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Abstract in smallholder farming systems, traditional farmer varieties of neglected and underuti-
lized species (NUS) support the livelihoods of millions of growers and consumers. NUS combine
cultural and agronomic value with local adaptation, and transdisciplinary methods are needed to
fully evaluate their breeding potential. Here, we assembled and characterized the genetic diversity
of a representative collection of 366 Ethiopian teff (Eragrostis tef) farmer varieties and breeding
materials, describing their phylogenetic relations and local adaptation on the Ethiopian landscape.
We phenotyped the collection for its agronomic performance, involving local teff farmers in a partic-
ipatory variety evaluation. Our analyses revealed environmental patterns of teff genetic diversity
and allowed us to identify 10 genetic clusters associated with climate variation and with uneven
spatial distribution. A genome-wide association study was used to identify loci and candidate genes
related to phenology, yield, local adaptation, and farmers’ appreciation. The estimated teff genomic
offset under climate change scenarios highlighted an area around lake Tana where teff cropping
may be most vulnerable to climate change. Our results show that transdisciplinary approaches may
efficiently propel untapped NUS farmer varieties into modern breeding to foster more resilient and
sustainable cropping systems.

Editor's evaluation

Teff (Eragrostis tef), a small-market domesticate native and commonly grown in Ethiopia and the
Horn of Africa, is comprehensively characterized for genetic, ecological and phenotypic variation in
this ambitious and interdisciplinary publication. Integration of small holder farmers in phenotyping
the collection, with an emphasis on gender considerations, elevates the characterization of Ethiopian
teff. This paper provides a solid foundation to accelerate teff breeding for a changing climate, and
provides an excellent model for the characterization of novel and underused crops.

Introduction
Large-scale, high-yielding cropping systems rely on a remarkable small set of crops. Approximately
half of the global farming land is devoted to maize, wheat, rice, and soybean (FAOSTAT, 2021) and
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elLife digest Small farms support the livelihoods of about two billion people worldwide. Small-
holder farmers often rely on local varieties of crops and use less irrigation and fertilizer than large
producers. But smallholdings can be vulnerable to weather events and climate change. Data-driven
research approaches may help to identify the needs of farmers, taking into account traditional knowl-
edge and cultural practices to enhance the sustainability of certain crops.

Teff is a cereal crop that plays a critical role in the culture and diets of Ethiopian communities. It
is also a super food appreciated on international markets for its nutritional value. Rural smallholder
farmers in Ethiopia rely on the crop for subsistence and income and make up the bulk of the country’s
agricultural system. Many grow local varieties with tremendous genetic diversity. Scientists, in collab-
oration with farmers, could tap that diversity to produce more productive or climate-resilient types of
teff, both for national and international markets.

Woldeyohannes, lohannes et al. produced the first large-scale genetic, agronomic and climatic
study of traditional teff varieties. In the experiments, Woldeyohannes and lohannes et al. sequenced
the genomes of 366 Ethiopian teff varieties and evaluated their agronomic value in common gardens.
The team collaborated with 35 local farmers to understand their preference of varieties and traits.
They then conducted a genome-wide association study to assess the crops’ productivity and their
adaptations to local growing conditions and farmer preferences. Genetic changes that speed up
teff maturation and flowering time could meet small farmers’ needs to secure teff harvest. Woldeyo-
hannes, lohannes et al. also identified a region in Ethiopia, where local teff varieties may struggle to
adapt to climate change. Genetic modifications may help the crop to adapt to frequent droughts that
may be a common characteristic of future climates.

The experiments reveal the importance of incorporating traditional knowledge from smallholder
farmers into data-driven crop improvement efforts considering genetics and climate science. This
multidisciplinary approach may help to improve food security and protect local genetic diversity on
small farms. It may also help to ensure that agricultural advances fairly and equitably benefit small
farmers.

the overall composition of worldwide food systems is rather uniform (Khoury et al., 2014). Yet,
hundreds of neglected or underutilized species (NUS) are still actively cultivated in highly diversified,
small-scale cropping systems, where they support the livelihoods of millions of people (Jamnadass
et al., 2020). NUS benefited of scant research and breeding improvement. Their diversity is not only
a proxy of pedoclimatic diversification of cropping systems, but also reflects socioeconomic diversity
and cultural heritage of local farmers (Tadele, 2019). Rich NUS agrobiodiversity is still conserved in
situ in smallholder farming systems, where the selection and cultivation conducted by local growers
resulted in untapped local varieties that could provide useful adaptive traits (Iragaba et al., 2020).
A comprehensive, transdisciplinary characterization of NUS farmer varieties that takes into consider-
ation diversity, adaptation, and farmer—consumer preferences may unlock the potential of NUS for the
sustainable intensification of farming systems (Dawson et al., 2018).

Crop scientists and breeders can now leverage the big data revolution to bridge the gap between
NUS and 21 century agriculture (Dawson et al., 2019). Genomic tools enable a rapid and cost-
effective characterization of large germplasm collections to unlock agrobiodiversity for breeding
(Poland, 2015), identify genetic factors responsible for traits of agronomic interest (Mascher et al.,
2019), and accelerate genetic gains (Juliana et al., 2019). Genomic data can be combined with
climatic data to gain insights into locus-specific adaptation (Lasky et al., 2015) and to estimate
genomic vulnerability under climate change scenarios (Aguirre-Liguori et al., 2021). Data-driven
methods can also be applied to characterize the socioeconomic contexts in which crops are grown
(van Etten et al., 2019a; van Etten et al., 2019b), generating insights that are critical to understand
cropping dynamics in smallholder farming systems (Gomez y Paloma et al., 2020; Iragaba et al.,
2020, Terlau et al., 2019). The agrobiodiversity maintained by farmers is the result of interactions
between genetic, environmental, and societal factors, and has a large potential for varietal innovation
when farmer preferences are factored into the selection process (Mokuwa et al., 2014). Participatory
varietal selection (PVS) approaches have been developed to directly involve farmers in the evaluation
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of breeding materials (Ceccarelli and Grando, 2007). Previous studies showed that data-driven PVS
can be combined with genomic data to identify genomic loci responsible for farmers’ appreciation
(Kidane et al., 2017) and model local crop performance in farmer fields (de Sousa et al., 2021).

The Ethiopian highlands are a paradigm of challenging agricultural ecosystems where NUS farmer
varieties are widely cultivated. In Ethiopia, 85 million people live in rural areas; most of them are
subsistence-based smallholder farmers who are responsible for about 90% of the cultivated land and
agricultural output of the country (Bachewe and Taffesse, 2018). Teff (Eragrostis tef) is an annual,
self-pollinating, and allotetraploid grass of the Chloridoideae subfamily (Ketema, 1997). It is widely
grown in Ethiopia as a staple crop, where it is valued for its nutritional and health benefits, resilience in
marginal and semi-arid environments and cultural importance (D’Andrea, 2008; Ketema, 1997). Teff
was likely domesticated in the northern Ethiopian Highlands from the allotetraploid Eragrostis pilosa,
but the timing of its initial cultivation and the identity of its diploid ancestors remain poorly under-
stood (D’Andrea, 2008; Ingram and Doyle, 2003; VanBuren et al., 2020). Nowadays, hundreds
of local landraces are grown in Ethiopia in a wide range of agroecologies, displaying broad envi-
ronmental adaptation and phenotypic diversity (Woldeyohannes et al., 2020). Breeding efforts on
teff have been underway for decades, and segregant and mutagenized populations are available
(Cannarozzi et al., 2018). Yet, teff yields today remain much lower than potentially attainable and
substantially lower than those of other cereals grown in the region, and the full breeding poten-
tial of teff farmer varieties is still undisclosed (Girma et al., 2014; Woldeyohannes et al., 2020).
Research in teff is rapidly evolving; a draft genome sequence (Cannarozzi et al., 2014) and a high-
quality genome sequence (VanBuren et al., 2020) recently brought this species into the international
genomics research spotlight. A data-driven research approach may unlock the full potential of teff
agrobiodiversity and propel breeding for new improved varieties that meet local needs.

Here, we report a transdisciplinary data-driven approach to characterize NUS genetic, agronomic,
and climatic diversity, using teff as a case study. We selected 321 teff farmer varieties derived from
landraces and 45 teff improved lines, and we genotyped them with genome-wide molecular markers.
Concurrently, we characterized their agronomic performance at two locations in Ethiopia. Experi-
enced teff farmers (15 women and 20 men) were asked to evaluate the teff genotypes, providing
qualitative information that enabled us to prioritize better adapted genetic materials. Additionally,
we derived current and projected climate data at the sampling locations of teff accessions and used
them to estimate genomic offset under climate change scenarios. We combined all these data in a
genome-wide association study (GWAS) framework to identify genomic loci and candidate genes with
relevance for adaptation, performance, and farmers’ preferences. We discuss the potential of data-
driven participatory approaches to characterize NUS diversity and to disclose their potential for the
sustainable intensification of farming systems.

Results and discussion

Teff farmer varieties harness broad genetic diversity

We assembled a representative collection of teff cultivated in Ethiopia, hereafter named Ethiopian
Teff Diversity Panel (EtDP). The EtDP comprises 321 farmer varieties spanning the entire geograph-
ical and agroecological range of teff cultivation in Ethiopia, from the submoist lowlands of Tigray in
the North to the moist lowlands of Oromia in the South, and from the subhumid lowlands of Benis-
hangul and Gumuz in the West to the subhumid mid-highlands of Oromia in the East (Figure 1—
figure supplement 1, Supplementary file 1A; MoA, 2000). The EtDP also includes 45 improved
varieties released since the first breeding efforts on teff and up to the moment of the EtDP assembly.
A selection of seven Eragrostis spp., putative wild relatives of teff, was included as an outgroup. The
genomic diversity of the EtDP was assessed starting from 12,153 high-quality, genome-wide single-
nucleotide polymorphisms (SNPs) that were derived from double digest restriction site-associated
sequencing (ddRAD-seq) of individual accessions, and were pruned for linkage disequilibrium (LD).
The EtDP genomes could be grouped in 1240 haplotype blocks (Supplementary file 1B). EtDP
chromosomes showed consistently higher pericentromeric LD, with localized LD peaks in telomeric
regions (Figure 1—figure supplement 2). The A and B subgenomes showed comparable yet different
LD profiles, possibly due to their specificity in terms of dominance, transposable elements content,
and overall limited homoeologous exchange (VanBuren et al., 2020).
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Population structure analysesshowed that EtDP accessions displayed varying degrees of genetic
admixture (Figure 1A) and could be best summarized by 10 discriminant analysis of principal compo-
nent (DAPC) clusters (Figure 1—figure supplement 3). About 15% of the genetic variability in the
EtDP collection could be explained by the first three principal components (PCs) of LD-pruned SNP
data (Figure 1B, C). Teff accessions from Tigray, in Northern Ethiopia, were markedly separated
from the rest, and mainly belonged to cluster 7 (Figure 1D). Teff breeding lines showed a narrower
genetic base compared to farmer varieties and could not summarize the broad diversity available
within the EtDP (Figure 1—figure supplement 4). They belonged predominantly to clusters 2, 8, and
10 (Figure 2D, E). Genetic clusters are a proxy of teff landraces diversity and may support breeding
efforts by improving the identification of parent lines for genomic selection to counter the deple-
tion of allelic diversity (Heffner et al., 2009), or establishing breeding groups to explore heterotic
potential in teff (Boeven et al., 2016). The preservation and valorization of teff genetic clusters are
instrumental to respond to future breeding needs in light of changing climates and dynamic consumer
preferences (Woldeyohannes et al., 2020; Araya et al., 2011).

The distribution of teff genetic variation is associated with geographic
and environmental factors

Landraces evolve at the interface of natural and anthropogenic selection (Casafas et al., 2017).
Hence, we hypothesized that teff genetic clusters might be associated with local environmental condi-
tions. The EtDP showed limited genetic stratification, as evidenced by the high levels of admixture
and low genetic variance explained by the principal components analysis (PCA) (Figure 1—figure
supplement 5; Figure 1B, C). Yet, some genetic clusters could be associated to agroecological zones
characterized by different temperature and precipitation conditions (Figure 1—figure supplement
6; Figure 3A, B; Figure 3—figure supplement 1). Cluster 4 and 7 are cultivated in warmer sampling
locations, while cluster 6 comes from colder and wetter areas (Figure 3—figure supplement 1).
Extant landraces diversity is not only contributed by climate, but also by seed circulation. Studies
have shown that cultural and social dynamics, such as belonging to similar or different ethnolinguistic
groups, are key factors in shaping seed exchange networks (Labeyrie et al., 2016; Samberg et al.,
2007). In Ethiopia, regional districts are markers of cultural and historical diversity, and smallholder
farmers have limited capacity for long-distance travel. Thus, we hypothesized that regional distinc-
tions could impact seed exchanges and spatial patterns of teff genetic diversity.

The district of sampling of teff landraces in the EtDP was used to aggregate accessions and calcu-
late the fixation index (F,) as a measure of genetic distances. Although our experimental design
does not allow to fully untangle the effect of geography, environment, and social factors, we found
a pattern of genetic variation distribution that could be associated to an isolation by distance and
adaptation process, where F,; values are significantly associated with geographic distance (Mantel r
= 0.31; p = 9e—04) and environmental distance (Mantel r = 0.352; p = 0.0137; Figure 3C, D). Acces-
sions from East Tigray (Misraquawi) showed the highest separation from the collection, followed by
East Oromia (Misraq Harerge) and West Amhara (Agew Awi; Figure 3E). Tigray is believed to be the
center of teff domestication, as earlier reports identified there much of its diversity (Costanza et al.,
2007) and archaeobotanical excavations reported its cultivation there since the Pre Aksumite period
(before | Century CE; D’Andrea, 2008). However, limited archeological information is available from
other parts of the country, which may conceal other sites of early domestication of teff. When inte-
grating the putative teff wild relatives Eragrostis curvula and E. pilosa in our teff landraces’ phylogeny,
we found that they did not group with any specific DAPC cluster (Figure 3—figure supplement 2).

Participatory evaluation of the teff diversity prioritizes genetic
materials for breeding

The EtDP was phenotyped for agronomic and farmer appreciation traits during the main cropping
season in two locations in Ethiopia (Figure 1D) representing areas with high potential for teff cultiva-
tion. Experienced teff farmers including 15 women and 20 men provided their evaluations on overall
appreciation (OA) and panicle appreciation (PA) across the EtDP. Women and men farmers were
selected because they were both teff growers, and their responses were analyzed separately to high-
light distinct trait evaluation criteria. Previous studies conducted in Ethiopia showed that agricultural
traits relevant to marketability, food and drink preparations, animal feed, and construction are all

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 4 of 25


https://doi.org/10.7554/eLife.80009

ELlfe Research article Genetics and Genomics

B Status
e breeding material
5 "
~ _ & Qo%q ST farmer variety
2 R . or°
N © 00 o
e B apenpendicgeacadinge ey DAPC
8 8 N o%g Oo @O | t
o o 1 e . 063: E cluster
® 1
-2 e 2
® 3
® 4
D E 3500 ® 5
3000 ® 6
E 2500
1N % e 7
T 2000
2 ® 8
12°N ® 1500 .
1000
® 10
o 10N 1 2 3 4 5 6 7 8 9 10
E Cluster
3
. m a.s.l.
&N F 100
4000
. 75
en i 3000
f = 50
3 2000
4N
25 . 1000
34°E  36°E  38°E  40°E  42°E  44°E  46°E  48°E -- !- —
longitude 0 —— 0
SM2 SM3 SM4 M2 M3 M4 SH2 SH3 SH4 H3  H4
Agroecological Zone

Figure 1. Genetic diversity of teff in Ethiopia. (A) ADMIXTURE results for the pruned single-nucleotide polymorphisms (SNPs) dataset. Each vertical
bar represents an individual, colored according to one of the 20 groups reported by the analysis. Bars are ordered according to the 10 genetic clusters
identified by discriminant analysis of principal component (DAPC), as reported by numbers on the x-axis. (B, C) Principal component analysis of
genome-wide SNPs. Taxa are colored according to their DAPC genetic cluster, as indicated in the legend. About 10.98% of the genetic diversity in the
panel can be explained by the first two principal components, which clearly separate cluster 7 from clusters 2 and 4. Open and close circles represent
farmer varieties and improved varieties, respectively. (D) Distribution of Ethiopian Teff Diversity Panel (EtDP) georeferenced landraces (N = 314) across
the altitudinal map of Ethiopia, color coded as in panel (B). (E) Altitude distribution across the DAPC genetic clusters,, with letters on top of boxplots
denoting significance levels based on a pairwise Wilcoxon rank sum test and Bonferroni correction for multiple testing. (F) Distribution of genetic
clusters across agroecological zones of Ethiopia, with color coding as in panel B. SM2, warm submoist lowlands; SM3, tepid submoist mid-highlands;
SM4, cool submoist mid-highlands; M2, warm moist lowlands; M3, tepid moist mid-highlands; M4, cool moist mid-highlands; SH2, warm subhumid
lowlands; SH3, tepid suphumid mid-highlands; SH4, cool subhumid mid-highlands; H3, tepid humid mid-highlands; H4, cool humid mid-highlands. This
figure has six figure supplements.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Distribution of georeferenced farmer varieties in the Ethiopian Teff Diversity Panel (EtDP) (N = 314) overlaid to agroecological
zones of Ethiopia.

Figure supplement 2. Linkage disequilibrium (LD) in subgenome A (A) and subgenome B (B).

Figure supplement 3. Predictive accuracy of the model-based unsupervised clustering (ADMIXTURE) and the discriminant analysis of principal
components (DAPC) using the fivefold cross-validation procedure and the Bayesian information criterion (BIC), respectively.

Figure 1 continued on next page
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Figure supplement 4. Unrooted neighbor-joining phylogenetic trees of the Ethiopian Teff Diversity Panel (EtDP) (N = 366).

Figure supplement 5. Population structure of the EtDP (N = 366).

Figure supplement 6. Residual plot for the Pearson’s chi-squared test of independence between discriminant analysis of principal component (DAPC)
genetic clusters and Ethiopian agroecological zones (df = 60, p value <2.2e—16).

perceived differently by women and men farmers (Assefa et al., 2014; Mancini et al., 2017). Regard-
less of gender, farmer evaluations were highly heritable and fully comparable to agronomic traits
commonly targeted by breeding (Supplementary file 1C). OA provided by farmers across genders
and across locations had a broad-sense heritability (H?) of 0.81 (Table 1). H* of grain yield combined
across the same two locations was 0.42 (Table 2). A significant portion of the variance for produc-
tion traits could be explained by differences in location, including biomass (75%) and yield (67%).
Conversely, phenology was mostly explained by genotype: this is the case of days to heading (92%)
and days to maturity (86%; Supplementary file 1C). Depending on the trait, we found different effects
of genetic background, location, and gender, a proxy of genotype by environment (G x E) interactions
in determining teff performance and appreciation in tested locations. Genetic clusters had a signifi-
cant effect on all traits, and location was important for yield and yield components (Supplementary
file 1D). PA, plant height, panicle length, culm diameter, and panicle weight were affected by the
interaction of location and genetic cluster. Gender and gender by location interactions always had
significant effects for PVS traits (Supplementary file 1D).

The high H? achieved by farmers’ OA may be because farmers, in providing their overall evaluation,
not only consider yield but also yield components with high heritability (Table 3). Farmers’ apprecia-
tion of teff genotypes was strongly associated with yield (p < 0.001) and its components regardless
of gender, most notably plant height (p < 0.001) and grain filling period (GFP) (p < 0.05) (Figure 2A,
Figure 2—figure supplement 1, Table 3). Plant height and GFP were very important for men, while
women OA was highly correlated with biomass yield and panicle weight (Table 3). Different dynamics
of trait prioritization by men and women are expected, and may reflect gender roles in the value chain
(Weltzien et al., 2019). Studies across smallholder farming systems in Africa showed that gender-
differentiated roles in agriculture may result in different trait preferences. In Ethiopian wheat, men are
mostly endowed with field work, while women are concerned with marketability of grains (Mancini
et al., 2017). Both in cassava (Teeken et al., 2018) and maize (Voss et al., 2021), women are mostly
concerned with use traits, while men prioritize agronomic trats. The underlying causes of gender
differentiation in teff trait preference need to be further characterized, also in relation to the multipur-
pose teff cultivation as food and feed. Still, men and women participating in the PVS were all expert
teff growers, as reflected by the consistency of their evaluations (Figure 2). Previous studies showed
that farmers’ appreciation has a genetic basis in the evaluated crop, and may be used to perform
genomic prediction (de Sousa et al., 2021) and identify genome-wide associations (Kidane et al.,
2017).

The top ranking teff accessions according to men and women farmers captured different genetic
backgrounds (Figure 2B), but the same trait combinations (Figure 2C). This suggested that farmers
were consistently preferring the same teff ideotype regardless of their gender and regardless of the
genetic background and geographic provenance of the accession. High yielding, high biomass, and
fast maturing varieties were preferred. Individually, teff improved varieties showed high OA and high
panicle length, which is a key component of OA (Figure 2D, E). This is supported by the fact that
the evaluation fields were high-potential areas for teff cultivation. Genetic cluster 2, that is repre-
sentative of most breeding materials, is associated with longer days to heading and maturity, higher
plant heights and panicle lengths, greater number of total tillers and higher yields (Figure 2—figure
supplement 2). Still, several traditional farmer varieties from different genetic backgrounds recorded
comparable, at times superior, performance than improved lines (Figure 2G). By selecting farmer vari-
eties that outperform improved varieties’ performances in target breeding traits, it may be possible
to prioritize landrace accessions for teff improvement (Figure 2D, E) or even immediately make them
available to farmers, as suggested by previous experiences in wheat (Fadda et al., 2020). In areas
exposed to terminal drought, common in Ethiopia, short maturation time is paramount to achieve
harvestable yield (Mengistu and Mekonnen, 2012), and it is expectedly a major component of
farmers’ OA (Figure 2A). The time of maturation is therefore an obvious target trait for teff breeding,
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Figure 2. Teff diversity on the landscape. (A) Principal component analysis of bioclimatic diversity in the Ethiopian Teff Diversity Panel (EtDP). Dots
represent teff farmer varieties belonging to genetic clusters, colored according to legend. Vectors represent the scale, verse, and direction of bioclimatic
drivers of teff differentiation. (B) Linear regression of F, values in relation to geographic distance of accessions in the EtDP. Accessions were grouped

by local district of sampling. (C) Linear regression of F,; values in relation to environmental distance of accessions, also grouped by district of sampling.

Figure 2 continued on next page
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(D) Pairwise F, values between teff accessions grouped by local districts of sampling, as in (C) and (D). Local districts, that is subregional groups, are
ordered by administrative regions according to legend. This figure has two figure supplements.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Bioclimatic differences among the 10 discriminant analysis of principal component (DAPC) clusters.

Figure supplement 2. Neighbor-joining phylogenetic trees of the Ethiopian Teff Diversity Panel (EtDP) rooted with wild relative accessions Eragrostis

pilosa and Eragrostis curvula.

although challenging to be combined with higher attainable yield. We found that many farmer vari-
eties had a shorter GFP than most improved lines, and that genotype EBI 95571 combined this trait
with higher yield and farmers’ appreciation (Figure 2G).

Participatory, climatic, and agronomic information to support teff
breeding

The data deriving from the transdisciplinary characterization of the EtDP was integrated in a GWAS
framework to identify genomic loci associated with agronomic performance, local adaptation, and
farmer preferences. These loci could be then used in marker assisted selection, genomic selection, or
new breeding technologies to support teff improvement. The GWAS led to the identification of a total
of 91 unique quantitative trait nucleotides (QTNs) (Supplementary file 1E). Of these, 43 QTNs were
associated with bioclimatic variables at sampling sites. Given the low-density genotyping, we did not
expect causal loci in the SNP set, yet it is possible to leverage local LD to target candidate genes in
the vicinity of associations. Both in the case of trait values and bioclimatic variables, associations may
be confounded by underlying LD structure driven by drift processes contributing to teff landraces’
differentiation. Teff genetic clusters (Figure 1) show different distributions in regards to bioclimatic
variables and traits values, including phenology, suggesting that the expression of adaptive traits may
be confounded by underlying structure (Figure 3—figure supplement 2, Figure 2—figure supple-
ment 2). The GWAS analysis was run with varying numbers of genetic covariates, so to optimize
model fit in consideration of trait-genotype covariance. Visual assessment of QQ plots was used as a
guidance to interpret significant associations, and a stringent threshold was employed so to minimize
Type Il errors (Figure 5—figure supplement 2).

We then focused on LD blocks associated to QTNs to identify homology of predicted teff proteins
with protein sequences of Arabidopsis thaliana and Zea mays (Supplementary file 1F). Among
others, we identified a locus on chromosome 2A that was associated with grain yield, grain filling
rate and OA (Icl|2A-14415768) (Figure 5; Figure 5—figure supplement 2). The LD region targeted
by this QTN harbors 39 gene models including two 60s ribosomal subunits and several homologs of
maize genes with suggestive function in relation to yield determination. Et_2A_015515, in this block,
is a homolog of a maize serine/threonine protein kinase 3, belonging to a broad class of proteins that
was associated with inflorescence development (McSteen et al., 2007) and grain yield (Jia et al.,
2020) in maize. These findings, although preliminary, may support the development of markers for
teff improvement as well as directing local and international research toward loci of relevance for teff
improvement.

We further explored the EtDP data using a gradient forest (GF) machine-learning algorithm to
calculate the contribution of environmental gradients to genomic variation in teff, and to estimate
its genomic offset, or vulnerability, under projected climates. We found that the turnover of allele
frequencies across the cropping area was best predicted by geographic variables (Moran’s eigenvector
map variables, MEM), confirming the importance of nonadaptive processes in teff differentiation and
the resulting relevance of structure in interpreting associations. MEMs were sided by precipitation
indicators, particularly precipitation of the coldest quarter (bio19) and precipitation of the wettest
month (bio13; Figure 4—figure supplement 1). The GF allowed us to model climate-driven genomic
variation patterns across the landscape (Figure 4A, B). Approximately a quarter of the SNPs (3,049 in
521 LD blocks) were predictive of the GF model: of these, 176 showed F values in the 99th percentile
of the distribution (Supplementary file 1G).

The GF outcome was then linked to the GWAS to identify genomic loci associated to climate, agro-
nomic performance, farmers’ preference, and adaptive potential of teff (Figure 4—figure supplement
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Figure 3. Phenotypic diversity in the Ethiopian Teff Diversity Panel (EtDP). (A) Pearson’s correlations between agronomic traits (y-axis) and farmer
preference traits, by gender (x-axis). Correlation values are expressed in color shades, as indicated in the the legend. (B, C) Top ranking genotypes
(90th percentile of the OA distribution) selected by men (blue) and women (purple) farmers, overlaid to the principal component analysis (PCA) of the
EtDP genetic diversity (B) and phenotypic diversity (C). Genotypes that were not selected are reported as gray dots. When men and women select the
same genotype, the corresponding point appears in dark violet. Trait distribution across discriminant analysis of principal component (DAPC) clusters,
for overall appreciation (D) and panicle length (E). Farmer varieties are represented by open circles, improved lines are represented by full circles. (F)
Alluvial plot reporting the consistency of farmers’ choice by quartiles of the OA distribution. Each vertical bar represents a combination of location
(Adet, Akaki) and gender (M, W). EtDP accessions are ordered on the y-axis according to their OA score in each combination. Alluvial flows are colored
according to OA quartiles combined across gender and across location according to the legend (g1, g2, g3, and g4). (G) Venn diagram reporting farmer
varieties having values superior to the 75th percentile of the trait distribution of improved varieties (lower than the 25th percentile in the case of GFP).
Each area of the Venn diagram reports the corresponding number of farmer varieties, as in the legend. DH, days to heading; DM, days to maturity;

PH, plant height; PL, panicle length; PBPM, number of primary branches per main shoot panicle; TT, total tillers; CLF, first culm length; CDF, first culm
diameter; PW, panicle weight; PY, panicle yield; GY, grain yield; BY, biomass yield; HI, harvest index; GFP, grain filling period; GFR, grain filling rate; BPR,
biomass production rate; OA, overall appreciation; PA, panicle appreciation. This figure has two figure supplements.

Figure 3 continued on next page
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Figure 3 continued
The online version of this article includes the following figure supplement(s) for figure 3:
Figure supplement 1. Correlations between agronomic traits and participatory varietal selection (PVS) traits, by location and gender.

Figure supplement 2. Phenotypic differences among the 10 discriminant analysis of principal component (DAPC) clusters.

2). We found that phenology QTNs were relevant in supporting GF prediction, although they could
not suffice in explaining the geographic distribution of teff diversity (Figure 4—figure supplement
3). The importance of phenology in teff adaptation was already reported (Woldeyohannes et al.,
2020), although it may be confounded by underlying population structure. On chromosome 1A at
32.3 Mb, precipitation of driest month (bio14) and seasonality of precipitations (bio15) identify a QTN
(Figure 4—figure supplement 1; Figure 5—figure supplement 2), whose local LD block harbors 176
gene models, among which four with predicted proteins with high homology with maize and Arabi-
dopsis proteins (Supplementary file 1F). The product of Et_1A_007229 is predicted to be homolo-
gous to a phosphatidylinositol kinase that is involved in flower development and has been shown to
influence floral transition in condition of abiotic stress (Akhter et al., 2016). This locus is in the vicinity
of a QTN for days to maturity, reinforcing this interpretation. Days to maturity was also associated
with a LD block at 20.8 Mb on chromosome 6A (Figure 4—figure supplement 1; Figure 4—figure
supplement 2), in the vicinity of associations for days to heading and for bioclimatic diversity (Supple-
mentary file 1E). In this block, nine gene products share homology with Arabidopsis and maize
(Supplementary file 1F). The protein encoded by Et_6A_046800 is homologous to an ETO1-like
protein involved in the regulation of ethylene synthesis in Arabidopsis (Wang et al., 2004). Ethylene
is a key plant hormone that has been shown to

Table 1. Heritabilities (H?) for farmers’ be related to spike development and senescence
participatory variety selection traits. (Valluru et al., 2017). These candidate genes
H? values are given for each trait, type, and have not been validated yet, and their evalua-
location combination. PA, panicle appreciation; ~ tion must be cautious especially for those signals
OA, overall appreciation; M, men; W, women; that may be confounded by background genetic
ALL, measures combined by either type or structure (Figure 5—figure supplement 2). With
location. an increasing refinement of teff gene annotations,
Trait Type Location H? corroborated by reverse genetic approaches (Zhu

et al., 2012), it will be possible to validate genes

PA ALL ALL 0.48 underlying traits of interest. Teff breeding could
PA ALL Adet 0.50  then fully benefit from targeted editing (Lemmon
PA ALL Akaki 065 etal., 2018)to speed up the development of new
varieties with improved yield, local adaptation
PA M ALL 043 and adherence to local preferences.
PA W ALL 0.45 The genome-wide teff adaptive potential
PA M Adet 035 across the landscape varied in magnitude and
distribution according to different predicted
PA w Adet 040 (limate scenarios for 2070 (Figure 4—figure
PA M Akaki 025  supplement 4). We used these data to compute
PA W Akaki 031 the genomic-adaptive offset between current and
future climate scenarios to identify vulnerable
OA ALL ALL 0.81

areas (Figure 4C, Figure 4—figure supplement
OA ALL Adet 071 5). In all representative concentration pathways
(RCPs), the highest offset was predicted in the

OA ALL Akaki 0.87

north-western highlands of the Amhara region,
OA M ALL 074 south of lake Tana (Figure 4C, Figure 4—figure
OA W ALL 0.74  supplement 4). Compared to other regions of the
OA M Adet 053 country, we found a decreasing trend of rainfall

change in this region across all emission scenarios
OA w Adet 0.66 (Figure 4—figure supplement 5; Figure 4—
OA M Akaki 0.88  figure supplement 6). In this area, hot nights
OA W Akaki 06y are projected to increase more quickly than hot
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Table 2. Heritabilities (H?) for agronomic traits.
H? values are given for each trait, and location
combination. DH, days to heading; DM, days
to maturity; PH, plant height; PL, panicle
length; PBPM, number of primary branches
per main shoot panicle; TT, total tillers; CLF,
first culm length; CDF, first culm diameter; PW,
panicle weight; PY, panicle yield; GY, grain
yield; BY, biomass yield; HI, harvest index;
GFP, grain filling period; GFR, grain filling rate;
BPR, biomass production rate; ALL, measures
combined by location.

Trait Location H?

DH ALL 0.99
DH Adet 0.96
DH Akaki 0.97
DM ALL 0.98
DM Adet 0.90
DM Akaki 0.89
PH ALL 0.16
PH Adet 0.92
PH Akaki 0.90
PL ALL 0.37
PL Adet 0.88
PL Akaki 0.81
PBPM ALL 0.64
PBPM Adet 0.83
PBPM Akaki 0.83
T ALL 0.25
T Adet 0.65
T Akaki 0.60
CLF ALL 0.13
CLF Adet 0.88
CLF Akaki 0.85
CDF ALL 0.15
CDF Adet 0.95
CDF Akaki 0.96
PW ALL 0.27
PW Adet 0.90
PW Akaki 0.88
PY ALL 0.25
PY Adet 0.92
PY Akaki 0.91

Table 2 continued on next page
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Table 2 continued

Trait Location H?

GY ALL 0.42
GY Adet 0.92
GY Akaki 0.93
BY ALL 0.34
BY Adet 0.84
BY Akaki 0.80
HI ALL 0.78
HI Adet 0.68
HI Akaki 0.76
GFP ALL 0.96
GFP Adet 0.79
GFP Akaki 0.83
GFR ALL 0.52
GFR Adet 0.90
GFR Akaki 0.92
BPR ALL 0.32
BPR Adet 0.80
BPR Akaki 0.77

days, with the most marked increases expected
to be experienced in the July, August, September
season (Figure 4—figure supplement 7).
Decreasing trends of rainfall during the main
growing season are predicted in all projected
scenarios, suggesting that seasonality might criti-
cally impact teff development stages (Figure 4—
figure supplement 6). In light of these results, a
valid adaptation strategy could be the assisted
migration of teff genetic backgrounds from areas
of different vulnerability (Rhoné et al., 2020).
However, crop migration and varietal replacement
strategies will need to take into account ecological
and socioeconomic factors, including the impacts
on existing ecosystems and on farmers' adoption
of migrated varieties (Sloat et al., 2020).

Conclusion

A comprehensive interpretation of crop perfor-
mance is key to a sustainable intensification that
embraces cultural and agricultural diversity of
cropping systems. While significant successes
and even a plateau might have been reached
in optimal growing environments where most
common crops are cultivated, there is ample
opportunity to enhance productivity in marginal
growing environments (Godfray et al., 2010).
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Table 3. Plackett-Luce estimates from farmer's overall appreciation (OA) of genotypes associated
with genotypes’ agronomic metrics, DM, days to maturity; PH, plant height; PW, panicle weight; GY,
grain yield; BY, biomass yield; GFP, grain filling period.

The rankings were analyzed for the whole group (All) and in subsets among gender to assess
differences in traits linkages within men and women farmers. * 0.05 < p < 0.01, ** 0.01 < p < 0.001,
*** p < 0.001.

Group Estimate Std. error z value Pr(>|z|)
All (Intercept) -7.09 - - -
GY 0.000764 0.000135 5.66 1.51E-08 rrx
DM 0.00625 0.00402 1.56 0.12
PH -0.0123 0.00275 -4.46 8.17E-06 i
PW -0.0557 0.0716 -0.777 0.437
BY —-3.6E-05 2.72E-05 -1.32 0.186
GFP 0.011 0.00484 2.27 0.0233 *
Men (Intercept) -7.04 - - -
GY 0.000765 0.000175 4.36 1.29E-05 rrx
DM 0.00542 0.00531 1.02 0.308
PH -0.0114 0.00361 -3.17 0.00155 *x
PW -0.0818 0.0932 -0.878 0.38
BY -2E-05 0.000036 —-0.562 0.574
GFP 0.00919 0.00637 1.44 0.149
Women (Intercept) 15.6 - - -
GY -0.00084 0.00028 -3.01 0.00262 *x
DM —-0.186 0.0101 -18.5 <2e-16 rrx
PH -0.139 0.00661 -20.9 <2e—-16 ok
PW 4.4 0.195 22.6 <2e-16 rokok
BY 0.000346 5.43E-05 6.38 1.74E-10 i
GFP -0.136 0.0104 -13.1 <2e-16 il

The success of crop varieties is not only determined by yield performance, but also by adaptation to
local environments and cultural needs (Weltzien et al., 2019). The integration of genomic, climatic,
and phenotyping diversity in a participatory framework may help tailor varietal development for local
adaptation. The involvement of farmers in varietal evaluation is increasingly utilized in a quantitative
framework to guide breeding choices in combination with genomic data (Annicchiarico et al., 2019;
de Sousa et al., 2021).

Transdisciplinary methods may support the integration of smallholder farmers in modern breeding
and agricultural value chains. Modern data-driven research may then efficiently harness the genetic
diversity generated in farmers’ fields to project NUS, such as teff, into modern breeding. Genebank
genomics may be systematically used to map its large agrobiodiversity (Woldeyohannes et al., 2020),
fully disclosing the opportunity to use next generation breeding technologies (Varshney et al., 2021)
and large-scale genomic selection (Poland, 2015). Multilocation trials are needed to capture the
range of G x E interactions that influence agronomic performance of teff, which we could only partially
characterize here. Decentralized varietal evaluation approaches can be used to scale up the testing
of teff genetic resources (de Sousa et al., 2021; van Etten et al., 2019a) to better capture G x E,
produce new varieties with higher local adaptation, and resulting in higher farmers’ varietal adop-
tion. An extensive socioeconomic characterization of teff cropping, including extensive farmers inter-
views (Labeyrie et al., 2016), may further unveil the dynamics of teff seed exchange and associated
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Figure 4. Teff genomic offset. (A) Geographic distribution of climate-driven allelic variation under current climates across the teff cropping area, with
colors representing the three principal component (PC) dimensions reported in panel (B). (C) Genomic vulnerability across the teff cropping area based
on the RCP8.5 climate projections. The color scale indicates the magnitude of the mismatch between current and projected climate-driven turnover in
allele frequencies according to legend. Phenotyping locations are shown with yellow diamonds. This figure has seven figure supplements.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Ranked accuracy and importance of bioclimatic (A) and geographic (Moran's eigenvector map [MEM]).

Figure supplement 2. Linkage disequilibrium (LD) blocks distribution in relation to F (y-axis) and GF r* values (x-axis).

Figure supplement 3. Geographic distribution of climate-driven allelic variation under four representative concentration pathways: (A) RCP2.4, (B)
RCP4.5, (C) RCP4.0, and (D) RCP8.5.

Figure supplement 4. Genomic vulnerabilities in the teff cropping area based on projections for four representative concentration pathways: (A)
RCP2.6, (B) RCP4.5, (C) RCP6.0, and (D) RCP8.5.

Figure supplement 5. Projected change in Ethiopian climate for 2070s under RCP8.5 compared to 1986-2005.

Figure supplement 6. Mean change in monthly rainfall compared to the reference period in the south Lake Tana (36.5-37.75 east,10.7-12 north) by
2070 under RCP2.6 (low emissions), RCP4.5 (medium-low emission), RCP6.0 (medium-high emission), and RCP8.5 (high emission) scenarios.

Figure supplement 7. Mean change in monthly temperature compared to the reference period in the south Lake Tana (36.5-37.75 east, 10.7-12 north)
by 2070 under RCP2.6 (low emissions), RCP4.5 (medium-low emission), RCP4.0 (medium-high emission), and RCP8.5 (high emission) scenarios.

flow of information and knowledge related to local cropping (Occelli et al., 2021). Public sector
breeding beyond NUS may further enhance the combination of data-driven research with participa-
tory approaches to improve customer and product profiling to achieve social impact as cost effective
as possible.

The Intergovernmental Panel on Climate Change (IPCC) reports indicate that East Africa will expe-
rience an increase in aridity and agricultural droughts, with a substantially higher frequency of hot
days and nights (IPCC, 2017). Temperature increases are also expected to result in more intense
heat waves and higher evapotranspiration rates, which, coupled with the altered rainfall patterns,
may affect agricultural productivity. Enhancing NUS farmer varieties offers promising opportunities to
tackle food insecurity resulting from climate change in smallholder farming settings and beyond. NUS
have enormous untapped potential for improvement that is hampered by lack of tools and knowl-
edge (Yerima and Achigan-Dako, 2021), but our analyses show that their characterization is at hand.

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 13 of 25


https://doi.org/10.7554/eLife.80009

Genetics and Genomics

e Llfe Research article

Overall Appreciation {OA)

>

—log1o(p)

—logso(p)

[ [ [ | [ [ [ [ [ [ | [ | ! [
o W F R FRA R F P F TR

Grain Yield {(GY)

O

—~logo(p)

O

—log1o(p)

T | T T T T T | T =
® ¥ R F R F R AT R F R P

Figure 5. Manhattan plots reporting the genome-wide association study (GWAS) result for. (A) Overall appreciation, (B), panicle length, (C) grain yield,
and (D) grain filling period. On the x-axis, the genomic position of markers. The y-axis reports the strength of the association signal. Single-nucleotide
polymorphisms (SNPs) are ordered by physical position and grouped by chromosome. Quantitative trait nucleotides (QTNs), for example SNPs

Figure 5 continued on next page
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Figure 5 continued

surpassing a threshold based on a false discovery rate of 0.05, are highlighted in red. A strong signal on chromosome 2A matches across participatory
varietal selection (PVS) and metric traits. This figure has two supplements.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Manhattan plots reporting the genome-wide association study (GWAS) result for (A) precipitation of the driest month, (B)
precipitation seasonality and (C) days to maturity. On the x-axis, the genomic position of markers.

Figure supplement 2. Quantile—quantile plots for the genome-wide association study (GWAS) scans reported in Figure 5A, C and D.

As NUS proceed toward mainstream breeding, the collaborative effort of scientists, breeders, and
farmers will unlock their full potential for sustainable intensification of farming systems.

Materials and methods

Plant materials

The EtDP used in this study was derived from a larger teff collection of 3850 accessions held at
the Ethiopian Biodiversity Institute (EBI; Addis Abeba, Ethiopia), which represents the world’s largest
active teff collection, and was amplified and characterized by Woldeyohannes et al., 2020. Criteria
for selecting the EtDP from the larger EBI collection were the following: (1) visible morphological
variation for panicle traits, (2) geographical and agroecological representativeness, (3) apparent grain
yield potential, (4) presence of different maturity groups, and (5) presence of associated traditional
names of specific landraces. The EtDP includes 321 farmer varieties, sided by all 45 E. teff improved
varieties released since the beginning of teff breeding program in Ethiopia and until the assembly of
the EtDP. Improved varieties were obtained by Ethiopian agricultural research centers. Seven acces-
sions of teff wild relatives E. pilosa and E. curvula were also included in the collection (Supplemen-
tary file 1A). Landraces were purified selecting and reproducing one single panicle representative of
each accession. The ITPGRFA defines a crop variety as [...] defined by the reproducible expression
of its distinguishing and other genetic characteristics’ (Ho, 2011). For the scope of this paper, we
define farmer varieties as uniform genotypes derived from the purification of ex situ accessions (i.e.,
landraces) collected from local farmers. Farmer varieties are therefore a proxy of landraces originally
collected in farmer fields and are discussed as such.

Sequencing and variant calling

Seeds of the EtDP were germinated in pots at the EBI in 2018, and at least three seedlings were
harvested and pooled per accession. Genomic DNA was extracted from pooled seedlings at the EBI
laboratories using the GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, St. Louis, MO,
USA) following the manufacturer’s instructions. DNA quality was checked by electrophoresis on 1%
agarose gel and using a NanoDrop ND-1000 spectrophotometer and sent to IGATech (Udine, Italy) for
sequencing. Genomic libraries were produced using Sphl and Mbol restriction enzymes in a custom
protocol for the production of double digestion restriction site-associated DNA markers (ddRAD;
Peterson et al., 2012). In short, ddRAD is based on a double restriction of the target DNA, typically
using a rare cutter and a frequent cutter, followed by sequencing of restriction fragments to reduce
the complexity of the target genome. ddRAD libraries were sequenced with V4 chemistry on lllumina
HiSeq2500 sequencer (lllumina, San Diego, CA) with 125 cycles in a paired-end mode. Reads were
demultiplexed using the process_radtags utility included in Stacks v2.0 (Catchen et al., 2013) and
analyzed for quality control with the FastQC tool (v.0.11.5). High-quality paired-end reads of each
individual were mapped against the E. tef reference genome (version 3, available from CoGe under ID
50954; VanBuren et al., 2020) with BWA (Burrows-Weeler-Aligner v.0.7.12) using the MEM algorithm
with standard parameters (Li, 2013). Alignments were sorted and indexed with PicardTools (http://
broadinstitute.github.io/picard/) and samtools (Li et al., 2009). Single-nucleotide variants were iden-
tified with GATK (McKenna et al., 2010) HaplotypeCaller algorithm (version 4.2.0), run in per-sample
mode followed by a joint genotyping step completed by GenotypeVCFs tool. Raw variants were
filtered out using the VariantFiltration and SelectVariants GATK functions with the following criteria:
monomorphic or multiallelic sites, QUAL <30; QD <2.0; MQ <40.0; AF <0.01; DP <580; SNP clusters
defined as three or more variants located within windows of 5 bp. For each accession, SNPs with a

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 15 of 25


https://doi.org/10.7554/eLife.80009
https://genomevolution.org/coge/GenomeInfo.pl?gid=50954
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/

e Llfe Research article

Genetics and Genomics

total read count of <3 were set to NA. Variants were discarded if located on unanchored contigs,
InDels, missing data >20%, heterozygosity >15%.

Bioclimatic characterization

GPS coordinates of EtDP teff landraces were derived from EBI passport data and projected onto the
map of Ethiopia using R/raster (Hijmans and Etten, 2012). Teff landraces were projected onto the
agroecological zones map of Ethiopia provided by the Ethiopian Institute of Agricultural Research
(EIAR; MoA, 2000), which subdivides Ethiopia into different zones according to altitudinal ranges and
temperature and rainfall patterns. Altitudes were assigned to each landrace based on GPS coordi-
nates, using the CGIAR SRTM database at 90 m resolution (Reuter et al., 2007). Current climate data
(1970-2000 averages) relative to teff landraces’ sampling sites were retrieved from the WorldClim
2 database of global interpolated climate data (Fick and Hijmans, 2017) at the highest available
spatial resolution of 2.5' (approximately 4 x 4 km). Collinearity among historical bioclimatic variables
was previously checked with the ensemble.VIF() function in R/BiodiversityR (Kindt and Coe, 2005).
Only variables with a variation inflation factor (VIF) below 10 were retained, namely bio2, bio3, bio4,
bio9, bio13, bio14, bio15, bio18, and bio19. The Hadley Centre Global Environmental Model 2-Earth
System (HadGEM2-ES; Jones et al., 2011) under the fifth phase of the Coupled Model Intercom-
parison Project (CMIP5) protocols simulations was used to retrieve future climate scenarios at the
following RCPs (RCP2.6, RCP4.5, RCP6.0, and RCP8.5).

Phenotyping and participatory variety selection

The EtDP was phenotyped in common garden experiments in two high-potential teff growing locations
in Ethiopia, Adet (Amhara, 11°16'32" N, 37°29'30" E) and Akaki (Oromia, 8°50'07.6" N, 38°49'58.3" E),
under rainfed conditions during the main cropping season of 2018 (July-November). Adet is the main
experimental site of the Amhara Regional Agricultural Research Institute, at an altitude of 2240 meter
above sea level. Soil type is vertisol, climate is moist cool, and average annual rainfall is 1250 mm.
Akaki is a subsite of the Debre Zeit Agricultural Research Center, with an altitude of 2200 meter above
sea level. Also in this case, soil type is vertisol, climate is moist cool and average annual rainfall is
1055 mm. Accessions were planted in two replications per site using an alpha lattice design, in plots
consisting of three rows of 1 m in length and 0.2 m interrow distance. Three phenological traits, days
to 50% heading (DH), days to 90% maturity (DM), and GFP were recorded on whole plots in each
environment. Morphology and agronomic traits were recorded from five randomly selected teff plants
per plot: plant height (PH, cm), panicle length (PL, in cm), number of primary branches per main shoot
panicle (PBPM), number of total tillers (TT), first culm length (CLF, in cm), first culm internode diameter
(CDF, in mm), panicle weight (PW, in g), panicle yield (PY, in g), grain yield (GY, ton/ha), biomass yield
(BY, ton/ha), harvest index (HI), grain yield filling rate (GFR, kg/ha/day), and biomass production rate
(BPR, kg/ha/days). Qualitative data were sourced from the characterization performed by Woldeyo-
hannes et al., 2020.

A PVS was conducted in the two locations, involving 35 experienced teff farmers: 15 men and
10 women in Adet, five men and five women in Akaki. PVS was conducted close to physiological
maturity in each location so to maximize variation between plots. Participating farmers were selected
with the help of agricultural officers. They all had experience on teff production and were recognized
as a local agricultural expert in teff cultivation. Being local farmers, they spoke different languages
(Amharic and Oromo) and local interpreters were employed. Farmers were engaged in focus group
discussions prior to the PVS to discuss most relevant traits in teff cultivation and to attend training
on how to perform the PVS. During the evaluation, farmers were divided into gender-homogeneous
groups with five people each. Groups were conducted across the field from random entry points and
asked to evaluate two traits: PA and OA. PVS traits were given on a Likert scale from 1 (poor) to 5
(excellent), in a way answering a question in the form of: ‘how much do you like the [panicle appear-
ance/overall appearance] of this plot from one to five?'. Farmers provided their scores simultaneously
so that within-group scoring bias was reduced. Each farmers’ score was recorded individually. We
used Plackett-Luce model (Turner et al., 2019) to analyze farmers’ OA. Agronomic traits from tested
genotypes were linked to farmer’s OA with a linear model using an Alternating Directions Method of
Multipliers (ADMM) algorithm proposed by Yildiz et al., 2020.
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Phenotypic data analyses

We used an analysis of variance (ANOVA) to describe trait differences conditional to teff genetic
groups, locations, and, in the case of PVS, to gender with a procedure similar to that used in Mokuwa
et al., 2013. Best linear unbiased predictions (BLUPs) of agronomic and PVS traits were computed
with R/ASReml (Gilmour et al., 2014). BLUPs for agronomic traits were derived from the general
model in Equation S1:

Yk =p+g+htglite (S1)

where the observed phenotypic value is y; , p is the overall mean of the population, g; is the

random effect for the ith genotype g, I is the fixed effect for the kth location, gl is the random effect

interaction between genotype and location, and e is the error. For calculation of BLUPs with a single

location, the data were subset by location and the model in Equation (S1) was simplified accordingly.

Broad-sense heritability (H?) of agronomic traits was derived from the variance component estimates
deriving from Equation (51) as follows:

) o,
R e e (52)

Moc ~ Mrep*Moc

In Equation (52), o, is the variance component of genotypes, o, is the genotype by location vari-
ance, and o, is the error variance. ny,.nrp are the number of locations and replications, respectively.
For calculation of H? within locations (i.e., repeatability), Equation (S2) was simplified accordingly.

The derivation of PVS BLUPs and H? was like that used for agronomic traits except for the fact that
gender of farmers was considered. BLUPs for PVS were obtained from the model in Equation (S3):

Yikm = p+ i + e + pm + glix + 8Pim + Plyk + € (S3)

where y;, is the observed PVS score, and y, g; , Ix , and gl are as in Equation (S1) and py, is the
random effect for farmer gender. Accordingly, gpim is the random effect of the interaction between
genotype and gender and pl, is the random interaction between gender m and the kth location. For
calculation of BLUPs specific for gender, location, and gender by locations, Equation (53) was simpli-
fied accordingly. H? for PVS traits was derived from the following formula:
2 o
= (0 4 el y Cam +¥) (S4)

8 Mpe " Ngender © Mrep *Mioc *Ngender *Marmer

In Equation (54), o, is the variance component of genotypes, o, is the genotype by location
variance, ogn is the genotype by gender variance, and o, is the error variance. nj,c , ngender » aNd nrep
are the number of locations, genders, and replications, respectively. For calculation of H? (i.e., repeat-
ability) by gender and by location, Equation (54) was simplified accordingly. The 90th percentile of
the OA distribution was considered to identify top ranking accessions for men and women. Farmer
varieties were benchmarked with the fourth quartile of the distribution of improved lines for all scored
traits.

Genetic diversity

Phylogenetic relationships in the EtDP were assessed on a pruned set of SNP markers with MAF
>0.05. Pruning was performed with the PLINK (Purcell et al., 2007) indep-pairwise function on a 100
SNPs window moving in 10 SNP steps with an LD r* threshold of 0.3. Pairwise identity by descent (IBS)
was calculated by PLINK and visualized with custom scripts in R (R Development Core Team, 2018).
PCA and DAPCs were performed with R/adegenet (Jombart, 2008). The optimal number of clusters
(K) for the DAPC was identified using find.cluster(). Bayesian information criterion (BIC) statistics were
computed at increasing values of K to measure the goodness of fit at each K using 365 PCs and default
settings. ADMIXTURE (Alexander and Lange, 2011) was run testing 2-25 K clusters using the default
termination criterion. Each iteration was run using different random seeds, and parameter standard
errors were estimated using 2000 bootstrap replicates. A fivefold cross-validation procedure was used
to identify the most likely value of K. The correlation of the residual difference between the true
genotypes and the genotypes predicted by the model was estimated using EvalAdmix (Garcia-Erill
and Albrechtsen, 2020). A neighbor-joining (NJ) tree was developed computing genetic distances
using the Tajima—Nei method (Tajima and Nei, 1984) and performing 500 bootstrap resampling,
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using MEGA X (Kumar et al., 2018). Different NJ tree visualizations were produced using R/ggtree
(Yu et al., 2017). Genotypic data of putative teff wild relatives E. curvula and E. pilosa were integrated
in the NJ phylogeny. A set of putative SNPs shared between wild relatives and cultivated teff was
derived as described for the EtDP.

LD analyses were performed on SNPs with MAF >0.05. Average pairwise r* for all markers within a
window of =5 Mb was estimated using R/LDheatmap (Shin et al., 2007). The LD was plotted against
physical positions, averaging pairwise r* values for each chromosome over sliding window consid-
ering portions equal to 5% of each chromosome’s physical length. LD decay was then estimated for
each of the chromosomes (Hill and Weir, 1988) using a threshold of r» = 0.3. Haplotype blocks were
estimated using the PLINK-blocks function with default settings and following the interpretation of
Gabriel et al., 2002.

Climatic diversity and GF

Agroecological and bioclimatic variation analyses were performed on georeferenced materials of
the EtDP. The distribution of the DAPC genetic clusters across agroecological zones was mapped
via R/raster. After aggregating teff georeferenced accessions in Ethiopian administrative regions at
the second level (districts), pairwise F,, (Weir and Cockerham, 1984) was calculated across all SNP
markers for all areas accounting at least five individuals. Centroid coordinates of the accessions within
each district were used to estimate geographic distances, while environmental distances were calcu-
lated by averaging the value of noncorrelated historical bioclimatic variables and altitude. A measure
of environmental distance between each accession was thus calculated as pairwise Euclidean differ-
ences between locations. A Mantel test with a Monte Carlo method (9999 replications) was imple-
mented in R/ade4 (Dray and Dufour, 2007) to check associations between linearized F,, (F,/1 — F.)
and geographic and environmental distances.

The teff cropping area was defined by the union of all polygons representing agroecological zones
in which at least two teff landraces were sampled. Significant associations between genetic clusters
and agroecological zones and administrative regions were assessed using Pearson'’s chi-squared test
of independence. Pairwise Wilcoxon rank sum test was used to test the significance (p < 0.05) of differ-
ences in bioclimatic variables among DAPC clusters. A GF machine-learning approach implemented
in R/gradientForest (Ellis et al., 2012; Fitzpatrick and Keller, 2015) was used to map the turnover in
allele frequencies using nonlinear functions of environmental gradients with historical and projected
climates. The GF was developed using historical noncollinear bioclimatic variables and MEM vari-
ables representing climatic and geographic diversity in the sample, respectively. MEM variables were
derived from geographic coordinates at sampling locations of the landraces in the EtDP (Dray et al.,
2006; Griffith and Peres-Neto, 2006) and were calculated with (dbmem) in R/adespatial (Stéphane
Dray et al., 2021). A function was built for each response variable (SNPs) using 500 regression trees.
An aggregate function was created for all SNPs, whereas the bioclimatic variables and MEMs were
used as predictors. The model was then run to predict teff genetic—-geographic—climatic distribution
on the teff cultivation range in Ethiopia. The GF model was also run using and projected climate data
under different RCP scenarios.

Climate projections for areas of interest were analyzed to assess trends in rainfall and temperature.
The 12 models best performing in the East Africa region according to IPCC (IPCC, 2017) were used
to develop and ensemble projection of rainfall and temperature indices with Climate Data Operators
(CDO) (Schulzweida, 2017) and custom R scripts. Projected data were compared with historical data
to derive indices change in the interannual variability for the regions of interest.

Genome-wide association studies

QTNs were mapped in a GWAS. GWAS was performed with R/rMVP (Yin et al., 2019) using the
Fixed and random model Circulating Probability Unification (FarmCPU) method (Liu et al., 2016)
that incorporates corrections for population cryptic relatedness (Kinship). The first 10 genetic PCs
were used as covariates to account for population structure. The Kinship was estimated using the
method implemented by VanRaden, 2008. Both kinship and PCA were calculated using the subset
of LD-pruned markers used for population genetics analysis. GWAS was run on bioclimatic variables,
agronomic traits, and PVS traits. After the first round of mapping with 10 PCs, individual QQ plot was
visually surveyed for inflation in the p value distributions, as these could be caused by suboptimal

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 18 of 25


https://doi.org/10.7554/eLife.80009

e Llfe Research article

Genetics and Genomics

correction for population structure. When inflation was detected, the corresponding GWAS scan was
run again using 25 genetic PCs as covariates. QTN was called when association surpassed a multiple
testing correction with false discovery rate of 5% using R/q value (Storey et al., 2021). QTNs were
assigned to the previously defined haplotype blocks. Blocks were extended by the chromosome-
specific LD decay distance upstream and downstream and used as windows to search for candidate
genes. The LD blocks thus obtained were combined with F,; and GF results to identify intersections
across methods.

Teff gene annotations were retrieved from CoGe under id50954 (VanBuren et al., 2020). Nucleo-
tide sequences of putative candidate genes were translated into the corresponding proteins and used
as queries against Araport11 (Cheng et al., 2017) and the Maize reference proteome, available from
UniProt (https://www.uniprot.org/) under the ID UP000007305. E value of 107%° and percentage of
identity of 50% were used as threshold to retain blast hits on Arabidopsis and maize.
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study, the species, the type of materials (Status), the pedigree if known, the source of the accession,
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variables. Finally, BLUP values for phenotypes are farmer traits are reported. When specific by
location, the trait code is attached to either Akaki or Adet. When specific by gender, M (men) or
W (women) is attached. DH, days to heading; DM, days to maturity; PH, plant height; PL, panicle
length; PBPM, number of primary branches per main shoot panicle; TT, total tillers; CLF, first culm
length; CDF, first culm diameter; PW, panicle weight; PY, panicle yield; GY, grain yield; BY, biomass
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SNPs in the block. (C) Variance components from BLUP model calculation on agronomic traits and
farmer traits. The table reports solution, standard error, z ratio, and percent variance explained

for each component of the model for each trait. Trait codes as in Supplemenary File 1A. Factor
codes as follows: ID, genotype; REP, replication within the field; LOCATION, field location; F_TYPE,
gender; interactions between factors are indicated as in F_TYPE:LOCATION, for example gender by
location. (D) Main effects of and interactions between location, genetic cluster, and, in the case of
PVS traits, gender, regarding teff traits. Phentoype codes as in (A). Values in the table are p values
for a two- (metric traits) and three-way ANOVA (PVS traits). Significant effects are highlighted in
bold. (E) Genome-wide association results. For each SNP-trait combination, the table reports the
trait name, the SNP name, its chromosome, and position. The reference (REF) and alternative (ALT)
allele are reported for each SNP. For each association, the table reports the effect, the standard
error (SE), the corresponding p value (pvalue), and multiple-test correction with a g value (qvalue).
The number of PC covariates used in the GWAS scan is reported in column n_PC. DH, days to
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Seasonality; Bio%: Mean Temp. of Driest Quarter; Bio13: Precipitation of Wettest Month; Bio14:
Precipitation of Driest Month; Bio15: Precipitation Seasonality; Bio18: Precipitation of Warmest
Quarter; Bio19: Precipitation of Coldest Quarter. PC1_bio: first bioclimatic principal component;
PC2_bio: second bioclimatic principal component; PC3_bio: third bioclimatic principal component.
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the table reports the closest homolog gene in Arabidopsis (id_At) with the percentual identity in the
alignment (perc_identity_At), the E value reported by the BLASTP, the percentual query coverage
in the target gene (perc_query_coverage_per_subject_At). The same information is reported for
Zea mays (Zm) hits. The table reports the name of the LD block and the number of quantitative trait
loci (QTN) in that block. (G) SNPs with adaptation potential. For each marker, the table reports the
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chromosome, position, F, values, and gradient forest model fit (GF r).
e MDAR checklist

Data availability

Teff accessions are available upon request from the Ethiopian Biodiversity Institute (EBI, http://www.
ebi.gov.et/). Raw DNA sequencing reads are available on the Short Read Archive (https://www.ncbi.
nlm.nih.gov/sra/) under BioProject accession number PRINA758057. All scripts used for data anal-
ysis are available on GitHub at https://github.com/mdellh2o/TeffDiversityPanel, (copy archived at
swh:1:rev:4935b0ef7614c1631d323d39777ec375912e2182).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
Dell'acqua M 2021 Genetic characterization https://www.ncbi.nlm. NCBI BioProject,

of Ethiopian Teff diversity  nih.gov/bioproject/  PRINA758057

panel PRJNA758057
References

Aguirre-Liguori JA, Ramirez-Barahona S, Gaut BS. 2021. The evolutionary genomics of species’ responses to
climate change. https://www.nature.com/articles/s41559-021-01526-9 [Accessed August 20, 2021].

Akhter S, Uddin MN, Jeong IS, Kim DW, Liu XM, Bahk JD. 2016. Role of arabidopsis atpidky3, a type Il
phosphoinositide 4-kinase, in abiotic stress responses and floral transition. Plant Biotechnology Journal
14:215-230. DOI: https://doi.org/10.1111/pbi.12376, PMID: 25879253

Alexander DH, Lange K. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation.
BMC Bioinformatics 12:246. DOI: https://doi.org/10.1186/1471-2105-12-246, PMID: 21682921

Annicchiarico P, Russi L, Romani M, Pecetti L, Nazzicari N. 2019. Farmer-participatory vs. conventional market-
oriented breeding of inbred crops using phenotypic and genome-enabled approaches: A pea case study. Field
Crops Research 232:30-39. DOI: https://doi.org/10.1016/].fcr.2018.11.001

Araya A, Stroosnijder L, Girmay G, Keesstra SD. 2011. Crop coefficient, yield response to water stress and water
productivity of teff eragrostis tef (zucc.). Agricultural Water Management 98:775-783. DOI: https://doi.org/10.
1016/j.agwat.2010.12.001

Assefa T, Sperling L, Dagne B, Argaw W, Tessema D, Beebe S. 2014. Participatory plant breeding with traders
and farmers for white pea bean in ethiopia. The Journal of Agricultural Education and Extension 20:497. DOI:
https://doi.org/10.1080/1389224X.2013.824385

Bachewe FN, Taffesse AS. 2018. Supply response of smallholder households in Ethiopia. In The economics of
teff: Exploring Ethiopia‘s biggest cash crop. https://ideas.repec.org/h/fpr/ifpric/9780896292833_08.htm|
[Accessed August 18, 2020].

Boeven PHG, Longin CFH, Wiirschum T. 2016. A unified framework for hybrid breeding and the establishment of
heterotic groups in wheat. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
129:1231-1245. DOI: https://doi.org/10.1007/s00122-016-2699-x, PMID: 26956559

Cannarozzi G, Plaza-Withrich S, Esfeld K, Larti S, Wilson YS, Girma D, de Castro E, Chanyalew S, Blésch R,
Farinelli L, Lyons E, Schneider M, Falquet L, Kuhlemeier C, Assefa K, Tadele Z. 2014. Genome and
transcriptome sequencing identifies breeding targets in the orphan crop tef (eragrostis tef). BMC Genomics
15:581. DOI: https://doi.org/10.1186/1471-2164-15-581, PMID: 25007843

Cannarozzi G, Chanyalew S, Assefa K, Bekele A, Blésch R, Weichert A, Klauser D, Plaza-Wiithrich S, Esfeld K,
Jost M, Rindisbacher A, Jifar H, Johnson-Chadwick V, Abate E, Wang W, Kamies R, Husein N, Kebede W,
Tolosa K, Genet Y, et al. 2018. Technology generation to dissemination: lessons learned from the tef
improvement project. Euphytica: Netherlands Journal of Plant Breeding 214:31. DOI: https://doi.org/10.1007/
s10681-018-2115-5

Casaiias F, Simé J, Casals J, Prohens J. 2017. Toward an evolved concept of landrace. Frontiers in Plant Science
8:145. DOI: https://doi.org/10.3389/fpls.2017.00145, PMID: 28228769

Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool set for population
genomics. Molecular Ecology 22:3124-3140. DOI: https://doi.org/10.1111/mec.12354, PMID: 23701397

Ceccarelli S, Grando S. 2007. Decentralized-participatory plant breeding: an example of demand driven
research. Euphytica: Netherlands Journal of Plant Breeding 155:349-360. DOI: https://doi.org/10.1007/
$10681-006-9336-8

Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. 2017. Araport11: a complete
reannotation of the Arabidopsis thaliana reference genome. The Plant Journal 89:789-804. DOI: https://doi.
org/10.1111/tpj. 13415, PMID: 27862469

Costanza SH, Dewet JMJJ, Harlan JR. 2007. Literature review and numerical taxonomy oferagrostis tef (T'ef).
Economic Botany 33:413-424. DOI: https://doi.org/10.1007/BF02858337

D’Andrea AC. 2008. T'ef (eragrostis tef) in ancient agricultural systems of highland ethiopia. Economic Botany
62:547-566. DOI: https://doi.org/10.1007/s12231-008-9053-4

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 21 of 25


https://doi.org/10.7554/eLife.80009
http://www.ebi.gov.et/
http://www.ebi.gov.et/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
https://github.com/mdellh2o/TeffDiversityPanel
https://archive.softwareheritage.org/swh:1:dir:13cdacc9b009fe048a1df0a002626558fe6b0a2e;origin=https://github.com/mdellh2o/TeffDiversityPanel;visit=swh:1:snp:b7cbc1adceff35bcecdcfb1c4137876761d8e138;anchor=swh:1:rev:4935b0ef76f4c1631d323d39777ec375912e2f82
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA758057
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA758057
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA758057
https://www.nature.com/articles/s41559-021-01526-9
https://doi.org/10.1111/pbi.12376
http://www.ncbi.nlm.nih.gov/pubmed/25879253
https://doi.org/10.1186/1471-2105-12-246
http://www.ncbi.nlm.nih.gov/pubmed/21682921
https://doi.org/10.1016/j.fcr.2018.11.001
https://doi.org/10.1016/j.agwat.2010.12.001
https://doi.org/10.1016/j.agwat.2010.12.001
https://doi.org/10.1080/1389224X.2013.824385
https://ideas.repec.org/h/fpr/ifpric/9780896292833_08.html
https://doi.org/10.1007/s00122-016-2699-x
http://www.ncbi.nlm.nih.gov/pubmed/26956559
https://doi.org/10.1186/1471-2164-15-581
http://www.ncbi.nlm.nih.gov/pubmed/25007843
https://doi.org/10.1007/s10681-018-2115-5
https://doi.org/10.1007/s10681-018-2115-5
https://doi.org/10.3389/fpls.2017.00145
http://www.ncbi.nlm.nih.gov/pubmed/28228769
https://doi.org/10.1111/mec.12354
http://www.ncbi.nlm.nih.gov/pubmed/23701397
https://doi.org/10.1007/s10681-006-9336-8
https://doi.org/10.1007/s10681-006-9336-8
https://doi.org/10.1111/tpj.13415
https://doi.org/10.1111/tpj.13415
http://www.ncbi.nlm.nih.gov/pubmed/27862469
https://doi.org/10.1007/BF02858337
https://doi.org/10.1007/s12231-008-9053-4

e Llfe Research article

Genetics and Genomics

Dawson IK, Hendre P, Powell W, Sila D. 2018. Supporting human nutrition in Africa through the integration of
new and orphan crops into food systems. https://greenbrownblue.com/BIODIVERSITY_01RESOURCES/
DIVERSE%20DIET/ [Accessed May 30, 2021].

Dawson IK, Powell W, Hendre P, Banci¢ J, Hickey JM, Kindt R, Hoad S, Hale |, Jamnadass R. 2019. The role of
genetics in mainstreaming the production of new and orphan crops to diversify food systems and support
human nutrition. The New Phytologist 224:37-54. DOI: https://doi.org/10.1111/nph.15895, PMID: 31063598

de Sousa K, van Etten J, Poland J, Fadda C, Jannink JL, Kidane YG, Lakew BF, Mengistu DK, P& ME, Solberg S@,
Dell’Acqua M. 2021. Data-driven decentralized breeding increases prediction accuracy in a challenging crop
production environment. Communications Biology 4:944. DOI: https://doi.org/10.1038/s42003-021-02463-w,
PMID: 34413464

Dray S, Legendre P, Peres-Neto PR. 2006. Spatial modelling: a comprehensive framework for principal
coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196:483-493. DOI: https://doi.org/10.
1016/j.ecolmodel.2006.02.015

Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of
Statistical Software 22:1-20. DOI: https://doi.org/10.18637/jss.v022.i04

Ellis N, Smith SJ, Pitcher CR. 2012. Gradient forests: calculating importance gradients on physical predictors.
Ecology 93:156-168. DOI: https://doi.org/10.1890/11-0252.1, PMID: 22486096

Fadda C, Mengistu DK, Kidane YG, Dell’Acqua M, P& ME, Van Etten J. 2020. Integrating conventional and
participatory crop improvement for smallholder agriculture using the seeds for needs approach: A review.
Frontiers in Plant Science 11:559515. DOI: https://doi.org/10.3389/fpls.2020.559515, PMID: 33042183

FAOSTAT. 2021. FAOSTAT database collections. Food and Agriculture Organization of the United Nations.
http://www.fao.org/faostat/ [Accessed May 4, 2022].

Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas.
International Journal of Climatology 37:4302-4315. DOI: https://doi.org/10.1002/joc.5086

Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-level modelling of biodiversity: mapping
the genomic landscape of current and future environmental adaptation. Ecology Letters 18:1-16. DOI: https://
doi.org/10.1111/ele.12376, PMID: 25270536

Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A,

Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. 2002.
The structure of haplotype blocks in the human genome. Science 296:2225-2229. DOI: https://doi.org/10.
1126/science.1069424, PMID: 12029063

Garcia-Erill G, Albrechtsen A. 2020. Evaluation of model fit of inferred admixture proportions. Molecular Ecology
Resources 20:936-949. DOI: https://doi.org/10.1111/1755-0998.13171, PMID: 32323416

Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. 2014. ASRem| User Guide Release 4.1 Functional
Specification. https://www.hpc.iastate.edu/sites/default/files/uploads/ASREML/UserGuideStructural.pdf
[Accessed September 17, 2020].

Girma D, Assefa K, Chanyalew S, Cannarozzi G, Kuhlemeier C, Tadele Z. 2014. The origins and progress of
genomics research on tef (eragrostis tef). Plant Biotechnology Journal 12:534-540. DOI: https://doi.org/10.
1111/pbi. 12199, PMID: 24891040

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM,
Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812-818. DOI: https://
doi.org/10.1126/science.1185383, PMID: 20110467

Gomez y Paloma S, Riesgo L, Louhichi K, Fan S, Rue C. 2020. Nutrition. Gomez y Paloma S (Ed). The Role of
Smallholder Farms in Food and Nutrition Security. Cham: Springer International Publishing. p. 13-28. DOI:
https://doi.org/10.1007/978-3-030-42148-9

Griffith DA, Peres-Neto PR. 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses.
Ecology 87:2603-2613. DOI: https://doi.org/10.1890/0012-9658(2006)87[2603:smietf]2.0.co;2, PMID:
17089668

Heffner EL, Sorrells ME, Jannink JL. 2009. Genomic selection for crop improvement. Crop Science 49:1-12. DOI:
https://doi.org/10.2135/cropsci2008.08.0512

Hijmans R, Etten J. 2012. Geographic data analysis and modeling. version 2.0-12. R Foundation. https://rspatial.
org/raster

Hill WG, Weir BS. 1988. Variances and covariances of squared linkage disequilibria in finite populations.
Theoretical Population Biology 33:54-78. DOI: https://doi.org/10.1016/0040-5809(88)90004-4, PMID: 3376052

Ho MD. 2011. International treaty on plant genetic resources for food and agriculture. http://www.fao.org/3/
i0510e/I0510E.pdf [Accessed March 3, 2021].

Ingram AL, Doyle JJ. 2003. The origin and evolution of eragrostis tef (poaceae) and related polyploids: evidence
from nuclear waxy and plastid rps16. American Journal of Botany 90:116-122. DOI: https://doi.org/10.3732/
ajb.90.1.116, PMID: 21659086

IPCC. 2017. Special report on climate change, desertification, land degradation, sustainable land management,
food security, and greenhouse gas fluxes in terrestrial ecosystems (SR2). IPCC. https://www.ipcc.ch/srccl/

Iragaba P, Kawuki RS, Bauchet G, Ramu P, Tufan HA, Earle ED, Gore MA, Wolfe M. 2020. Genomic
characterization of ugandan smallholder farmer-preferred cassava varieties. Crop Science 60:1450-1461. DOI:
https://doi.org/10.1002/csc2.20152, PMID: 32742003

Jamnadass R, Mumm RH, Hale |, Hendre P, Muchugi A, Dawson IK, Powell W, Graudal L, Yana-Shapiro H,
Simons AJ, Van Deynze A. 2020. Enhancing african orphan crops with genomics. Nature Genetics 52:356-360.
DOI: https://doi.org/10.1038/s41588-020-0601-x, PMID: 32203464

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 22 of 25


https://doi.org/10.7554/eLife.80009
https://greenbrownblue.com/BIODIVERSITY_01RESOURCES/DIVERSE%20DIET/
https://greenbrownblue.com/BIODIVERSITY_01RESOURCES/DIVERSE%20DIET/
https://doi.org/10.1111/nph.15895
http://www.ncbi.nlm.nih.gov/pubmed/31063598
https://doi.org/10.1038/s42003-021-02463-w
http://www.ncbi.nlm.nih.gov/pubmed/34413464
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.18637/jss.v022.i04
https://doi.org/10.1890/11-0252.1
http://www.ncbi.nlm.nih.gov/pubmed/22486096
https://doi.org/10.3389/fpls.2020.559515
http://www.ncbi.nlm.nih.gov/pubmed/33042183
http://www.fao.org/faostat/
https://doi.org/10.1002/joc.5086
https://doi.org/10.1111/ele.12376
https://doi.org/10.1111/ele.12376
http://www.ncbi.nlm.nih.gov/pubmed/25270536
https://doi.org/10.1126/science.1069424
https://doi.org/10.1126/science.1069424
http://www.ncbi.nlm.nih.gov/pubmed/12029063
https://doi.org/10.1111/1755-0998.13171
http://www.ncbi.nlm.nih.gov/pubmed/32323416
https://www.hpc.iastate.edu/sites/default/files/uploads/ASREML/UserGuideStructural.pdf
https://doi.org/10.1111/pbi.12199
https://doi.org/10.1111/pbi.12199
http://www.ncbi.nlm.nih.gov/pubmed/24891040
https://doi.org/10.1126/science.1185383
https://doi.org/10.1126/science.1185383
http://www.ncbi.nlm.nih.gov/pubmed/20110467
https://doi.org/10.1007/978-3-030-42148-9
https://doi.org/10.1890/0012-9658(2006)87[2603:smietf]2.0.co;2
http://www.ncbi.nlm.nih.gov/pubmed/17089668
https://doi.org/10.2135/cropsci2008.08.0512
https://rspatial.org/raster
https://rspatial.org/raster
https://doi.org/10.1016/0040-5809(88)90004-4
http://www.ncbi.nlm.nih.gov/pubmed/3376052
http://www.fao.org/3/i0510e/I0510E.pdf
http://www.fao.org/3/i0510e/I0510E.pdf
https://doi.org/10.3732/ajb.90.1.116
https://doi.org/10.3732/ajb.90.1.116
http://www.ncbi.nlm.nih.gov/pubmed/21659086
https://www.ipcc.ch/srccl/
https://doi.org/10.1002/csc2.20152
http://www.ncbi.nlm.nih.gov/pubmed/32742003
https://doi.org/10.1038/s41588-020-0601-x
http://www.ncbi.nlm.nih.gov/pubmed/32203464

e Llfe Research article

Genetics and Genomics

JiaH, LiM, LiW, Liu L, Jian Y, Yang Z, Shen X, Ning Q, Du Y, Zhao R, Jackson D, Yang X, Zhang Z. 2020. A serine/
threonine protein kinase encoding gene KERNEL number per rowé regulates maize grain yield. Nature
Communications 11:1-11. DOI: https://doi.org/10.1038/s41467-020-14746-7, PMID: 32080171

Jombart T. 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics
24:1403-1405. DOI: https://doi.org/10.1093/biocinformatics/btn129, PMID: 18397895

Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ,
Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J,
Gray L, Halloran PR, et al. 2011. The hadgem2-ES implementation of CMIP5 centennial simulations.
Geoscientific Model Development 4:543-570. DOI: https://doi.org/10.5194/gmd-4-543-2011

Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J, Crespo-Herrera L, Toledo FH, Govindan V, Mondal S,
Kumar U, Bhavani S, Singh PK, Randhawa MS, He X, Guzman C, Dreisigacker S, Rouse MN, Jin Y,
Pérez-Rodriguez P, Montesinos-Lépez OA, et al. 2019. Improving grain yield, stress resilience and quality of
bread wheat using large-scale genomics. Nature Genetics 51:1530-1539. DOI: https://doi.org/10.1038/
s41588-019-0496-6, PMID: 31548720

Ketema S. 1997. Eragrostis Tef Zucc. Trotter: Promoting the Conservation and Use of Underutilized and
Neglected Crops 12. Italy: International Plant Genetic Resources Institute.

Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC. 2014.
Increasing homogeneity in global food supplies and the implications for food security. PNAS 111:4001-4006.
DOI: https://doi.org/10.1073/pnas. 1313490111, PMID: 24591623

Kidane YG, Mancini C, Mengistu DK, Frascaroli E, Fadda C, Pé ME, Dell’Acqua M. 2017. Genome wide
association study to identify the genetic base of smallholder farmer preferences of durum wheat traits.
Frontiers in Plant Science 8:1230. DOI: https://doi.org/10.3389/fpls.2017.01230, PMID: 28769945

Kindt R, Coe R. 2005. Tree diversity analysis; A manual and software for common statistical methods for
ecological and biodiversity studies. https://books.google.it/books?hl=en&lr=&id=zn-xYQoG7ZgC&oi=fnd&
pg=PP4&dq=Tree+diversity+analysis.+ A+manual+and+software+for+common+statistical+methods+for+
ecological+and+biodiversity+studies.&ots=gIW4Uz5m9C&sig=Zm8u45rZRCOwWXPigl?uDgXBéwOw [Accessed
March 24, 2020].

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across
computing platforms. Molecular Biology and Evolution 35:1547-1549. DOI: https://doi.org/10.1093/molbev/
msy096, PMID: 29722887

Labeyrie V, Thomas M, Muthamia ZK, Leclerc C. 2016. Seed exchange networks, ethnicity, and sorghum
diversity. PNAS 113:98-103. DOI: https://doi.org/10.1073/pnas.1513238112, PMID: 26699480

Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya C,
Mitchell SE, Buckler ES, Brenton Z, Kresovich S, Morris GP. 2015. Genome-environment associations in
sorghum landraces predict adaptive traits. Science Advances 1:€1400218. DOI: https://doi.org/10.1126/sciadv.
1400218, PMID: 26601206

Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB. 2018.
Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants 4:766-770.
DOI: https://doi.org/10.1038/s41477-018-0259-x, PMID: 30287957

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome
Project Data Processing Subgroup. 2009. The sequence alignment/map format and samtools. Bioinformatics
25:2078-2079. DOI: https://doi.org/10.1093/bioinformatics/btp352, PMID: 19505943

Li H. 2013. Aligning Sequence Reads, Clone Sequences and Assembly Contigs 933 with BWA-MEM. arXiv.
http://arxiv.org/abs/1303.3997

Liu X, Huang M, Fan B, Buckler ES, Zhang Z. 2016. Iterative usage of fixed and random effect models for
powerful and efficient genome-wide association studies. PLOS Genetics 12:e1005767. DOI: https://doi.org/10.
1371/journal.pgen.1005767, PMID: 26828793

Mancini C, Kidane YG, Mengistu DK, Melfa and Workaye Farmer Community, Pé ME, Fadda C, Dell’Acqua M.
2017. Joining smallholder farmers’ traditional knowledge with metric traits to select better varieties of
ethiopian wheat. Scientific Reports 7:9120. DOI: https://doi.org/10.1038/s41598-017-07628-4, PMID:
28831033

Mascher M, Schreiber M, Scholz U, Graner A, Reif JC, Stein N. 2019. Genebank genomics bridges the gap
between the conservation of crop diversity and plant breeding. Nature Genetics 51:1076-1081. DOI: https://
doi.org/10.1038/s41588-019-0443-6, PMID: 31253974

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S,
Daly M, DePristo MA. 2010. The genome analysis toolkit: A mapreduce framework for analyzing next-
generation DNA sequencing data. Genome Research 20:1297-1303. DOI: https://doi.org/10.1101/gr.107524.
110, PMID: 20644199

McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S. 2007. Barren inflorescence2 encodes a
co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and
vegetative development in maize. Plant Physiology 144:1000-1011. DOI: https://doi.org/10.1104/pp.107.
098558, PMID: 17449648

Mengistu DK, Mekonnen LS. 2012. Integrated Agronomic Crop Managements to Improve Tef Productivity
Under Terminal Drought. Water Stress. https://www.intechopen.com/chapters/26981 [Accessed August 7,
2021].

MoA. 2000. Agro-Ecological Zones of Ethiopia. http://publication.eiar.gov.et:8080/xmlui/bitstream/handle/
123456789/2517/AGRO-ECOLOGICALZONES [Accessed May 4, 2022].

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 23 of 25


https://doi.org/10.7554/eLife.80009
https://doi.org/10.1038/s41467-020-14746-7
http://www.ncbi.nlm.nih.gov/pubmed/32080171
https://doi.org/10.1093/bioinformatics/btn129
http://www.ncbi.nlm.nih.gov/pubmed/18397895
https://doi.org/10.5194/gmd-4-543-2011
https://doi.org/10.1038/s41588-019-0496-6
https://doi.org/10.1038/s41588-019-0496-6
http://www.ncbi.nlm.nih.gov/pubmed/31548720
https://doi.org/10.1073/pnas.1313490111
http://www.ncbi.nlm.nih.gov/pubmed/24591623
https://doi.org/10.3389/fpls.2017.01230
http://www.ncbi.nlm.nih.gov/pubmed/28769945
https://books.google.it/books?hl=en&lr=&id=zn-xYQoG7ZgC&oi=fnd&pg=PP4&dq=Tree+diversity+analysis.+A+manual+and+software+for+common+statistical+methods+for+ecological+and+biodiversity+studies.&ots=glW4Uz5m9C&sig=Zm8u45rZRCOwXPigI9uDqXB6wOw
https://books.google.it/books?hl=en&lr=&id=zn-xYQoG7ZgC&oi=fnd&pg=PP4&dq=Tree+diversity+analysis.+A+manual+and+software+for+common+statistical+methods+for+ecological+and+biodiversity+studies.&ots=glW4Uz5m9C&sig=Zm8u45rZRCOwXPigI9uDqXB6wOw
https://books.google.it/books?hl=en&lr=&id=zn-xYQoG7ZgC&oi=fnd&pg=PP4&dq=Tree+diversity+analysis.+A+manual+and+software+for+common+statistical+methods+for+ecological+and+biodiversity+studies.&ots=glW4Uz5m9C&sig=Zm8u45rZRCOwXPigI9uDqXB6wOw
https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1093/molbev/msy096
http://www.ncbi.nlm.nih.gov/pubmed/29722887
https://doi.org/10.1073/pnas.1513238112
http://www.ncbi.nlm.nih.gov/pubmed/26699480
https://doi.org/10.1126/sciadv.1400218
https://doi.org/10.1126/sciadv.1400218
http://www.ncbi.nlm.nih.gov/pubmed/26601206
https://doi.org/10.1038/s41477-018-0259-x
http://www.ncbi.nlm.nih.gov/pubmed/30287957
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.1371/journal.pgen.1005767
http://www.ncbi.nlm.nih.gov/pubmed/26828793
https://doi.org/10.1038/s41598-017-07628-4
http://www.ncbi.nlm.nih.gov/pubmed/28831033
https://doi.org/10.1038/s41588-019-0443-6
https://doi.org/10.1038/s41588-019-0443-6
http://www.ncbi.nlm.nih.gov/pubmed/31253974
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1104/pp.107.098558
https://doi.org/10.1104/pp.107.098558
http://www.ncbi.nlm.nih.gov/pubmed/17449648
https://www.intechopen.com/chapters/26981
http://publication.eiar.gov.et:8080/xmlui/bitstream/handle/123456789/2517/AGRO-ECOLOGICALZONES
http://publication.eiar.gov.et:8080/xmlui/bitstream/handle/123456789/2517/AGRO-ECOLOGICALZONES

e Llfe Research article

Genetics and Genomics

Mokuwa A, Nuijten E, Okry F, Teeken BL, Maat H, Richards P, Struik PC. 2013. Robustness and strategies of
adaptation among farmer varieties of african rice (oryza glaberrima) and asian rice (oryza sativa) across west
africa. PLOS ONE 8:€34801. DOI: https://doi.org/10.1371/journal.pone.0034801, PMID: 23536754

Mokuwa A, Nuijten E, Okry F, Teeken B, Maat H, Richards P, Struik PC. 2014. Processes underpinning
development and maintenance of diversity in rice in west africa: evidence from combining morphological and
molecular markers. PLOS ONE 9:85953. DOI: https://doi.org/10.1371/journal.pone.0085953, PMID:
24465809

Occelli M, Mantino A, Ragaglini G, Dell’Acqua M, Fadda C, Peé ME, Nuvolari A. 2021. Traditional knowledge
affects soil management ability of smallholder farmers in marginal areas. Agronomy for Sustainable
Development 41:1-15. DOI: https://doi.org/10.1007/s13593-020-00664-x, PMID: 33253823

Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest radseq: an inexpensive method
for de novo SNP discovery and genotyping in model and non-model species. PLOS ONE 7:e37135. DOI:
https://doi.org/10.1371/journal.pone.0037135, PMID: 22675423

Poland J. 2015. Breeding-assisted genomics. Current Opinion in Plant Biology 24:119-124. DOI: https://doi.org/
10.1016/j.pbi.2015.02.009, PMID: 25795171

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ,
Sham PC. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses.
American Journal of Human Genetics 81:559-575. DOI: https://doi.org/10.1086/519795, PMID: 17701901

R Development Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria. R
Foundation for Statistical Computing. https://www.r-project.org/

Reuter HI, Nelson A, Jarvis A. 2007. An evaluation of void-filling interpolation methods for SRTM data.
International Journal of Geographical Information Science 21:983-1008. DOI: https://doi.org/10.1080/
13658810601169899

Rhoné B, Defrance D, Berthouly-Salazar C, Mariac C, Cubry P, Couderc M, Dequincey A, Assoumanne A,

Kane NA, Sultan B, Barnaud A, Vigouroux Y. 2020. Pearl millet genomic vulnerability to climate change in west
africa highlights the need for regional collaboration. Nature Communications 11:5274. DOI: https://doi.org/10.
1038/s41467-020-19066-4, PMID: 33077747

Samberg LH, Shennan C, Zavaleta E. 2007. Farmer seed exchange and crop diversity in a changing agricultural
landscape in the southern highlands of ethiopia. Human Ecology 41:477-485. DOI: https://doi.org/10.1007/
s10745-013-9579-7

Schulzweida U. 2017. CDO User’ s Guide. https://zenodo.org/record/3539275 [Accessed August 25, 2021].

Shin JH, Blay S, Graham J, McNeney B. 2007. Ldheatmap: an R function for graphical display of pairwise linkage
disequilibria between single nucleotide polymorphisms. Journal of Statistical Software 16:1-9. DOI: https://doi.
org/10.18637/jss.v016.c03

Sloat LL, Davis SJ, Gerber JS, Moore FC, Ray DK, West PC, Mueller ND. 2020. Climate adaptation by crop
migration. Nature Communications 11:1-9. DOI: https://doi.org/10.1038/s41467-020-15076-4, PMID:
32144261

Stéphane Dray A, Bauman D, Blanchet G. 2021. Multivariate multiscale spatial analysis. v0.3-11. R Foundation.
https://github.com/sdray/adespatial/issues

Storey J, Bass A, Dabney A, Robinson D. 2021. Q-value estimation for false discovery rate control. 2.29.0. R
Foundation. http://github.com/jdstorey/qvalue

Tadele Z. 2019. Orphan crops: their importance and the urgency of improvement. Planta 250:677-694. DOI:
https://doi.org/10.1007/s00425-019-03210-6, PMID: 31190115

Tajima F, Nei M. 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology
and Evolution 1:269-285. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040317, PMID: 6599968

Teeken B, Olaosebikan O, Haleegoah J, Oladejo E, Madu T, Bello A, Parkes E, Egesi C, Kulakow P, Kirscht H,
Tufan HA. 2018. Cassava trait preferences of men and women farmers in nigeria: implications for breeding.
Economic Botany 72:263-277. DOI: https://doi.org/10.1007/512231-018-9421-7, PMID: 30573920

Terlau W, Hirsch D, Blanke M. 2019. Smallholder farmers as a backbone for the implementation of the
sustainable development goals. Sustainable Development 27:523-529. DOI: https://doi.org/10.1002/sd.1907

Turner HL, van Etten J, Firth D, Kosmidis I. 2019. Modelling rankings in R: the plackettluce package.
Computational Statistics 35:1027-1057. DOI: https://doi.org/10.1007/s00180-020-00959-3

Valluru R, Reynolds MP, Davies WJ, Sukumaran S. 2017. Phenotypic and genome-wide association analysis of
spike ethylene in diverse wheat genotypes under heat stress. The New Phytologist 214:271-283. DOI: https://
doi.org/10.1111/nph.14367, PMID: 27918628

van Etten J, Beza E, Calderer L, Van Duijvendijk K, Fadda C, Fantahun B, Kidane YG, Van De Gevel J, Gupta A,
Mengistu DK, Kiambi D, Mathur PN, Mercado L, Mittra S, Mollel MJ, Rosas JC, Steinke J, Suchini JG,
Zimmerer KS. 2019%a. First experiences with a novel farmer citizen science approach: crowdsourcing
participatory variety selection through on-farm triadic comparisons of technologies (tricot). Experimental
Agriculture 55:275-296. DOI: https://doi.org/10.1017/S0014479716000739

van Etten J, de Sousa K, Aguilar A, Barrios M, Coto A, Dell’Acqua M, Fadda C, Gebrehawaryat Y,
van de Gevel J, Gupta A, Kiros AY, Madriz B, Mathur P, Mengistu DK, Mercado L, Nurhisen Mohammed J,
Paliwal A, Pé ME, Quirés CF, Rosas JC, et al. 2019b. Crop variety management for climate adaptation
supported by citizen science. PNAS 116:4194-4199. DOI: https://doi.org/10.1073/pnas.1813720116, PMID:
30782795

VanBuren R, Man Wai C, Wang X, Pardo J, Yocca AE, Wang H, Chaluvadi SR, Han G, Bryant D, Edger PP,
Messing J, Sorrells ME, Mockler TC, Bennetzen JL, Michael TP. 2020. Exceptional subgenome stability and

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 24 of 25


https://doi.org/10.7554/eLife.80009
https://doi.org/10.1371/journal.pone.0034801
http://www.ncbi.nlm.nih.gov/pubmed/23536754
https://doi.org/10.1371/journal.pone.0085953
http://www.ncbi.nlm.nih.gov/pubmed/24465809
https://doi.org/10.1007/s13593-020-00664-x
http://www.ncbi.nlm.nih.gov/pubmed/33253823
https://doi.org/10.1371/journal.pone.0037135
http://www.ncbi.nlm.nih.gov/pubmed/22675423
https://doi.org/10.1016/j.pbi.2015.02.009
https://doi.org/10.1016/j.pbi.2015.02.009
http://www.ncbi.nlm.nih.gov/pubmed/25795171
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://www.r-project.org/
https://doi.org/10.1080/13658810601169899
https://doi.org/10.1080/13658810601169899
https://doi.org/10.1038/s41467-020-19066-4
https://doi.org/10.1038/s41467-020-19066-4
http://www.ncbi.nlm.nih.gov/pubmed/33077747
https://doi.org/10.1007/s10745-013-9579-7
https://doi.org/10.1007/s10745-013-9579-7
https://zenodo.org/record/3539275
https://doi.org/10.18637/jss.v016.c03
https://doi.org/10.18637/jss.v016.c03
https://doi.org/10.1038/s41467-020-15076-4
http://www.ncbi.nlm.nih.gov/pubmed/32144261
https://github.com/sdray/adespatial/issues
http://github.com/jdstorey/qvalue
https://doi.org/10.1007/s00425-019-03210-6
http://www.ncbi.nlm.nih.gov/pubmed/31190115
https://doi.org/10.1093/oxfordjournals.molbev.a040317
http://www.ncbi.nlm.nih.gov/pubmed/6599968
https://doi.org/10.1007/s12231-018-9421-7
http://www.ncbi.nlm.nih.gov/pubmed/30573920
https://doi.org/10.1002/sd.1907
https://doi.org/10.1007/s00180-020-00959-3
https://doi.org/10.1111/nph.14367
https://doi.org/10.1111/nph.14367
http://www.ncbi.nlm.nih.gov/pubmed/27918628
https://doi.org/10.1017/S0014479716000739
https://doi.org/10.1073/pnas.1813720116
http://www.ncbi.nlm.nih.gov/pubmed/30782795

ELlfe Research article

Genetics and Genomics

functional divergence in the allotetraploid ethiopian cereal teff. Nature Communications 11:1-11. DOI: https://
doi.org/10.1038/s41467-020-14724-z, PMID: 32060277

VanRaden PM. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91:4414—
4423. DOI: https://doi.org/10.3168/jds.2007-0980, PMID: 18946147

Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. 2021. Designing future crops: genomics-assisted
breeding comes of age. Trends in Plant Science 26:631-649. DOI: https://doi.org/10.1016/].tplants.2021.03.
010, PMID: 33893045

Voss RC, Donovan J, Rutsaert P, Cairns JE. 2021. Gender inclusivity through maize breeding in africa: A review of
the issues and options for future engagement. Outlook on Agriculture 50:392-405. DOI: https://doi.org/10.
1177/00307270211058208, PMID: 35068590

Wang KLC, Yoshida H, Lurin C, Ecker JR. 2004. Regulation of ethylene gas biosynthesis by the arabidopsis ETO1
protein. Nature 428:945-950. DOI: https://doi.org/10.1038/nature02516, PMID: 15118728

Weir BS, Cockerham CC. 1984. Estimatin F-statistics for the analysis of population structure. Evolution;
International Journal of Organic Evolution 38:1358-1370. DOI: https://doi.org/10.1111/].1558-5646.1984.
tb05657.x, PMID: 28563791

Weltzien E, Rattunde F, Christinck A, Isaacs K, Ashby J. 2019. Gender and Farmer Preferences for Varietal Traits.
https://onlinelibrary.wiley.com/doi/full/10.1002/9781119616801.ch7 [Accessed July 30, 2021].

Woldeyohannes AB, Accotto C, Desta EA, Kidane YG, Fadda C, Pe ME, Dell’Acqua M. 2020. Current and
projected eco-geographic adaptation and phenotypic diversity of ethiopian teff (eragrostis teff) across its
cultivation range. Agriculture, Ecosystems & Environment 300:107020. DOI: https://doi.org/10.1016/j.agee.
2020.107020

Yerima A, Achigan-Dako EG. 2021. A review of the orphan small grain cereals improvement with A
comprehensive plan for genomics-assisted breeding of fonio millet in West Africa. https://onlinelibrary.wiley.
com/doi/full/10.1111/pbr.12930 [Accessed July 30, 2021].

Yildiz i, Dy J, Erdogmus D, Kalpathy-Cramer J, Ostmo S, Campbell JP, Chiang MF, loannidis S. Fast and Accurate
Ranking Regression. International Conference on Artificial Intelligence and Statistics. 2020. https://
proceedings.mlr.press/v108/yildiz20a.html

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X, Liu X. 2019. RMVP: A Memory-
Efficient, Visualization-Enhanced, and Parallel-Accelerated Tool for Genome-Wide Association Study. [bioRxiv].
https://www.biorxiv.org/content/10.1101/2020.08.20.258491v1 DOI: https://doi.org/10.1101/2020.08.20.
258491

Yu G, Smith DK, Zhu H, Guan Y, Lam TT. 2017. GGtree: an r package for visualization and annotation of
phylogenetic trees with their covariates and other associated data G. Methods in Ecology and Evolution
8:28-36. DOI: https://doi.org/10.1111/2041-210X.12628

Zhu Q, Smith SM, Ayele M, Yang L, Jogi A, Chaluvadi SR, Bennetzen JL. 2012. High-throughput discovery of
mutations in tef semi-dwarfing genes by next-generation sequencing analysis. Genetics 192:819-829. DOI:
https://doi.org/10.1534/genetics.112.144436, PMID: 22904035

Woldeyohannes, lohannes et al. eLife 2022;11:e80009. DOI: https://doi.org/10.7554/eLife.80009 25 of 25


https://doi.org/10.7554/eLife.80009
https://doi.org/10.1038/s41467-020-14724-z
https://doi.org/10.1038/s41467-020-14724-z
http://www.ncbi.nlm.nih.gov/pubmed/32060277
https://doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
https://doi.org/10.1016/j.tplants.2021.03.010
https://doi.org/10.1016/j.tplants.2021.03.010
http://www.ncbi.nlm.nih.gov/pubmed/33893045
https://doi.org/10.1177/00307270211058208
https://doi.org/10.1177/00307270211058208
http://www.ncbi.nlm.nih.gov/pubmed/35068590
https://doi.org/10.1038/nature02516
http://www.ncbi.nlm.nih.gov/pubmed/15118728
https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
http://www.ncbi.nlm.nih.gov/pubmed/28563791
https://onlinelibrary.wiley.com/doi/full/10.1002/9781119616801.ch7
https://doi.org/10.1016/j.agee.2020.107020
https://doi.org/10.1016/j.agee.2020.107020
https://onlinelibrary.wiley.com/doi/full/10.1111/pbr.12930
https://onlinelibrary.wiley.com/doi/full/10.1111/pbr.12930
https://proceedings.mlr.press/v108/yildiz20a.html
https://proceedings.mlr.press/v108/yildiz20a.html
https://doi.org/10.1101/2020.08.20.258491
https://doi.org/10.1101/2020.08.20.258491
https://doi.org/10.1111/2041-210X.12628
https://doi.org/10.1534/genetics.112.144436
http://www.ncbi.nlm.nih.gov/pubmed/22904035

	Data-­driven, participatory characterization of farmer varieties discloses teff breeding potential under current and future climates
	Editor's evaluation
	Introduction
	Results and discussion
	Teff farmer varieties harness broad genetic diversity
	The distribution of teff genetic variation is associated with geographic and environmental factors
	Participatory evaluation of the teff diversity prioritizes genetic materials for breeding
	Participatory, climatic, and agronomic information to support teff breeding
	Conclusion

	Materials and methods
	Plant materials
	Sequencing and variant calling
	Bioclimatic characterization
	Phenotyping and participatory variety selection
	Phenotypic data analyses
	Genetic diversity
	Climatic diversity and GF
	Genome-wide association studies

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


