. The proposed parameteriza
tion for the CS has the practical purpose of increasing the emulation 
capacity of the ST model and to fully exploit the ability of simple models 
to approximate the results from much more complex ones with only a 
small fraction of computing effort. While the proposed dynamic CS is 
only a practical device to increase the emulation capacity of the model, 
there is increasing evidence that the climate system’s feedbacks are 
dependent on forcing magnitudes and timescales and thus the CS may be 
not a constant value, both in reality as in complex climate models 
(Knutti and Rugenstein 2015). 

In the proposed dynamic CS, this parameter is calculated prior to 
projecting global temperatures with the ST model. The regression 
equation that relates the CS and the cumulative CO2 emissions is CS =

2.05 + 6.18 × 10− 7 ∑CO2 (R2 = 0.96; Fig. 3). To get a better approx
imation for the lowest and highest cumulative scenarios, we also fitted a 
line based on the CS values for RCP2.6 and the RCP8.5. The results were 
compared to the projections in the IPCC’s AR5 and were optimized to 
reproduce the best estimates (Stocker et al., 2013). The final extreme CS 
values are 2.1 ◦C and 3.3 ◦C for the RCP2.6 and RCP8.5 scenarios, 
respectively. The final equation relating CS and cumulative CO2 emis
sions is 

CS= 1.85 + 7.51 × 10− 7
∑

CO2 (19) 

The CS values are restricted to the interval [2.1, 3.3]. Table 1 shows 
the projections of the modified ST model and the best estimates and 
likely ranges in the AR5 (Collins et al., 2013). For all four RCP emissions 
scenarios and both short- and long-term horizons, the average difference 
is about 0.08 ◦C and the maximum 0.23 ◦C. This illustrates that the 
modified ST model very closely resembles the IPCC AR5 temperature 
projections. The differences in projections between MAGICC6 and 
AIRCC-Clim are, in part, due to the omission of other radiative active 
compounds, as the latter only considers 6 greenhouse gases. The dif
ferences in the 2046–2065 horizon are slightly larger and may be related 
to the omission of aerosols and land use CO2 emissions which have a 
more significant influence in the shorter-term. 

To extend the ST model to account for the uncertainty in CS values 
and to produce probabilistic projections, we represent the model’s CS 
with a triangular distribution. The model output of global temperature 
change projections is affected by the distribution chosen for the CS 
parameter. Our choice to represent the CS with a triangular distribution 
is common in the integrated assessment literature such as in the PAGE 
and CLIMRISK models (Moore et al., 2018; Estrada and Botzen 2021). 
Note that other probability distributions and parameterizations could be 
used to explore different assumptions about the CS (Gay and Estrada 

Fig. 3. Scatter plot between cumulative CO2 emissions and the climate sensi
tivity that minimizes the sum of squared errors between the TS and the MAG
ICC6 projections. 

Table 1 
Comparison between the projected change in global mean surface air tempera
ture for the mid- and late 21st century (with respect to preindustrial times) re
ported in the IPCC’s AR5 and those obtained with the modified ST model.   

2046–2065 2081–2100 

Mean Likely range Mean Likely range 

RCP2.6 IPCC 
ST* 

1.61 1.01–2.21 1.61 0.91–2.31 
1.56 1.06–2.10 1.67 1.10–2.31 

RCP4.5 IPCC 
ST* 

2.01 1.51–2.61 2.41 1.71–3.21 
1.94 1.39–2.54 2.44 1.70–3.25 

RCP6 IPCC 
ST* 

1.91 1.41–2.41 2.81 2.01–3.71 
2.15 1.59–2.75 3.01 2.17–3.92 

RCP85 IPCC 
ST* 

2.61 2.01–3.21 4.31 3.21–5.41 
2.80 2.17–3.48 4.32 3.30–5.43 

Note: Table 1 is taken from the IPCC’s AR5 Working Group I report (Table 12.2 
in Collins et al., 2013). The values in such table are calculated with respect to 
1986–2005. According to footnote a), the warming from preindustrial times 
(1850–1900) to 1986–2005 is 0.61 ◦C. To obtain the values for the preindustrial 
reference period, 0.61 ◦C was added to every entry on Table SPM12.2 of the 
IPCC’s AR5. 
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2010). In this distribution the most likely value is given by equation (19) 
above, and the lower and upper limits are the calculated CS value 
plus/minus some constants that are to be calibrated. The equations for 
the upper (CShigh) and lower limits (CSlow) of the triangular distribution 
for CS are: 

CSlow =CS + h1 (20)  

CShigh =CS + h2 (21) 

The h1 and h2 constants are calibrated to match the likely ranges 
reported in the IPCC’s AR5. Simulations of 10,000 realizations were 
used and the 5th and 95th percentiles were chosen to construct the ST 
likely ranges. The parameter values that provided good fit for all RCPs 
are h1 = 1.1 and h2 = 1.5. Table 1 shows that the likely ranges of the 
modified ST model closely reproduce those reported in the IPCC for both 
short- and long-term horizons, showing almost exact overlap with dif
ferences in upper and lower limits typically smaller than 0.2 ◦C. 

3.2.2. Generating probabilistic global temperature projections using 
precalculated runs from MAGICC6 and the Thermodynamic Climate Model 

The MAGICC6 and the Thermodynamic Climate Model (TCM) are 
reduced-complexity climate models that were designed for different 
objectives. MAGICC is composed of a set of coupled models that include 
gas cycles and climate and ice-melt models designed to explore the ef
fects of anthropogenic emissions of greenhouse gas concentrations, 
radiative forcing, and changes in global mean annual temperature and 
sea level (Wigley 1995; Meinshausen et al., 2011c, a). The TCM was 
originally conceived as a weather forecast model for the northern 
hemisphere and then extended to the global scale for studying the 
climate of Earth and of other planets in the Solar System (Adem 1991). 
In the case of MAGICC6, precalculated projections of global temperature 
are included in AIRCC-Clim for the emissions scenarios RCP2.6, RCP4.5 
RCP6 and RCP8.5, while in the case of the TCM the precalculated that 
were available are the RCP4.5, RCP6 and RCP8.5. 

To account for the uncertainty in CS values and to produce proba
bilistic projections, we propose a simple method based on linear 
regression and statistical simulation. Due to the availability of climate 
models’ output we base our calculations on MAGICC6. Projections for 
each RCP scenario were obtained using of MAGICC6 for three different 
CS values that represent medium CS (3.0 ◦C), low CS (1.5 ◦C) and high 
CS (4.5 ◦C). To emulate MAGICC’s results for high and low climate 
sensitivities, we propose the use of some scaling weights w that would 
approximate them when multiplied by the global temperature obtained 
using a medium CS value. Such weights can be obtained by means of the 
following regression: 

Tsens*
t =ωTmedium

t + εt (22)  

where Tsens*
t is the global temperature projection obtained with MAG

ICC6 using either low or high CS, while Tmedium
t corresponds to the global 

temperature projection obtained with medium CS; ω is the slope 
parameter and εt are the regression residuals. In all cases, the R2 is 
higher than 0.99; note that the objective of these models is not to make 
inference about parameter values, but just to produce a close fit of 
projections using different values of CS. The values of parameter ω for 

the different combinations of CS and for each RCP emissions scenario are 
provided in Table 2. The estimated parameter values are very similar for 
different RCPs with an average value of 1.34 and 0.57 for high and low 
CS values, respectively. As shown in Fig. 4, these values allow to closely 
approximate the simulations of MAGICC6 produced using high/low CS 
values by scaling a simulation of the same model calculated with me
dium sensitivity. The approximation is less precise when used on sce
narios that lead to stabilization (Fig. 4d), but the error is still very small 
(0.17 ◦C for the high CS projection using the RCP2.6). 

To produce probabilistic scenarios using the ST model, we use a 
triangular distribution to scale the MAGICC6 runs obtained with a me
dium CS. The parameters of the triangular distribution are 1 for the 
mode or most likely value and, 0.5679 and 1.3414 for the lower and 
upper limits, respectively (Table 2). These parameter values allow to 
emulate the projections that would be obtained with MAGICC6 
randomly choosing CS values contained in the interval 1.5 ◦C to 4.5 ◦C, 
assigning a larger probability of occurrence to values that are closer to 
the medium sensitivity of 3 ◦C. CS is high uncertainty (Rogelj et al., 
2014; Lewis and Curry 2015; Freeman et al., 2015; Tan et al., 2016; 
Friedrich et al., 2016; Knutti et al., 2017; Cox et al., 2018). However, the 
consensus is that the CS is probably within the 1.5 ◦C to 4.5 ◦C interval 
with a central estimate of 3 ◦C (Bony et al., 2013; Callendar, 1938; 
Freeman et al., 2015; Santer et al., 2019; Stocker et al., 2013). This CS 
range encompasses the range produced by the state-of-the-art models 
included in the CMIP5 (Jonko et al., 2018; Stocker et al., 2013). 

Given that in the TCM the CS is not an explicit parameter as in 
MAGICC6, but an emerging property of the model, there are no high/ 
low CS projections that can be used to find the corresponding parame
ters in Table 2. As such, we apply the same scaling parameters we found 
for MAGICC6 to represent uncertainty in CS values and to extend the 
TCM projections to be probabilistic. 

3.3. Regional climate projections 

Pattern scaling is a technique for producing regional scenarios based 
on the robust finding documented in the literature of stationarity in 
geographical patterns of change in some climate variables, in particular 
temperature and precipitation (Santer et al., 1990; Collins et al., 2013; 
Tebaldi and Arblaster 2014). These patterns can be scaled by global 
temperature change to produce regional climate change scenarios in a 
simple and computationally efficient manner that provide a useful 
approximation to those produced by complex global climate models. 

The performance of pattern scaling techniques has been evaluated in 
the literature in several occasions (Mitchell 2003; Cabré et al., 2010; 
Collins et al., 2013; Tebaldi and Arblaster 2014; Herger et al., 2015; 
Kravitz et al., 2017a; Zelazowski et al., 2018; Tebaldi and Knutti, 2018; 
Osborn et al., 2018). These techniques produce adequate approxima
tions for variables such as annual/seasonal temperature and precipita
tion and other variables excluding extreme events and time-scales in 
which natural variability is dominant. These patterns are also adequate 
for most of the emissions scenarios, including low-warming policy tra
jectories and most regions except where local forcing is strong and 
time-varying (Collins et al., 2013; Estrada and Botzen 2021). An 
example of the latter are scenarios that involve very high aerosols 
emissions. The reason is that the modelling approach does not capture 
the effects of regional cooling by aerosols or land-surface feedbacks due 
to conditions that not reflected by the library of scaling patterns.The 
pattern scaling technique can be described as follows (Collins et al., 
2013; Tebaldi and Arblaster 2014; Estrada and Botzen 2021): 

P(i, j, t,E, y, s)= T(t, E)p(i, j, y, s) + ξ(i, j, t, s) (23)  

where i, j denote longitude and latitude, respectively, and t is time. E 
represents the emissions scenario, y is the climate variable of interest, s is 
the time of the year for which the scenarios is constructed (annual, 
month, season) and T(t) is the global annual mean temperature change 

Table 2 
Estimated slope parameter values of regression Tsens*

t = ωTmedium
t + εt for annual 

mean air surface global temperature projections using MAGICC6.  

Scenario ω (CS = 4.5) ω (CS = 1.5) 

RCP8.5 1.3369 0.5762 
RCP6 1.3345 0.5720 
RCP4.5 1.3430 0.5652 
RCP3PD 1.3510 0.5582 
Mean 1.3414 0.5679  
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at time t under the emission scenario E. P(⋅) is the projected field of 
change for variable y obtained using a complex climate model, while p(⋅)
is the time/emissions scenario invariant spatial pattern of change per 
1 ◦C change in annual global mean temperature, for the climate variable 
y. ξ(i, j, t, s) represents is an error term due to both natural variability and 
the limitations of the pattern scaling methodology (Collins et al., 2013; 
Estrada and Botzen 2021). 

The patterns p(i, j, y, s) were calculated for monthly and annual air 
surface temperature and precipitation using simulations from a battery 
of coupled ocean-atmosphere general circulation models (Table S2) 
under the RCP8.5 emissions scenario and that are available at the CMIP5 
data portal (https://esgf-node.llnl.gov/search/cmip5/). All simulations 
were bilinearly interpolated into a common grid with a spatial resolu
tion of 2.5◦ × 2.5◦. The Hodrick Prescott filter (Hodrick and Prescott 
1997) was applied to the time series from each grid point from the 
climate models’ simulations to remove the effects of high frequency 
variability. Then, temperature/precipitation time series from each grid 
cell were regressed on the global mean temperature and the slope co
efficients were stored as maps that represent the scaling patterns (Kra
vitz et al., 2017b; Lynch et al., 2017). For producing the regional climate 
change scenarios, global mean temperature projections from section 2.2 
are used to scale the patterns produced in this section. The projections 
are expressed in ◦C for changes in temperatures and in percentage of 
change for precipitation, with respect to preindustrial conditions (c. 
1750). AIRCC-Clim allows the user to select the scaling patters for any 
given climate model, as well as to generate probabilistic scenarios 
combining all of them. This stochastic version of AIRCC-Clim uses a 
uniform distribution which assigns the same probability to each of the 
climate models. A variety of approaches for assigning probabilities to 
climate models’ output have been proposed in the literature (Xu et al., 
2010; Knutti et al., 2010; Mendlik and Gobiet 2016) but there is no 
agreement on which would be the best way of doing it (Knutti 2010; 
Stephenson et al., 2012; Deser et al., 2014; Notz 2015). The uniform 
distribution follows the Principle of Insufficient Reason which is the 
maximum entropy distribution in absence of any additional information 
(Jaynes 1957; Jaynes et al., 2003; Gay and Estrada 2010). Other prob
ability distributions based on performance evaluation or model depen
dence could be implemented, however these distributions may be as 
arbitrary as assigning equal probabilities to each model and may lead to 

unjustified dismissal of uncertainty (Potter and Colman 2003; Gay and 
Estrada 2010; Altamirano del Altamirano del Carmen et al., 2021). 

Climate change scenarios for temperature and precipitation can be 
exported as GeoTIFF and netCDF files for three time horizons: 2030 
(2021–2040), 2050 (2041–2060) and 2070 (2061–2080). Maps of 
changes in temperature and precipitation for any year between 2005 
and 2100 can be exported as high-quality PNG and as netCDF files. 

3.4. Climate risk index generator 

AIRCC-Clim uses the probabilistic nature of its projections to pro
duce user-defined risk measures based on thresholds. The current 
version of the model includes two types of risk metrics: probabilities of 
exceedance and the dates when the selected threshold is exceeded. The 
threshold values are selected by the user to reflect his perceptions of risk 
and information needs. Note that due to the exporting capabilities of this 
software, AIRCC-Clim’s output can be combined with information 
external from the model, such as population projections to indicate 
hotspots of severe climate change in populated areas. 

The calculation of the risks indices is done following the same pro
cedure as CLIMRISK (Estrada and Botzen 2021). First, the indicator 
function is used to identify in which simulations and grid cells the 
threshold is exceeded. In the case of changes in temperature T, we have: 

IRTi,j,t,sim = I
(
Ti,j,t,sim >T*) 24  

where IRTi,j,t,sim is a four-dimensional matrix in which i, j are the longi
tude and the latitude that define the location of the gird cell, t is time, sim 
is the number that identifies each of the realizations of the simulation 
experiment, and T* is the user-defined threshold in ◦C. For cases in 
which the threshold T* is exceeded the indicator function returns a value 
of 1 and zero otherwise. In the case of the change in precipitation P, the 
threshold of interest P* can be positive or negative and thus the indicator 
function is applied as follows: 

IRPi,j,t,sim =

{
I
(
Pi,j,t,sim > P*) if P* > 0

I
(
Pi,j,t,sim < P*) otherwise

(25)  

IRPi,j,t,sim is a four-dimensional matrix defines as above in which the 
indicator function returns a value of 1 if the threshold P* is exceeded and 

Fig. 4. Actual MAGICC6 projections for different RCP scenarios and projections of high/low CS approximated using the parameters in Table 2. M, H, L denote 
projections using medium, high, and low CS values, while the symbol * indicates the projections are obtained using the average scaling parameters in Table 2. 
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zero otherwise. 
Estimates of the probabilities of exceeding the thresholds T* and P* 

can be obtained by summing over the sim dimension: 

PIRTi,j,t =P
(
Ti,j,t >T*)=

∑n
sim=1IRTi,j,t,sim

n
(26)  

PIRPi,j,t =P
(
Pi,j,t >P*)=

∑n
sim=1IRPi,j,t,sim

n
if P* > 0 (27a)  

PIRPi,j,t =P
(
Pi,j,t <P*)=

∑n
sim=1IRPi,j,t,sim

n
if P* ≤ 0 (27b)  

where PIRTi,j,t and PIRPi,j,t , are three-dimensional matrices containing 
probability estimates. The estimated probability maps can be exported 
as PNG and netCDF files for any year in the period 2005–2100. 

These probability estimates of exceeding critical thresholds are used 
to estimate the expected dates when such thresholds would be attained. 
These dates can be computed as follows: 

IDTi,j,t = I
(
PIRTi,j,t ≥ γ

)
(28)  

IDPi,j,t = I
(
PIRPi,j,t ≥ γ

)
(29)  

where the parameter γ represents the percentage of simulations that is 
required by the user to declare the threshold has been exceeded. IDTi,j,t 

and IDPi,j,t are matrices in which the entries take the value 1 if the 
confidence level γ is attained or exceeded and zero otherwise. In AIRCC- 
Clim and CLIMRISK, this value is called confidence level and can vary 
with the risk tolerance of different users. The default value in AIRCC- 
Clim is 50%. The estimated dates for exceeding the risk threshold are 
obtained by mapping into a year index the first occurrence of the value 1 
in the time dimension of all gird cells in IDTi,j,t and IDPi,j,t. The maps of 
the dates of exceedance can be exported as PNG and netCDF files. 
Table S3 provides a list of the climate risk indices and their definition. 

4. Estimating the risks of delaying the implementation of deep 
mitigation efforts 

In this section we provide an example application of AIRCC-Clim in 
which the effects on climate from a high-emissions trajectory (RCP6.0) 
are compared to those of a deep mitigation scenario (RCP2.6) consistent 

Fig. 5. Global temperature projections using the ST 
model. Panels a), b) and c) show the simulations for 
the RCP6.0, RCP2.6 and the modified RCP2.6 sce
narios, respectively. The red bold line shows the 
mean of the ensemble while the dark slashed blue 
lines depict the 5th and 95th percentiles of the 
ensemble, and the light green and yellow lines show 
the individual simulations. Each experiment has 500 
simulations. Changes in global temperature are with 
respect to preindustrial conditions (c. 1750).   
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with the goals of the Paris Agreement and to those in which such miti
gation effort is delayed ten years. 

Figure S1 shows the trajectories of CO2, CH4 and N2O for the RCP6.0, 
RCP2.6 and the modified version of the RCP2.6 scenarios in which 
mitigation is delayed for 10 years, starting in 2020. The modified 
version of the RCP2.6 was edited in Excel and directly loaded to AIRCC- 
Clim using the user-defined option for emissions scenarios. The RCP6.0 
and the RCP2.6 scenarios produce contrasting results in terms of their 
effects on climate. While the first produces a mean increase in global 
temperature of about 3 ◦C with respect to preindustrial conditions at the 
end of this century, and up to 4 ◦C when the 95th percentile is consid
ered, the RCP2.6 limits warming below 2 ◦C for the ensemble mean 
(about 1.7 ◦C), although this limit is exceeded for the 95th percentile 
(Fig. 5). The MAGICC model produces similar results, with a mean in
crease in global temperature of 3.1 ◦C and 1.6 ◦C for the end of the 
century under the RCP6.0 and RCP2.6 scenarios, respectively (Fig. S2). 
The TCM produces a considerably larger mean increase for the RCP6.0 
(3.9 ◦C), but that still lies within the likely range of the CMIP5 experi
ment (Table 1). The ST simulations for the modified RCP2.6 in which the 
mitigation effort is delayed for 10 years, show that the mean increase in 
global temperature reaches 2 ◦C in 2100, and up to 3 ◦C in the 95th 
percentile. 

Figs. 6 and 7 show the changes in annual mean temperature and total 
annual precipitation at the grid cell level for the three emissions sce
narios and two time-horizons (2050 and 2100). Temperature increase is 
much larger in high latitudes of the northern hemisphere due to the 
Arctic Amplification phenomenon (Pithan and Mauritsen 2014), 
reaching about 6 ◦C for the mid-century and more than 8 ◦C in 2100, 
under the RCP6.0 scenario (see Figs. S3 and S4 for results using the 
precalculated MAGICC6 and TCM runs). Most of the continents would 
experience temperature increases in 2050 of about 2 ◦C to 3 ◦C and of 
about 4 ◦C to 5 ◦C in 2100. Apart from the Arctic region, midlatitudes in 
North America and in Eurasia would have the largest increases 
(5◦C-6◦C) in temperature by the end of the present century, followed by 
Southern Asia and the Middle East, North and South Africa, parts of the 
west coast of North America, Mexico and the Amazonian region and the 
northern part of Brazil. Large changes are also expected in precipitation 

under the RCP6.0 scenario, with large increases in high latitudes, the 
equatorial Pacific Ocean and some parts of the Middle East, and large 
decreases in the Mediterranean, the Caribbean, Mexico, and the south
ern part of the US, as well as in southern parts of Africa and America 
(Figs. S3 and S4). The implementation of a deep mitigation effort 
consistent with the goals of the Paris Agreement would significantly 
limit these changes in climate. Under the RCP2.6 most of the Arctic 
would not exceed a warming of 5 ◦C during this century, most continents 
would not exceed 3.5 ◦C, and precipitation change would be notably 
smaller. 

AIRCC-Clim portraits the risks of climate change, and the benefits of 
mitigation, in a clearer way due to its probabilistic nature and its ca
pacity to produce maps of probabilities and of dates of exceedance. 
Figs. 8 and 9 show the probabilities of exceeding a 2.5 ◦C increase in 
annual temperatures and a decrease of 15% in annual precipitation in 
2050 and 2100. Under the RCP6.0, by 2050 the probabilities of 
exceeding 2.5 ◦C increase in annual temperatures are higher than 60% 
for most of the continents, while the Arctic region and the high latitudes 
of the northern hemisphere are virtually certain to exceed this threshold 
by mid-century (Fig. S5). These simulations also show that a 2.5 ◦C 
warming would be exceeded in all continents by 2100 and that there is a 
high probability (above 60%) that this threshold would be crossed in all 
oceans, except for parts of the southern hemisphere and the Atlantic. 
The probabilities of exceeding a decrease of 15% in total annual pre
cipitation in 2050 are higher than 50% for several areas of the world 
such as the Mediterranean, parts of Northern, Western and Southern 
Africa, the Caribbean and Mexico (Fig. S5). For 2100, these probabilities 
increase to more than 60% in those regions and extend to parts of South 
America and West Australia. If the emissions trajectory described in by 
the RCP2.6 is achieved, by 2050 the probability of exceeding 2.5 ◦C 
would be lower than 40% over the continents, except for the Arctic and 
parts of the midlatitudes in the northern hemisphere where the proba
bilities range from 60% to 100% (Fig. 8). Likewise, the probabilities of 
exceeding decreases in precipitation of at least 15% are considerably 
smaller in comparison to the RCP6.0. However, by the end of this cen
tury the probabilities of exceeding this threshold would be close to 50% 
for the southern region of Spain, parts of North and West Africa 

Fig. 6. Annual temperature change projections (◦C) 
for different emissions scenarios estimated by the 
modified ST model. The upper panel shows the 
changes in temperature under the RCP6.0 scenario for 
2050 (left) and 2100 (right). The middle panel shows 
the changes in temperature under the RCP2.6 sce
nario for 2050 (left) and 2100 (right). The lower 
panel shows the changes in temperature under the 
delayed RCP2.6 scenario for 2050 (left) and 2100 
(right). Changes in regional temperatures are with 
respect to preindustrial conditions (c. 1750).   
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(Morocco, Mauritania, Mali, Senegal, Sierra Leone and Guinea), and 
about 40% for parts of the Caribbean, Central and South America 
(Colombia and Venezuela; Fig. 9). 

Fig. 10 shows the dates when the 2.5 ◦C threshold would be excee
ded. The default confidence level (γ = 50) was used for the estimates 
presented in this section. The results show that under the RCP6.0, most 
of the planet except for part of the southern oceans and part of the North 
Atlantic, would exceed the 2.5 ◦C threshold during this century and that 

some parts of the world already exceeded it (Fig. S5). The date of ex
ceedance for the Arctic occurred during the 2000s, while for much of the 
high latitudes in the northern hemisphere, the Middle East, parts of 
South Asia, and West and South Africa, the exceedance is expected to 
occur in the 2020s–2030s. The remainder of the continents and the 
Antarctic region would go over this threshold during the period 
2040–2060 and most of the oceans above the 20◦S would exceed the 
2.5 ◦C threshold during this century. The regions in which reductions of 

Fig. 7. As in Fig. 6 but for annual precipitation change (%).  

Fig. 8. Probabilities of exceeding increases of 2.5 ◦C 
in annual temperature for different emissions sce
narios estimated by the modified ST model. The 
upper panel shows the probabilities of exceedance for 
the RCP6.0 scenario in 2050 (left) and 2100 (right). 
The middle panel shows the probabilities of exceed
ance for the RCP2.6 scenario for 2050 (left) and 2100 
(right). The lower panel shows the probabilities of 
exceedance for the delayed RCP2.6 scenario for 2050 
(left) and 2100 (right). Probabilities are expressed in 
percentages. Changes in regional temperatures are 
with respect to preindustrial conditions (c. 1750).   
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at least 15% in annual precipitation is exceeded are fewer and form well- 
defined geographical patterns that cover the Mediterranean, parts of 
North, West and South Africa, Central America and the Caribbean, 
Mexico and Colombia and Venezuela in South America, as well as the 
west part of Australia and part of the southern Pacific Ocean (Fig. 10 and 
S5). The dates for exceedance on these regions are typically reached in 
the 2050–2060 decades, although regions of Spain and West Africa 
could exceed this threshold as early as the 2040s. 

Achieving RCP2.6 would prevent exceeding these thresholds for 
most of the world during this century (Fig. 10). However, as mentioned 

above, some regions such as the Arctic and the high latitudes of the 
northern hemisphere already have exceeded the 2.5 ◦C temperature 
threshold or will do so during the next decade, regardless of the emission 
scenario that is selected. For parts of the midlatitudes, the RCP2.6 rep
resents delaying reaching the 2.5 ◦C threshold for about 20 years, which 
buys time for adapting to the projected changes and to reduce risks and 
damages. The occurrence of this threshold would also be delayed until 
2060 in some parts of the Sahara, South Africa, the Middle East and 
India. Exceeding decreases in precipitation of more than 15% would not 
occur during this century, with the exception of a few grid cells in Africa, 

Fig. 9. As in Fig. 8 but for probabilities of exceeding decreases of 15% in annual precipitation.  

Fig. 10. Dates of exceedance for increases of 2.5 ◦C in 
annual temperature and decreases of 15% in annual 
precipitation for different emissions scenarios esti
mated by the modified ST model. The upper panel 
shows the dates of exceedance for annual temperature 
(left) and annual precipitation (right) under the 
RCP6.0 scenario. The middle panel shows the proba
bilities of exceedance for annual temperature (left) 
and annual precipitation (right) under the RCP2.6 
scenario. The lower panel shows the probabilities of 
exceedance for annual temperature (left) and annual 
precipitation (right) under the delayed RCP2.6 sce
nario. Blank areas on the maps are where the pro
jected thresholds are not exceeded at any point during 
the 21st century. Changes in regional temperatures 
and precipitation are with respect to preindustrial 
conditions (c. 1750).   
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Spain and Central America. 
AIRCC-Clim runs illustrate that delaying the deep mitigation efforts 

of the RCP2.6 by ten years would significantly increase the risks of 
climate change during this century. The bottom rows of Figs. 8 and 9 
show that, under delayed international action, the probabilities of 
exceeding 2.5 ◦C in annual temperature and a decrease of at least − 15% 
annual precipitation in 2100 are similar to those obtained in 2050 for 
the RCP6.0 and much higher than those of the original RCP2.6. The 
consequences of delaying for ten years the mitigation efforts described 
in the RCP2.6 are clearly illustrated by Fig. 10: North and South Africa, 
South America, the Middle East and Central Asia would exceed a 2.5 ◦C 
increase in temperatures around 2060, when this threshold was not 
reached during this century under the original RCP2.6 trajectory. Parts 
of Australia would exceed this threshold at the end of the present cen
tury if mitigation efforts were postponed. In terms of precipitation re
ductions, the Mediterranean region would be most affected, as the dates 
of exceedance of decreases of at least 15% in precipitation would occur 
as soon as 2040–2050 for the south of Spain and North Africa and at the 
end of this century for Greece. Western Africa would go over this 
threshold in 2040, and parts of Central America and South Africa would 
see decreases of more than 15% in the 2050–2060 period. However, it is 
important to note that this delayed action scenario still provides 
important benefits in comparison with the RCP6.0, which is commonly 
used to represent current international mitigation commitments. Some 
of the most affected regions due to warming would buy time (about 2 
decades) for adapting to a 2.5 ◦C under the delayed version of the 
RCP2.6. This is not so clear with regard to exceeding − 15% decrease in 
annual precipitation for the most affected regions, as in comparison with 
the RCP6.0, the delayed version of the RCP2.6 would buy them only 
5–10 years for implementing adaptation actions. 

Monthly estimates of changes in precipitation and temperature are 
commonly needed for assessing the impacts of climate change in natural 
and human systems. AIRCC-Clim also generates estimates of monthly 
temperature and precipitation change, as well as estimates of proba
bilities and dates of exceedance for user-defined thresholds. Fig. 11 il
lustrates this feature for the RCP6 emissions scenario and for the central 
month of winter and summer (i.e., February and July). During the 
coldest months in the northern hemisphere’s winter, the threshold of 
2.5 ◦C was exceeded at the beginning of this century in the Arctic, while 
for parts of the midlatitudes it will be exceeded during this decade of in 
the 2030s (Fig. 11a). In most of the remaining parts of the northern 
hemisphere the 2.5 ◦C threshold in temperatures during February would 
be exceeded in the 2030–2050 decades. For parts of North and Central 

America, the driest months occur in winter and precipitation in February 
in those areas would decrease at least 15% as soon as 2030. In the case of 
regions in southern hemisphere, such as Australia, Central and South 
Africa, as well as most of South America, the temperature threshold 
during one of the hottest months (February) would occur before 2060 
and, in some parts of these region, this threshold could be exceeded 20 
years earlier. 

The hottest months in the northern hemisphere occur during the 
boreal summer. As shown in Fig. 11c, exceeding the threshold a 2.5 ◦C 
increase in July would happen in this decade for regions in the Medi
terranean such as Spain, France, Italy, Greece, and parts of North Africa. 
In these regions, exceeding this threshold in temperatures during July 
would be accompanied by decreases of at least 15% in precipitation 
before 2050 in the same month, which is one of the driest in the 
Mediterranean. 

Moreover, due to its capabilities for exporting output, AIRCC-Clim 
can be easily combined with other products to address the user’s spe
cific information needs. Fig. 12 combines external population pro
jections from the SSP3 scenario that were obtained from the CLIMRISK 
model (Estrada and Botzen 2021) with two risk measures produced with 
AIRCC-Clim to provide a first approximation of risk and exposure. 
Climate and population projections show that by 2050 some regions of 
the world will have high exposure and high probabilities of experiencing 
large changes in climate. In the bivariate map shown in Fig. 12a dark 
magenta color indicate regions for which large population and high 
probabilities of exceeding 15% decrease in precipitation are projected. 
These high-risk, high-exposure regions include large fractions of the 
Mediterranean, Central America and parts of the Middle East and South 
Asia. Light yellow areas indicate regions characterized by large popu
lation but low probabilities of decreases in precipitation of at least 15%. 
These include high latitude regions in the northern hemisphere for 
which most climate models’ projections suggest an increase in precipi
tation. This combination of population and precipitation change would 
be found in parts of India, China, parts of central, northern and eastern 
Europe, northern US and Canada. Light blue regions such as Australia, 
large parts of Noth Africa and South America, are where decreases in 
precipitation of at least 15% are highly likely but where population 
counts are low. 

Fig. 12b shows a bivariate map of population counts and the prob
ability of exceeding 2.5 ◦C in annual temperature change by year 2050. 
Regions such as the eastern part of the US, Central America, most of 
Europe, India, China, the Middle East and parts of Africa are shown in 
dark magenta color. These regions are characterized by high 

Fig. 11. Estimates of dates of exceedance during February and July for 2.5 ◦C and − 15% thresholds in temperature and precipitation, respectively. Blank areas on 
the maps are where the projected thresholds are not exceeded at any point during the 21st century. Changes in regional temperatures and precipitation are with 
respect to preindustrial conditions (c. 1750). 
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probabilities of exceeding 2.5 ◦C and large population counts. Regions in 
light blue hue represent places where the probability of exceeding a 
warming of at least 2.5 ◦C in 2050 are high, but population in those areas 
is not large. This is the case of high latitudes in the northern hemisphere, 
Australia, the Amazon rainforest, the Sahara, Namib and the Arabian 
deserts. Moreover, Fig. 12 helps to identify risk hotspots in which pop
ulation counts will be high in the future and significantly dryer and 
hotter conditions will likely occur. Such combination of factors has been 
associated with higher risks of human conflict and migration (Barrios 
et al., 2006; Hsiang et al., 2013; Hodler and Raschky 2014; World Bank 
2016; Puente et al., 2016), as well as impacts on biomass production and 
more frequent wildfires (De Dato et al., 2008; Stevens-Rumann et al., 
2018). 

5. Conclusions 

Here we present AIRCC-Clim, an emulator of complex climate 
models included in the IPCC’s Fifth Assessment Report that allows 
generating probabilistic climate change projections and risk measures 
for RCP emissions scenarios, as well as for user-defined emissions sce
narios. Global temperature projections are produced using a modified 

version of the ST model and precalculated runs of the MAGICC and TCM 
models. AIRCC-Clim has a spatial resolution of 2.5◦ × 2.5◦ and produces 
monthly and annual temperature and precipitation scenarios. This is a 
user-friendly, stand-alone software aimed for students, decision-makers, 
and researchers that allows for quick estimates of changes in climate, as 
well as of the probabilities and dates of exceedance of user-defined 
thresholds. The AIRCC-Clim model attempts to fill users’ needs for 
models that have low technical and computing requirements, but that 
are able to emulate complex climate models’ output and produce 
spatially explicit, probabilistic projections and risk measures. 

AIRCC-Clim extends the ST climate model to include a dynamic 
climate sensitivity that takes advantage of the well-established 
approximately linear relationship between cumulative CO2 emissions 
and global temperature increase. This extension of the ST model, com
bined with stochastic simulation, allows to closely approximate the best 
estimate and likely range included in the Fifth Assessment Report of the 
IPCC. By means of a simple stochastic simulation procedure, we account 
for the uncertainty in the climate sensitivity parameter and produce 
probabilistic scenarios based on MAGICC and TCM precalculated runs. 
Extensions and future development of this model include the integration 
with IVA and integrated assessment models, such as simple agricultural 
emulators and climate-economy models (Estrada et al., 2020; Ignjacevic 
et al., 2020, 2021; Estrada and Botzen 2021); the inclusion of additional 
climate variables (e.g., minimum and maximum temperatures, sea level 
rise and bioclimatic indices), as well as complementary uni- and 
multivariate risk measures. 
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Knutti, R., Sedláček, J., 2012. Robustness and uncertainties in the new CMIP5 climate 
model projections. Nat. Clim. Change 3, 1–5. https://doi.org/10.1038/ 
nclimate1716. 

Knutti, R., Furrer, R., Tebaldi, C., et al., 2010. Challenges in combining projections from 
multiple climate models. J. Clim. 23, 2739–2758. https://doi.org/10.1175/ 
2009JCLI3361.1. 

Knutti, R., Rugenstein, M.A.A., Hegerl, G.C., 2017. Beyond equilibrium climate 
sensitivity. Nat. Geosci. 10, 727–736. 

Kravitz, B., Lynch, C., Hartin, C., Bond-Lamberty, B., 2017a. Exploring precipitation 
pattern scaling methodologies and robustness among CMIP5 models. Geosci. Model 
Dev. (GMD) 10, 1889–1902. https://doi.org/10.5194/gmd-10-1889-2017. 

Kravitz, B., Lynch, C., Hartin, C., Bond-Lamberty, B., 2017b. Exploring precipitation 
pattern scaling methodologies and robustness among CMIP5 models. Geosci. Model 
Dev. (GMD) 10, 1889–1902. https://doi.org/10.5194/gmd-10-1889-2017. 

Lewis, N., Curry, J.A., 2015. The implications for climate sensitivity of AR5 forcing and 
heat uptake estimates. Clim. Dynam. 45, 1009–1023. https://doi.org/10.1007/ 
s00382-014-2342-y. 

Lynch, C., Hartin, C., Bond-Lamberty, B., Kravitz, B., 2017. An open-access CMIP5 
pattern library for temperature and precipitation: description and methodology. 
Earth Syst. Sci. Data 9, 281–292. https://doi.org/10.5194/essd-9-281-2017. 

Maier-Reimer, E., Hasselmann, K., 1987. Transport and storage of CO2 in the ocean – an 
inorganic ocean-circulation carbon cycle model. Clim. Dynam. 2, 63–90. https://doi. 
org/10.1007/BF01054491. 

Meinshausen, M., Raper, S.C.B., Wigley, T.M.L., 2011a. Emulating coupled atmosphere- 
ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: model 
description and calibration. Atmos. Chem. Phys. 11, 1417–1456. https://doi.org/ 
10.5194/acp-11-1417-2011. 

Meinshausen, M., Smith, S.J., Calvin, K., et al., 2011b. The RCP greenhouse gas 
concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241. 
https://doi.org/10.1007/s10584-011-0156-z. 

Meinshausen, M., Wigley, T.M.L., Raper, S.C.B., 2011c. Emulating atmosphere-ocean and 
carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications. Atmos. 
Chem. Phys. https://doi.org/10.5194/acp-11-1457-2011. 

Mendlik, T., Gobiet, A., 2016. Selecting climate simulations for impact studies based on 
multivariate patterns of climate change. Clim. Change 135, 381–393. https://doi. 
org/10.1007/s10584-015-1582-0. 

Mitchell, T.D., 2003. Pattern scaling: an examination of the accuracy of the technique for 
describing future climates. Clim. Change 60, 217–242. https://doi.org/10.1023/A: 
1026035305597. 

Moore, F.C., Rising, J., Lollo, N., et al., 2018. Mimi-PAGE, an open-source 
implementation of the PAGE09 integrated assessment model. Sci. Data 5, 180187. 
https://doi.org/10.1038/sdata.2018.187. 

Nicholls, Z., Meinshausen, M., Lewis, J., et al., 2021. Reduced complexity model 
Intercomparison project phase 2: synthesizing Earth system knowledge for 
probabilistic climate projections. Earth’s Future 9, e2020EF001900. https://doi.org/ 
10.1029/2020EF001900. 

Nordhaus, W.D., Boyer, J., 2003. Warming the World: Economic Models of Global 
Warming. MIT press. 

Notz, D., 2015. How well must climate models agree with observations? Philos. Trans. R. 
Soc. A Math. Phys. Eng. Sci. 373, 20140164 https://doi.org/10.1098/ 
rsta.2014.0164. 

Osborn, T.J., Wallace, C.J., Lowea, J.A., Bernie, D., 2018. Performance of pattern-scaled 
climate projections under high-end warming. Part I: surface air temperature over 
land. J. Clim. 31, 5667–5680. https://doi.org/10.1175/JCLI-D-17-0780.1. 

Pithan, F., Mauritsen, T., 2014. Arctic amplification dominated by temperature 
feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184. https://doi. 
org/10.1038/ngeo2071. 

Potter, T.D., Colman, B.R., 2003. Handbook of Weather, Climate, and Water : 
Atmospheric Chemistry, Hydrology, and Societal Impacts. Wiley-Interscience. 

Puente, G.B., Perez, F., Gitter, R.J., 2016. The effect of rainfall on migration from Mexico 
to the United States. Int. Migr. Rev. 50, 890–909. https://doi.org/10.1111/ 
imre.12116. 

Ramaswamy, V., Boucher, O., Haigh, J., et al., 2001. Radiative forcing of climate change. 
In: Climate Change 2001: the Scientific Basis, Contribution of Working Group I to the 
Third Assessment Report of the Intergovernmental Panel on Climate Change. 

Rogelj, J., Meinshausen, M., Sedláček, J., Knutti, R., 2014. Implications of potentially 
lower climate sensitivity on climate projections and policy. Environ. Res. Lett. 9, 
031003 https://doi.org/10.1088/1748-9326/9/3/031003. 

Sanderson, B.M., Knutti, R., Caldwell, P., 2015. A representative democracy to reduce 
interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194. https://doi. 
org/10.1175/JCLI-D-14-00362.1. 

Santer, B.D., Wigley, T.M.L., Schlesinger, M.E., Mitchell, J.F.B., 1990. Developing 
climate scenarios from equilibrium GCM results. Report/Max-Planck-Institut. für 
Meteorol. 47. 

Santer, B.D., Bonfils, C.J.W., Fu, Q., et al., 2019. Celebrating the anniversary of three key 
events in climate change science. Nat. Clim. Change 9, 180–182. 

Schneider, S.H., Thompson, S.L., 1981. Atm)ospheric CO 2 and climate: importance of 
the transient response. J. Geophys. Res. 86, 3135. https://doi.org/10.1029/ 
JC086iC04p03135. 

Stephenson, D.B., Collins, M., Rougier, J.C., Chandler, R.E., 2012. Statistical problems in 
the probabilistic prediction of climate change. Environmetrics 23, 364–372. https:// 
doi.org/10.1002/env.2153. 

Stevens-Rumann, C.S., Kemp, K.B., Higuera, P.E., et al., 2018. Evidence for declining 
forest resilience to wildfires under climate change. Ecol. Lett. 

Stocker, T.F., Qin, D., Plattner, G.K., et al., 2013. Climate Change 2013 the Physical 
Science Basis: Working Group I Contribution to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. 

F. Estrada et al.                                                                                                                                                                                                                                 

https://doi.org/10.1007/s10584-009-9737-5
https://doi.org/10.1007/s10584-009-9737-5
https://doi.org/10.1002/qj.49706427503
https://doi.org/10.1002/qj.49706427503
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref10
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref10
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref10
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref10
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref11
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref11
https://doi.org/10.1038/nature25450
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref13
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref13
https://doi.org/10.3832/IFOR0418-0010039
https://doi.org/10.3832/IFOR0418-0010039
http://iforest.sisef.org/1:39
https://doi.org/10.1175/JCLI-D-13-00451.1
https://doi.org/10.1111/NYAS.14652
https://doi.org/10.1111/NYAS.14652
https://doi.org/10.1080/17421772.2020.1754448
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/joc.5086
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref19
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref19
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref19
https://doi.org/10.1098/rsta.2015.0092
https://doi.org/10.1126/sciadv.1501923
https://doi.org/10.1126/sciadv.1501923
https://doi.org/10.1007/s10584-009-9681-4
https://doi.org/10.1038/357315a0
https://doi.org/10.1002/2015GL063569
https://doi.org/10.1002/2015GL063569
https://doi.org/10.1016/J.ECONLET.2014.07.027
https://doi.org/10.2307/2953682
https://doi.org/10.1126/science.1235367
https://doi.org/10.1016/j.envsoft.2020.104784
https://doi.org/10.1088/1748-9326/AC0D7A
https://doi.org/10.1088/1748-9326/AC0D7A
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref30
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref31
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref31
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref31
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref31
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref32
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref32
https://doi.org/10.1103/PhysRev.106.620
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref34
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref34
https://doi.org/10.1007/s10584-018-2232-0
https://doi.org/10.1007/s10584-018-2232-0
https://doi.org/10.1007/s10584-010-9800-2
https://doi.org/10.1007/s10584-010-9800-2
https://doi.org/10.1098/RSTA.2015.0146
https://doi.org/10.1098/RSTA.2015.0146
https://doi.org/10.1038/nclimate1716
https://doi.org/10.1038/nclimate1716
https://doi.org/10.1175/2009JCLI3361.1
https://doi.org/10.1175/2009JCLI3361.1
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref40
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref40
https://doi.org/10.5194/gmd-10-1889-2017
https://doi.org/10.5194/gmd-10-1889-2017
https://doi.org/10.1007/s00382-014-2342-y
https://doi.org/10.1007/s00382-014-2342-y
https://doi.org/10.5194/essd-9-281-2017
https://doi.org/10.1007/BF01054491
https://doi.org/10.1007/BF01054491
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.5194/acp-11-1457-2011
https://doi.org/10.1007/s10584-015-1582-0
https://doi.org/10.1007/s10584-015-1582-0
https://doi.org/10.1023/A:1026035305597
https://doi.org/10.1023/A:1026035305597
https://doi.org/10.1038/sdata.2018.187
https://doi.org/10.1029/2020EF001900
https://doi.org/10.1029/2020EF001900
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref53
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref53
https://doi.org/10.1098/rsta.2014.0164
https://doi.org/10.1098/rsta.2014.0164
https://doi.org/10.1175/JCLI-D-17-0780.1
https://doi.org/10.1038/ngeo2071
https://doi.org/10.1038/ngeo2071
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref57
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref57
https://doi.org/10.1111/imre.12116
https://doi.org/10.1111/imre.12116
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref59
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref59
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref59
https://doi.org/10.1088/1748-9326/9/3/031003
https://doi.org/10.1175/JCLI-D-14-00362.1
https://doi.org/10.1175/JCLI-D-14-00362.1
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref62
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref62
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref62
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref63
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref63
https://doi.org/10.1029/JC086iC04p03135
https://doi.org/10.1029/JC086iC04p03135
https://doi.org/10.1002/env.2153
https://doi.org/10.1002/env.2153
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref66
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref66
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref68
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref68
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref68


Environmental Modelling and Software 157 (2022) 105528

15

Tan, I., Storelvmo, T., Zelinka, M.D., 2016. Observational constraints on mixed-phase 
clouds imply higher climate sensitivity. Science 352 (80), 224–227. https://doi.org/ 
10.1126/science.aad5300. 

Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment 
design. Bull. Am. Meteorol. Soc. 93, 485–498. 

Tebaldi, C., Arblaster, J.M., 2014. Pattern scaling: its strengths and limitations, and an 
update on the latest model simulations. Clim. Change 122, 459–471. https://doi. 
org/10.1007/s10584-013-1032-9. 

Tebaldi, C., Knutti, R., 2018. Evaluating the accuracy of climate change pattern 
emulation for low warming targets. Environ. Res. Lett. 13, 055006 https://doi.org/ 
10.1088/1748-9326/aabef2. 

Tol, R.S.J., 2019a. Climate Economics: Economic Analysis of Climate, Climate Change 
and Climate Policy, Second. Edward Elgar Publishing. 

Tol, R.S.J., 2019b. Matlab Scripts for FUND 4.0 MN. 
Tol, R.S.J., Fankhauser, S., 1998. On the representation of impact in integrated 

assessment models of climate change. Environ. Model. Assess. 3, 63–74. https://doi. 
org/10.1023/A:1019050503531. 

Weigel, A.P., Knutti, R., Liniger, M.A., Appenzeller, C., 2010. Risks of model weighting in 
multimodel climate projections. J. Clim. 23, 4175–4191. https://doi.org/10.1175/ 
2010JCLI3594.1. 

Wigley, T.M.L., 1995. MAGICC and SCENGEN: integrated models for estimating regional 
climate change in response to anthropogenic emissions. Stud. Environ. Sci. 65, 
93–94. https://doi.org/10.1016/S0166-1116(06)80197-4. 

World Bank, 2016. High and Dry: Climate Change, Water, and the Economy. World Bank. 
Xu, Y., Gao, X., Giorgi, F., 2010. Upgrades to the reliability ensemble averaging method 

for producing probabilistic climate-change projections. Clim. Res. 41, 61–81. 
https://doi.org/10.3354/cr00835. 

Zelazowski, P., Huntingford, C., Mercado, L.M., Schaller, N., 2018. Climate pattern- 
scaling set for an ensemble of 22 GCMs – adding uncertainty to the IMOGEN version 
2.0 impact system. Geosci. Model Dev. (GMD) 11, 541–560. https://doi.org/ 
10.5194/gmd-11-541-2018. 

F. Estrada et al.                                                                                                                                                                                                                                 

https://doi.org/10.1126/science.aad5300
https://doi.org/10.1126/science.aad5300
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref70
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref70
https://doi.org/10.1007/s10584-013-1032-9
https://doi.org/10.1007/s10584-013-1032-9
https://doi.org/10.1088/1748-9326/aabef2
https://doi.org/10.1088/1748-9326/aabef2
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref73
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref73
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref74
https://doi.org/10.1023/A:1019050503531
https://doi.org/10.1023/A:1019050503531
https://doi.org/10.1175/2010JCLI3594.1
https://doi.org/10.1175/2010JCLI3594.1
https://doi.org/10.1016/S0166-1116(06)80197-4
http://refhub.elsevier.com/S1364-8152(22)00228-6/sref78
https://doi.org/10.3354/cr00835
https://doi.org/10.5194/gmd-11-541-2018
https://doi.org/10.5194/gmd-11-541-2018

	AIRCC-Clim: A user-friendly tool for generating regional probabilistic climate change scenarios and risk measures
	1 Software availability
	2 Introduction
	3 Model structure, data and methods
	3.1 Emissions scenario editor
	3.2 Global climate projections
	3.2.1 Modified schneider-thompson model
	3.2.2 Generating probabilistic global temperature projections using precalculated runs from MAGICC6 and the Thermodynamic C ...

	3.3 Regional climate projections
	3.4 Climate risk index generator

	4 Estimating the risks of delaying the implementation of deep mitigation efforts
	5 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


