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Summary 

A Decision Support System (DSS) can help facility managers to improve building 

performance, occupants’ comfort, and energy efficiency during the Operation and 

Maintenance (O&M) phase. These DSSs are normally data-intensive and have specific data 

requirements. Building Information Modeling (BIM) has the potential to advance and 

transform facilities O&M by providing facility managers with a digitalized virtual 

environment that allows them to retrieve, analyze, and process such data. However, the 

implementation of BIM in O&M phases is still limited. The majority of issues in the BIM-

O&M context lie in the interoperability between different software that requires different 

data structures and formats. In a BIM environment, there are issues associated with 

extracting, storing, managing, integrating, and disseminating data so that interoperability 

is assured.  

Considering the aforementioned aspects, the aim of this thesis is to enable interoperability 

between BIM models and the DSSs for building performance aspects such as building 

condition, maintenance, and occupants’ comfort. This integration automatizes the data 

transfer process which can assist Facility Management (FM) team in properly establishing 

the necessary measurements to moderate the negative consequences on buildings and 

thereby improve their performance and occupants’ comfort. The approach can also provide 

FM teams with an effective platform for data visualization in a user-friendly manner that 

can assist in integrating digital insights into FM decision-making processes and converting 

them into positive strategic actions. The proposed approach is validated in existing software 

as a case study. It is possible to demonstrate the applicability of this approach by ensuring 

that its interactions and outcomes are feasible using case studies. Case studies also identify 

how much the task efficiencies are in comparison with the manual method, helping facility 

managers to optimize operation strategies of buildings in order to enhance their 

performance. Verification tests are also performed on the information exported from a 

software program. 

The results demonstrate an efficiency increase in high-quality FM data collection for 

different kinds of DSS, reducing the time and effort that the FM team spends on searching 

information and entering data. A Dynamo script is designed to allow administrators to 

include as much information as they wish in BIM models. Moreover, a novel approach is 

proposed to create a new category in BIM to assist public and business administrations with 

managing assets efficiently. In addition, building performance aspects can also be analyzed 

using the proposed method of integrating occupants' feedback into BIM models. By 
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implementing the proposed approach, FM teams are able to correctly establish 

measurements which can be applied to mitigate the negative effects on buildings, thus 

improving their performance and enhancing their occupants’ comfort. Besides, the 

proposed approach enables BIM to be a more useful tool for visualization by using the most 

appropriate charts and formatting options to display data in a very sensible manner, guiding 

decision-makers in addressing building operational issues. 

Keywords: Building Information Modeling (BIM), Decision Support System (DSS), 

Facility Management (FM), building performance, building condition, occupants’ comfort, 

maintenance management, data integration, probabilistic models, Bayesian networks, 

visualization. 
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Chapter 1 

Introduction 

This chapter provides an introduction to the thesis, which is focused on the BIM 

implementation at O&M phases. This chapter outlines the problem, describes the research 

aim and objectives, and provides an outline of the scope and limitations of this study, as 

well as the overall structure of the dissertation. 
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1.1 Problem statement 

In the life cycle of a project, the operation and maintenance (O&M) phases are critically 

important. Compared with other phases, the highest costs occur during the O&M phase 

(Rafael Sacks, Eastman, Lee, & Teicholz, 2018), which shows the importance of Facility 

Management (FM) activities. In the broad context of FM, building maintenance is generally 

recognized as the main activity, since more than 65% of the total cost of FM comes from 

facility maintenance management (W. Chen, Chen, Cheng, Wang, & Gan, 2018). In O&M 

phase, the FM team and owners are responsible for the upkeep of building 

elements/systems to prevent functional failures by applying corrective and preventive 

maintenance plans with the aim of achieving energy efficient and improving occupants’ 

comfort (Chiantore, P. V.; Papaecomou, V.; Degner, 2018; H. Alavi, Forcada, Bortolini, & 

Edwards, 2021). For buildings to remain in appropriate conditions for use and to meet a 

minimum standard or level of performance, they require continuous operating expenses, 

including periodic maintenance (Grussing & Liu, 2014). A poorly maintained building will 

deteriorate even faster in the long run (Heo, Choudhary and Augenbroe, 2012). Hence, the 

lack of a proper maintenance plan along with the building’s natural aging accelerates the 

degradation of existing buildings (Bortolini & Forcada, 2020; Garyaev & Ayoub, 2020).  

Among the building systems, the HVAC systems have a significant impact on thermal 

comfort and, if it is improperly maintained, may result in health problems, and discomfort 

for occupants (Yang & Ergan, 2016). The occupants’ comfort within buildings is essential 

in terms of environmental, social, and economic aspects, (Nawawi & Khalil, 2008) since 

people spend approximately 90% of their time indoors (Klepeis et al., 2001; El-Sharkawy, 

2014; Ferreira & Cardoso, 2014). In addition, the HVAC systems account for one of the 

highest percentage of energy use in a building (Fadzli Haniff, Selamat, Yusof, Buyamin, 

& Sham Ismail, 2013; Pritoni, Salmon, Sanguinetti, Morejohn, & Modera, 2017). The use 

of HVAC energy in unoccupied spaces is sometimes higher than in occupied spaces in 

commercial buildings (Martani, Lee, Robinson, Britter, & Ratti, 2012). Moreover, 

standards based on indoor environmental quality (IEQ) factors are used to define the 

acceptable ranges of comfort (S. Wang, Yan, & Xiao, 2012). However, due to the variations 

in individual sensation levels, there is a poor relationship between the comfort conditions 

defined in the standards and those perceived by the occupants (Wagner, Gossauer, 

Moosmann, Gropp, & Leonhart, 2007). It is therefore necessary to put occupants at the 

center of maintenance decisions through the implementation of an occupant-centric 
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approach by collecting occupants’ feedback to improve building performance, including 

occupants’ comfort and productivity (Mallory-Hill, Preiser, & Watson, 2012). 

To improve building performance based on occupant-centric approach Decision Support 

Systems (DSS) can be used, making decisions in an early design development stage and 

during the O&M phase. The former helps designers to identify multiple technical and 

commercial options that are compliant with pre-determined specifications and the latter 

help facility managers to optimize building operations techniques (Corneli, Meschini, 

Villa, Di Giuda, & Carbonari, 2017). The DSS for maintenance activities with the 

appropriate information, modeling, and planning can have a significant impact on 

occupants’ comfort as well as building performance, allowing buildings to maintain 

serviceability before deterioration propagates, prevent defects and failure of the building 

elements, extend their service life (Wong, Ge, & He, 2018; Wu & Lepech, 2020). Various 

types of historical data, including inspection records, and sensor data, are frequently used 

by the FM team to make decisions on building condition assessment, HVAC problems 

analysis and occupants’ comfort evaluation (El Ammari & Hammad, 2019). Some building 

maintenance systems, like computerized maintenance management systems (CMMS) are 

typically used for capturing such data to perform maintenance activities (Motamedi, 

Hammad, & Asen, 2014). However, the current systems are based on deterministic models 

(Catalina & Iordache, 2012; Agha-Hossein, El-Jouzi, Elmualim, Ellis, & Williams, 2013) 

and do not take into account the effects on occupants’ comfort of building information (e.g., 

building characteristics) and spatial information (e.g., occupancy density) (Van Gelder, 

Janssen, & Roels, 2014; J. Chen, Augenbroe, Wang, & Song, 2017). Some factors such as 

climate conditions and building operational conditions are intrinsically uncertain, making 

accurate predictions of building performance difficult (Holmes & Hacker, 2007). It is 

therefore essential to increase predictability by incorporating these uncertainties in order to 

identify strategies and methods to improve the performance of buildings and occupants’ 

comfort (Douglas, Ransom, & Ransom, 2013). 

To incorporate these uncertainties, Bayesian Networks (BN) can be used. BN are a type of 

probabilistic graphical model that provide a formalism for reasoning about partial beliefs 

under conditions of uncertainty (Neuberg, 2003). It is considered a powerful tool by which 

to model risks with uncertainty data (Langevin, Wen, & Gurian, 2013; Nguyen, Tran, & 

Chandrawinata, 2016; Seungjae Lee, Bilionis, Karava, & Tzempelikos, 2017). BN can 

model building comfort as a probabilistic process, to give the most probable performance 

level of a building using probability distributions (Bortolini & Forcada, 2019a). In addition, 

it can model a building’s condition as a probabilistic process, contrary to deterministic 
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models (Bortolini & Forcada, 2019b). Bortolini and Forcada (Bortolini & Forcada, 2019b) 

developed a probabilistic model based on BN that covers several interconnected elements 

for assisting decision-making on building maintenance and retrofitting measures to 

improve building conditions and support occupants’ comfort (Bortolini & Forcada, 2019a). 

Although the models can handle uncertainty and make predictions, the data that is required 

is dispersed among platforms. Besides, the data is transferred manually, which is a 

laborious, inefficient process (Cavka, Staub-French, & Poirier, 2017; Roberts, Edwards, 

Hosseini, Mateo-Garcia, & Owusu-Manu, 2019; H. Alavi, Forcada, Bortolini, et al., 2021). 

To address the challenges of data reliability and automatize the data transfer process, a 

Building Information Modeling (BIM) has been emerging as a potential solution (Cavka et 

al., 2017; H. Alavi, Forcada, Fan, & San, 2021) for guiding decision-makers concerning 

building maintenance. BIM is “an approach to design, construction, and facilities 

management, in which a digital representation of the building process is used to facilitate 

the exchange and interoperability of information in digital format” (R. Sacks et al., 2018). 

BIM constitutes an effective platform by which to depict high-quality information and 

integrate different platforms. BIM utilizes 3D, parametric and object-based models to 

create, store and use coordinated and compatible data throughout the life cycle of a facility 

(B Becerik-Gerber, Jazizadeh, Li, & Calis, 2012). Acting as a central resource for decision-

makers, BIM has the ability to provide better documentation, improved collaboration and 

work flexibility, and updated information through the building life cycle (Volk, Stengel, & 

Schultmann, 2014; H. Alavi, Forcada, Bortolini, et al., 2021). BIM integrated with a DSS, 

may constitute a powerful tool to support the selection of effective maintenance strategies 

(A. Carbonari, Giretti, Corneli, Villa, & Di Giuda, 2017; Alessandro Carbonari, Corneli, 

Di Giuda, Ridolfi, & Villa, 2019). Nevertheless, the greatest obstacle of the integration of 

BIM with a DSS is the lack of interoperability in the O&M context (S. H. Alavi & Forcada, 

2019; Gao & Pishdad-Bozorgi, 2019). The interoperability issue caused a delay in 

transferring the FM information into DSS during O&M phase even though the required 

data is available in the BIM model (Pishdad-Bozorgi, Gao, Eastman, & Self, 2018). It is 

estimated that inadequate interoperability and incompatibility between systems result in a 

$15.8 billion total increase in project costs, according to a study conducted by the National 

Institute of Standards and Technology (Gallaher, O’Connor, Dettbarn, & Gilday, 2004). 

To address the interoperability issues, this thesis presents a conceptual model to integrate 

BIM models into DSS (e.g., the probabilistic models based on BN). This thesis focuses on 

improving both maintenance efficiency, and occupants’ comfort by integrating DSS into 

BIM to optimize building operation strategies and support decision-making on FM 
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activities. This integration facilitates data transfer and reduces the time and effort that the 

FM team spends on manual input. It also allows BIM tools to visualize in an integrated, 

interactive way for decision-makers. Moreover, the FM team can make decisions on 

building operational problems centered on occupant comfort with minimal effort, 

overcoming a key barrier to collecting required information during the O&M phase. 

1.2 Aim and Objectives 

The primary aim of this thesis is to enable the interoperability between DSS and BIM for 

the O&M phase, allowing an efficient building performance and supporting FM activities. 

The objectives for this thesis are the following: 

Objective 1: Identify and analyse shortcomings of the implementation of BIM in the O&M 

phase. 

Objective 2: Identify and devise a solution for generic interoperability problems. 

Objective 3: Develop a conceptual model to enable interoperability between BIM models 

and probabilistic models. 

Objective 4: Establish an effective platform for data visualization. 

Objective 5: Evaluate the conceptual model. 

1.3 Scope of the research, limitations, and delimitations 

The scope of this research includes the development of a conceptual model to enable 

interoperability between BIM models and the DSS for building performance. It also 

includes the visualization of building condition, and occupants’ comfort during O&M 

phase. The BIM visualization is designed in a user-friendly manner that can assist facility 

managers in incorporating digital insights into FM decision-making processes and 

converting these insights into effective strategic actions. Nevertheless, other FM activities 

(e.g., energy management) are out of the scope of this thesis. 

Facility managers are in charge of the performance management of the buildings to 

evaluate and prioritize building renovations. Various stakeholders (e.g., owner, occupants) 

are involved in different types of buildings such as Business (e.g., offices, banks), 
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Educational (e.g., schools, universities), and Mercantile (e.g., department stores, markets). 

Residential buildings and certain types of non-residential buildings, such as hospitals are 

outside of this investigation due to their strict requirements and characteristics. 

A generic integration model is developed but only implemented in one specific Risk 

analysis (AgenaRisk) and BIM software (Revit). This is a limitation of this research and 

different Python code blocks are required to implement it in other software.  

In addition, the proposed approach is limited regarding the complexity of building 

elements. For example, while the façade can be defined by the exterior wall at each level, 

it cannot be presented by each individual room to evaluate building performance for the 

specific room. In this case, Dynamo scripts should be developed to deal with evaluating 

the performance of each room. 

The methodology of integration is semi-automated because a user is recommended between 

each step of extraction to ensure that the exported files are stored in the right location with 

the correct names. BN results, for example, can only be read by Python scripts in the BIM 

model if their names and locations are matched. 

Moreover, set of characters defining a search pattern in a Python code block, are designed 

to create a new category in BIM. This approach relies on text to execute pattern matching 

and search-and-replace operations; therefore, it could be adapted to specific contexts and 

purposes as needed 

The use of Augmented Reality (AR) to improve the usability and accessibility of BIM 

information, is also proposed. Consequently, AR can be used to provide a superimposed 

geometric representation over the physical space along with the relevant BIM-based FM 

information. However, the programming tasks and technical specifications of data 

integration are out of the scope of this thesis. 

1.4 Thesis structure 

This thesis is structured in eight chapters as follows: 

Chapter 1 describes a background to the problem, provides an overview of the aims and 

objectives of the research study, and outlines the scope of the study as well as its limitations 

and delimitations. 

Chapter 2 presents the state of the art about facility management, DSS, BIM and AR.  
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Chapter 3 provides a description of the research method, including the steps involved in 

the BIM integration. 

Chapter 4 details the work undertaken to develop the DSS, identify relevant data, indicators 

and provides a BIM integrated with DSS for detecting the root cause of HVAC problems. 

Chapter 5 details the work undertaken to develop the DSS, identify relevant data, indicators 

and provides a BIM integrated with DSS for assessing building condition. 

Chapter 6 details the work undertaken to develop the DSS, identify relevant data, indicators 

and provides a BIM integrated with DSS for enhancing occupants’ comfort. 

Chapter 7 presents the main conclusions of this thesis and its contributions both on a 

theoretical and practical level. Potential future research topics are also discussed. 

The outline of this thesis is illustrated in Figure 1. 

 

Figure 1. Thesis outline  
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Chapter 2 

State of the art 

This chapter presents a complete literature review carried out to gather the existing 

knowledge within the subject of research. First, the concept of DSS is explained followed 

by the explanation of facility management and probabilistic models. Then, the applications 

of BIM for O&M phase and the need for the integration of BIM and DSS are discussed. 

The BIM information standards for addressing interoperability during O&M, are 

presented. Furthermore, benefits of the implementation of Augmented Reality to evaluate 

building performance and occupants’ comfort are discussed. Finally, the complexity of the 

research subject is summarized, establishing the basis for this thesis. 
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2.1 Decision Support System 

2.1.1 DSS concept 

A DSS is "a computer-based information system that supports either a single decision-

maker or a group of decision-makers when dealing with unstructured or semi-structured 

problems. A DSS supports one or more decision-making activities carried out in a decision 

process. Moreover, it mainly supports managerial tasks at different levels and is intended 

to improve the effectiveness of the decision-making process (e.g., timeliness, accuracy, and 

quality) (O’Sullivan, 1985; Liang, Lee, & Turban, 2008).  

A DSS may offer assistance for both multiple independent and interdependent choices. The 

decision-makers should engage with a DSS actively, which means they initiate every 

instance of their use and are in control of all aspects of the decision-making process. In 

addition, the decision-makers can be trained to perform better in upcoming decision-

making circumstances, thanks to a DSS with the capability of learning from the past 

(O’Sullivan, 1985; Liang et al., 2008). A DSS enables decision-makers to cope with 

changing conditions; therefore, it should be adaptable and flexible in order to meet their 

requirements. The following are the benefit of using a DSS (Power, 2002; Liang et al., 

2008): 1) Improve individual productivity; 2) Improve decision quality and problem 

solving; 3) Facilitate interpersonal communication; 4) Improve decision-making skills; 5) 

Increase organizational control. 

2.1.2 DSS and facility management 

The building industry began to face pressure in the 1980s from government institutions, 

clients, and increased international competition to improve the quality of their buildings, 

increase their construction speeds, and reduce their costs (de Wilde, 2018). This pressure 

led to the emergence of the new discipline of Facilities Management (FM) (Cohen, 

Standeven, Bordass, & Leaman, 2001). The International Facility Management Association 

(IFMA, 2015) defines FM as “a profession that encompasses multiple disciplines to ensure 

functionality of the built environment by integrating people, place, process and 

technology”, illustrated in Figure 2. 
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Figure 2. Facility Management (Source: IFMA, 2015) 

Figure 3 illustrates the organizational levels of FM. Strategic, tactical, and operational 

processes are a set of processes with which FM team ought to deal (CEN, 2011). The main 

objective of FM is the operational level (Chotipanich, 2004) which consists various tasks 

such as maintenance management, asset managemen, energy management, safety 

management, security management, and user satisfaction. In the operational level, this 

study focuses on maintenance management and occupants' comfort which are the main 

activities of facility managers (W. Chen et al., 2018). This operational role assists in 

meeting an organization's fundamental routine and regular demands (CEN, 2011). The 

performance of any building depends on the FM's ability to operate effectively and provide 

a productive working environment (Chotipanich, 2004). Operators monitor the efficiency 

of the building and notify senior management of any performance discrepancies 

(Ruparathna, Hewage, & Sadiq, 2017). This involves gathering data through the 

measurement of physical characteristics (e.g., CO2 level), gathering user perceptions (e.g., 

the perceived level of thermal comfort), or combining both (Talamo & Bonanomi, 2015; 

Lai & Man, 2017). A number of documents (e.g., drawings, plans, data sheets) contains 

this data which could lead to time-consuming tasks to locate and validate data during O&M 

phase. Furthermore, facility managers utilize different types of systems such as Building 

Management System (BMS) and Computerized Maintenance Management System 

(CMMS) to operate and manage buildings. However, information obtained from FM 

systems may be scattered, unconnected, managed by different teams, and not readily 

available (Shalabi & Turkan, 2017). Therefore, this data need to be stored in a mixture of 

electronic formats such as electronic documents, drawings, file folders of management and 

maintenance records (P. E. D. Love, Matthews, Simpson, Hill, & Olatunji, 2014; Pishdad-

Bozorgi et al., 2018). In addition, while FM information systems are complicated and 

supply high quality data, they do not provide interoperability and visualization capabilities 

to support FM needs (Shalabi & Turkan, 2017). 
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Figure 3. Organizational levels of FM (based on CEN 2011; Lai and Man 2017) 

 

Regarding maintenance management, there are some challenges in current FM practices 

that have required a paradigm shift in the sector in recent years. Clients are demanding 

strategies for predicting events instead of responding to problems (Wong et al., 2018). This 

shift marks the transition from corrective or planned strategies to preventive and predictive 

strategies. For instance, the failure of building elements can be predicted by preventive 

maintenance through an analysis of condition data and historical maintenance records. This 

increases their efficiency, reliability and safety (Gunay, Shen, & Yang, 2019). 

In this case, a DSS can be utilized to assist facility managers in optimizing building 

operations techniques (Corneli et al., 2017). The DSSs are becoming increasingly 

important for assessing and controlling building performance and a variety of methods have 

been used to support multi-criteria decision making. For example, Matos et al. (Matos, 

Rodrigues, Rodrigues, & Costa, 2021) prioritized maintenance actions, using Key 

Performance Indicators (KPI) and DSS to support decision-making on building 

performance. The term performance implies that the buildings should meet the 

requirements of occupants, providing a conducive, safe, comfortable, healthy and secure 

indoor environment to carry out different activities, including work, study, leisure, family 

life, and social interactions (Bakens, Foliente, & Jasuja, 2005; Ibem, Opoko, Adeboye, & 

Amole, 2013). 

2.1.3 DSS and probabilistic models 

Risk is traditionally defined as a combination of the probability (or likelihood) of 

something occurring as well as its positive and negative consequences (Duffuaa & Ben-

Daya, 2009; Weber, Medina-Oliva, Simon, & Iung, 2012). The ISO 31010:2009 defines 

risk assessment as “that part of risk management which provides a structured process that 

identifies how objectives may be affected, and analyses the risk in term of consequences 

and their probabilities before deciding on whether further treatment is required”. A risk 
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assessment is intended to provide evidence-based information and analysis to enable 

informed decisions to be made regarding how to mitigate particular risks and how to decide 

between alternative approaches to mitigation (ISO 31010:2009). 

In maintenance activities, well-known probability techniques include the Fault Tree 

Analysis (FTA), Markov chains (MCs), Failure Mode and Effect Analysis (FMEA), and 

Bayesian Networks (BNs) (Weber et al., 2012; Chemweno, Pintelon, Van Horenbeek, & 

Muchiri, 2015). Among them, BN (a type of probabilistic graphical model) has a much 

more flexible structure (Khakzad, Khan, & Amyotte, 2011). In a reasoning process, the BN 

can represent complicated linkages among building elements and systems, and qualitatively 

and quantitatively characterize variable dependencies. It also models multi-state variable 

and evaluates several output variables in the same model (Weber et al., 2012). In complex 

processes, BN provides an easy way to calculate the joint probability distribution of all 

variables involved (Celeux, Corset, Lannoy, & Ricard, 2006). Hence, incorporating BN 

into a DSS can have a significant effect on making decisions in the context of building 

performance since facility managers generally face the challenge of uncertain or 

incomplete information. The probabilistic models for improving building condition and 

enhancing occupants' comfort are considered in this study. 

During the O&M phase, some studies developed probabilistic models for improving 

building condition. Frederik et al. (Auffenberg, Snow, Stein, & Rogers, 2017) created a 

probabilistic model that learns from user feedback and adapts to the users’ specific 

preferences over time to analyze building conditions. Yang et al. (Y. Zhao, Wen, Xiao, 

Yang, & Wang, 2017) developed a probabilistic model based on a comprehensive survey 

of air handling unit (AHU) fault detection and diagnosis methods. Lee et al. (Seungjae Lee 

et al., 2017) developed a Bayesian method for probabilistic occupant thermal preference 

categorization and prediction in office buildings, to provide predictions for personalized 

thermal preference profiles. Furthermore, Bortolini and Forcada (Bortolini & Forcada, 

2019b) developed a model for assessing the condition of a building using a Bayesian 

network (BN) method. They utilized TNormal distribution to determine the probability 

distribution which is a suitable distribution when the mean (μ) and variance (σ²) are 

determined and it allows for the creation of many distribution forms (Fenton & Neil, 2018). 

The BN structure was constructed by identifying the causal relation between the variables 

based on the data available and expert judgment. A panel of experts provided feedback on 

the causal relations constructed by data, which helped to identify key variables or processes 

that were overlooked and fix potential errors of the model. Conditional probability tables 

for the variables can be consulted in (Bortolini & Forcada, 2019b). 

https://www.sciencedirect.com/topics/engineering/fault-detection-and-diagnosis
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Moreover, other studies developed the probabilistic models for improving occupants' 

comfort. Yang et al. (Y. Zhao et al., 2017) developed a probabilistic model based on a 

comprehensive survey of air handling unit (AHU) fault detection and diagnosis (FDD) 

methods. Zhe et. al. (Z. Wang & Hong, 2020) used Bayesian inference approach to derive 

new occupant comfort temperature ranges for U.S. office buildings using the ASHRAE 

Global Thermal Comfort Database. Lee et al. (Seungjae Lee et al., 2017) developed a 

Bayesian approach for probabilistic classification and inference of occupant thermal 

preferences in office buildings to provide predictions for personalized thermal preference 

profiles. Frederik et al. (Auffenberg et al., 2017) created a probabilistic model to learn from 

a user’s feedback, allowing it to adapt to the users’ individual preferences over time to 

assess occupants’ comfort. 

Despite the fact that these researchers have made a significant contribution to the 

improvement of building condition and occupants' comfort, none of them automatized the 

data transfer process or integrated BIM into their probabilistic models, which would 

facilitate data transfer due to the interoperability issues (Burcin Becerik-Gerber, Asce, 

Jazizadeh, Li, & Calis, 2012). Another obstacle is that the data is not processed and 

analyzed in a way that the decision-makers need and not visualized in an easily accessible, 

and refined way (Motawa & Almarshad, 2013; Motamedi et al., 2014). 

2.2 Building Information Modeling 

2.2.1 BIM concept 

Building Information Modeling (BIM) is a technology-driven methodology used to 

improve performance and efficiency during the design, construction, operation and 

maintenance of assets (P. E. D. D. Love, Simpson, Hill, & Standing, 2013). The National 

BIM Standard (NBIMS-USTM, 2015) defines BIM as “a digital representation of physical 

and functional characteristics of a facility and as such it serves as a shared knowledge 

resource for information about a facility forming a reliable basis for decisions during its 

life cycle from inception onwards”. The key idea for understanding BIM is the concept of 

parametric objects and its differentiation from traditional 2D objects (Eastman et al., 2008). 

The main applications of BIM processes and technologies include: 3D visualization of the 

project; cost estimations; conflict interference and collision detection (C. Eastman et al., 

2008); visualization of quality risks in construction projects (Forcada et al., 2014); site 

https://www.sciencedirect.com/topics/engineering/fault-detection-and-diagnosis
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logistics planning and construction sequencing planning (Bortolini, Shigaki and Formoso, 

2015); and facilities management (Cavka et al., 2017; Pishdad-Bozorgi et al., 2018). 

2.2.2 BIM for O&M 

In order to enable BIM functionality for O&M stage, widely diverse kind of data are 

essential (B Becerik-Gerber et al., 2012). According to and Nicolle and Cruz (2011), 

detailed data is also required for installed component in buildings. These kind of data might 

not be available in many existing buildings due to imperfect and deficient, obsolete or 

disintegrated building information(Gursel, Sariyildiz, Akin, & Stouffs, 2009). Becerik et 

al. (2012) defined application areas for enabling BIM for FM and revealed that each one of 

these areas demanded precise data requirements. For instance, Maintenance management 

is an example of FM activities which leads to not only reduce the cost of maintenance and 

plan the preventive maintenance, but also has a positive impact on the productivity of 

occupants. The importance of BIM in O&M buildings has been analyzed by Mayo et al. 

and Thabet et al. (2016) and several case studies were used to reinforce that BIM can 

facilitate decision making during this stage (Akcamete, Akinci, & Garrett, 2010; Sattenini, 

Azhar, & Thuston, 2011). Other researchers categorized FM data and products to help the 

transfer of design data to the handover stage (Pishdad-Bozorgi et al., 2018). The significant 

difference between enabling BIM for FM in new buildings and existing buildings is the 

lack of as-built , CAD files as well as insufficient and outdated information of the buildings 

(Gursel et al., 2009; B Becerik-Gerber et al., 2012). Missing this kind of information might 

lead to ineffective building management, uncertain process results and time loss or cost 

increases in FM processes. 

Efforts to extend BIM beyond the design and construction phases of the buildings are 

significant. Researchers focus on implementing BIM in O&M phase for different FM 

activities, such as: maintenance of warranty and service information (Arayici, 2008; Singh, 

Gu, & Wang, 2011; Haidar Hosamo Hosamo et al., 2022); quality control (Boukamp & 

Akinci, 2007; Choi & Lee, 2018); asset management and monitoring (Arayici, 2008; B 

Becerik-Gerber et al., 2012; S. H. Alavi & Forcada, 2019); energy management (Dave, 

Buda, Nurminen, & Främling, 2018; H. Wang, Pan, & Luo, 2019; H. Alavi & Forcada, 

2022); sustainability (Barnes & Castro-Lacouture, 2009; R Sacks, Treckmann, & 

Rozenfeld, 2009; Arayici et al., 2011; Matos et al., 2021); space management (Cho, 

Alaskar, & Bode, 2010; B Becerik-Gerber et al., 2012; S. H. Alavi & Forcada, 2019); 

emergency management (Wetzel & Thabet, 2015; S. H. Alavi & Forcada, 2019; Marocco 

& Garofolo, 2021); and retrofit planning (Mill, Alt, & Liias, 2013; L. Zhao, Zhang, Wang, 
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& Wang, 2021). BIM implementation can be further extended to: preventive maintenance 

planning (Burcin Becerik-Gerber et al., 2012; W. Chen et al., 2018; H.H. Hosamo, 

Svennevig, Svidt, Han, & Nielsen, 2022); building systems analysis (Weygant, 2011; 

Burcin Becerik-Gerber et al., 2012; Quinn et al., 2020); commissioning processes (Burcin 

Becerik-Gerber et al., 2012; Jiao et al., 2013); and strategy planning (Zou & Wang, 2009; 

Burcin Becerik-Gerber et al., 2012; H.H. Hosamo et al., 2022).  

A few studies have integrated probabilistic models into BIM for facility managers (Hu & 

Castro-Lacouture, 2018; McArthur et al., 2018; T. K. Wang & Qin, 2018; Micolier, 

Taillandier, Taillandier, & Bos, 2019). Di Giuda et. al. (Di Giuda, Pellegrini, Schievano, 

Locatelli, & Paleari, 2020) demonstrates the benefits of using BIM for increasing 

occupants' comfort, such as (1) obtaining feedback for the design process, (2) reducing 

energy consumption, and (3) reduction of operational phase’s costs. Göçer et. al. (Göçer, 

Hua, & Göçer, 2015, 2016) have integrated BIM with occupants’ feedback by extracting 

spatial information from the BIM model into a graphic information system (GIS) tool and 

then link occupants’ feedback with ArcGIS so as to visualize the results. However, the 

applications of BIM in operation and maintenance phase are still under development, and 

the research in this area, while growing, is still at a very early stage (Pishdad-Bozorgi et 

al., 2018; J. C. P. Cheng, Chen, Chen, & Wang, 2020). 

2.2.3 BIM information standards for O&M 

The implementation of BIM depends on its application in which the Level of Development 

or Details (LOD) must be defined. The LOD designation for project milestones determine 

geometric and non-geometric attribute information offered by a model component ((AIA), 

2008). Enabling BIM for O&M phase requires precise LOD (Leite, Akcamete, Akinci, 

Atasoy, & Kiziltas, 2011) for each FM activities. However, LOD specification does not 

target what FM activities will require as FM data (Dias & Ergan, 2016). 

During O&M phase, standards and specifications regarding the transmission, availability, 

and integrity of data have been developed (Re Cecconi, Maltese, & Dejaco, 2017). The 

PAS 1192-6:2018 standard, recommends using BIM models to store and retrieve facility 

data for the cooperative sharing of structured health and safety data throughout the project 

and asset life-cycles. BuildingSMART, the worldwide industry body, has developed a 

standard data format, the Industry Foundation Classes (IFC). The IFC conceptual model is 

intended to describe architectural, building and construction industry data and has been 

mostly used as the data exchange schema between BIM and other systems such as 

Computerized Maintenance Management Systems (CMMS) (Dong, O’Neill, & Li, 2014; 
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Zhou, Love, Matthews, Carey, & Sing, 2015; Göçer et al., 2016; Wong et al., 2018; Marmo, 

Polverino, Nicolella, & Tibaut, 2020).  

The Construction Operations Building Information Exchange (COBie), a subset of IFC 

data, is an international standard for exchanging data from the design phase to the O&M 

phase using a formal spreadsheet. The version of COBie for the FM handover Model View 

Definition (MVD), (BuildingSMART Team, 2020) is the MVD delivered in a file format 

that can be viewed and edited in Microsoft Office Excel (East et al., 2013). However, it 

allows for the storage of a large volume of different kinds of data, which results in 

overloading (Thabet et al., 2016). Accordingly, COBie needs to be customized for facility 

information as a means to building operation (Dias & Ergan, 2016). Becerik-Gerber et al. 

(B Becerik-Gerber et al., 2012) showed that each FM activity is data-intensive and demands 

specific data. Kim et al. (K. Kim et al., 2018) focused on identifying specific data for FM 

maintenance activity and proposed a data management approach to integrate IFC objects, 

COBie data, and maintenance work information from the FM system database. 

2.2.4 BIM interoperability for O&M    

Efforts to address BIM interoperability for O&M have been made by many researchers. 

Gouda et al. developed a framework by employing semantic web technology to store 

maintenance information and BIM data using COBie (Gouda Mohamed, Abdallah, & 

Marzouk, 2020). Cheng et al. (2020) determined FM information requirements referring to 

the Information Delivery Manual (IDM) and developed an integrated data-driven system 

based on BIM and IoT technologies for predictive maintenance of building facilities using 

COBie and the IFC extension. To enhance decision-making in FM, Chen et al. (2018) 

proposed a system for automated maintenance work order scheduling, based on BIM and 

FM software using COBie and the IFC extension. Marmo et al. developed a framework to 

address the interoperability issue by mapping the IFC into a relational database for 

maintenance and performance management (Marmo et al., 2020). Other researchers 

developed applications on BIM by integrating various systems to execute maintainability 

analysis (Shen, Hao, & Xue, 2012; Motamedi et al., 2014; Alireza Golabchi, Akula, & 

Kamat, 2016; Shalabi & Turkan, 2017), indoor localization (Papapostolou & Chaouchi, 

2011), fire emergency simulation and analysis (S. H. Wang, Wang, Wang, & Shih, 2015; 

M. Y. Cheng et al., 2017; Y. J. Chen, Lai, & Lin, 2020), fault detection and diagnosis 

(Zimmermann, Lu, & Lo, 2012; Yang & Ergan, 2016), sustainability assessment 

(McArthur, 2015; H. Wang et al., 2019), and energy simulation and forecast (Gerrish, 
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Ruikar, Cook, Johnson, & Phillip, 2017; Gerrish, Ruikar, Cook, Johnson, Phillip, et al., 

2017; Galiano-Garrigós, García-Figueroa, Rizo-Maestre, & González-Avilés, 2019).  

The variety of standards and technologies available (i.e., building automation protocols 

such as BACnet, Modbus, ZigBee and C-Bus) is one of the BIM–O&M interoperability 

problems (Gao & Pishdad-Bozorgi, 2019). Hence, many researchers have focused on 

system-based approaches to address the specific interoperability issue between BIM and 

software systems, standards or protocols in the O&M phase (Volk et al., 2014; Galiano-

Garrigós et al., 2019; Matarneh, Danso-Amoako, Al-Bizri, Gaterell, & Matarneh, 2019; 

Ozturk, 2020). The system-based approaches propose a systematic architecture for data 

integration (Kang & Hong, 2015). Such approaches make full use of open libraries, 

components and commercial software tools, and implement data integration architecture 

(Kang & Hong, 2015). Kang and Hong (Kang & Hong, 2015) proposed system architecture 

to effectively integrate BIM into geographic information system (GIS)-based FM software. 

Such approaches make full use of open libraries, components and commercial software 

tools, and implement data integration architecture (Kang & Hong, 2015). Motawa et al. 

(Motawa & Almarshad, 2013) developed system architecture to collect data and knowledge 

about building maintenance activities while and after they are performed. Lee and Cheng 

et al. (J. Lee et al., 2013; M. Y. Cheng et al., 2017) presented a system architecture to 

integrate BIM with Barcodes and Radio-Frequency Identification (RFID) tags to enable 

timely data access. Quinn et al. (Quinn et al., 2020) proposed system architecture to extract 

data from a Building Automation System (BAS) and incorporate it in BIM using a linked 

data structure. Ani et al. (Ani, Johar, Tawil, Razak, & Hamzah, 2015) integrated 

information from a survey on a water ponding defect on a flat roof to the BIM model to 

identify the flat roof condition. 

When BIM is integrated with other software, there may be confusion in communication if 

the visualization is not appropriate. Hence, different types of visualization should be 

considered in the BIM model for displaying the results (H. Alavi, Forcada, Bortolini, et al., 

2021). Tashakkori et al. (Tashakkori, Rajabifard, & Kalantari, 2015) integrated BIM-based 

3D indoor navigation functions with the proposed emergency management systems. 

Moreover, Wang et al. (S. H. Wang et al., 2015) applied the same approach to find the 

escape route to support fire safety management of buildings. Oti et al. (Oti, Kurul, Cheung, 

& Tah, 2016) utilized color scheme visualization in BIM to visualize data related to the 

energy management systems, to reflect time-dependent energy consumption information. 

Regarding maintenance activities, some researchers utilized BIM 3D visualizations to 

https://www-sciencedirect-com.recursos.biblioteca.upc.edu/topics/engineering/geographic-information-systems
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locate building components and support troubleshooting in proposed maintenance systems 

(S. H. Wang et al., 2015; H. Alavi, Forcada, Fan, et al., 2021). 

2.2.5 BIM-based Augmented Reality for O&M 

Augmented Reality (AR) is an innovative technology that can enable digital information 

such as 3D models, images, and animations to be overlaid on the real world to facilitate 

natural contact between users and their surroundings (J. C. P. Cheng, Chen, & Chen, 2017). 

For years, AR has been applied to the Architecture, Engineering, Construction and 

Operation (AECO) industry (Dunston & Wang, 2011). AR makes user information 

readable and manipulable surrounding facilities by mixing virtual and the real world. 

In order to improve the effectiveness of BIM applications, some studies have shown that 

incorporation of the AR technology would be beneficial for improving the usability and 

accessibility of BIM information (Y. J. Chen et al., 2020). Hence, to further improve FM 

activities, it is necessary to implement BIM and AR jointly to access high-quality 

information and visualize the required information. AR provides a suitable interface for 

FM fieldwork support (Sanghoon Lee & Akin, 2011; Koch, Neges, König, & Abramovici, 

2014) by providing the superimposed geometric representation on the physical space along 

with the relevant BIM-based FM data (Gao & Pishdad-Bozorgi, 2019).  

Researches have been developed AR to facilitate FM tasks. For example, Irizarry et al. 

(2014) proposed an AR system for facility managers to provide FMM information, proved 

to be able to improve efficiency during FMM. Lee et al. (2011) presented a system of an 

AR-based equipment O&M fieldwork support application to improve efficiency in FMM. 

Hou et al. (2014) presented a framework in which AR combined with photogrammetry to 

manage information for FMM. Ting et al. (2019) developed a facility risk assessment and 

maintenance system prototype enabling facility managers to select the maintenance policy 

for a single piece of equipment. Chen et al. (2020) integrated AR with BIM to improve 

safety and reduce error for FM activities. FM activities frequently require multiple users to 

communicate and interact with each another. For instance, when occupants report a 

problem, the facility manager comes to the office of the employee and inspects the problem 

on site. After identifying the problem, the facility manager makes decision and calls the 

administrative affairs manager, reports the problem, and requests a work order. To deal 

with this issue, AR can give a UI to FM staff and occupants to straightforwardly 

communicate with surrounding facilities (K. Chen, Chen, Li, & Cheng, 2019). 
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2.3 Summary 

The literature review demonstrates the growing use of BIM for O&M phase to help FM 

team. In this sense, addressing interoperability between existing systems and the BIM 

model, is crucial to provide high-quality data for FM activities. A literature analysis also 

emphasizes the necessity of the probabilistic DSS for the improvement of FM activities 

(e.g., building performance) dealing with uncertainty, managing risks, identifying, 

analyzing, evaluating, and mitigating factors that may influence the performance of the 

building. Nevertheless, these DSSs are not integrated nor interoperable with BIM to 

automatized the data transfer process. 

While the numerous benefits offered by BIM, its utilization for the O&M phase remains 

significantly limited due to the interoperability issues. Thus, the DSS integration into BIM 

needs to be investigated to facilitate data transfer, reducing the time and effort that the FM 

team spends on manual input. BIM has the potential to advance and transform facilities 

O&M by providing a platform for facility managers to retrieve, analyze, and process 

building information in a digitalized 3D environment. The greatest advantage of BIM 

application in FM is the integration of data systems over the life cycle of a facility. 

Literature review also highlighted the potential benefits of implementing BIM and AR 

jointly during O&M phase and empirical results from existing studies also corroborate 

these findings. The use of AR technology as a visualization platform represents a great 

potential to support FM, regarding the enhancement of building performance. 

Consequently, facilities managers will be in a better position to make decisions about the 

building and provide better outcomes.  
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Chapter 3 

Research Method 

This chapter explains the research method adopted to achieve the objectives of this thesis. 

First, the global approach is explained followed by three DSS to be integrated in BIM 

during the O&M activities. Afterwards, the method to integrate DSS into BIM is presented 

in three steps to implement the DSS and enable the BIM visualization for desired purposes. 

Finally, the proposed method is validated in existing software as a case study. 
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3.1 Global approach 

The global approach of this research consists of three main steps as illustrated in Figure 4. 

 

Figure 4. Global approach of this research 

The first step is to develop DSS by creating an algorithm model and analysing the existing 

probabilistic tools when necessary. The next step is to implement these DSS in the BIM 

models by following three steps shown in Figure 5. These steps are: data requirement, data 

integration and data visualization. 

 

Figure 5. Process of DSS implementation 

The required data is identified and transferred to the BIM model to implement DSS 

followed by visualizing different types of results. Finally, the proposed model is evaluated 

in the case studies. 

Evaluation

• Model evaluation in 
case studies

DSS 
implementation

• Data requirement

• Data integration

• Data visualization

DSS 
development

• Algorithm model 
development

• Probabilistic 
models analysis

• Identify data

• Create 
parameters

Data requirement

• Transfer data

• Papulate 
parameters

Data integration

• Visualize 
different 
types of 
results

Data visualization



32 

 

 

3.2 DSS analysis and development 

Although many different DSS can be implemented during the O&M activities, this thesis 

presents three DSS to be integrated in BIM. These DSS are: (1) HVAC problems analysis 

based on the algorithm model. (2) Building condition assessment, and (3) occupants’ 

comfort evaluation, both of which are based on probabilistic models (i.e., probabilistic 

models) as illustrated in Figure 6. 

 

Figure 6. Three DSS applications covered in this thesis 

The algorithm model for HVAC root-cause detection is created and implemented into the 

BIM model directly. In contrast, the probabilistic models for building condition assessment 

and occupants’ comfort evaluation are analysed based on existing probabilistic DSS. The 

probabilistic models are based on BN and require a BN modeling tool (e.g., AgenaRisk, 

one of the most common and powerful tools for BN modeling) to be implemented. In this 

case, a conceptual model is designed to integrate the probabilistic models into the BIM 

models enabling bidirectional data transfer between BIM and BN. The conceptual model 
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is then implemented in Autodesk Revit which is one of the most popular BIM tools in the 

AEC sector. 

3.3 DSS implementation 

To implement the DSS, different steps are required as illustrated in Figure 7. First, the 

required data is defined based on the DSS, and the relevant parameters are created in the 

BIM model. Next, the required data is transferred to the BIM model to populate the relevant 

parameters by integrating various systems (i.e., data integration). Then, the BIM 

visualization is constructed in user-friendly ways which can assist users in integrating 

digital insights into FM decision-making processes and converting them into positive 

strategic actions. 

 

Figure 7. Process of the DSS implementation in BIM 
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3.3.1 Data requirement 

Even though BIM provides building and spatial information, it still cannot represent 

complete information on FM applications (e.g., building condition assessment, HVAC 

problems analysis and occupants’ comfort evaluation) in which the FM team can make 

decisions. Therefore, the Industry Foundation Classes (ifc), an open international standard 

for BIM, introduced the IfcPropertySet allowing BIM models to contain additional data. 

The IfcPropertySet known as “IfcPset” is a container class that holds properties within a 

property tree” (“buildingSMART International Standards Server: IfcPropertySet,” 2022). 

To create parameters in BIM, spatial information should be assigned into rooms, while 

building information should be assigned into their corresponding family. Building 

information for each component in a building is different; thus, it is crucial to assign the 

IfcPset into their relevant families in BIM. ‘Ventilation control’, for instance, should be 

assigned to a mechanical family but not a wall family. 

In Autodesk Revit, shared parameter can also be utilized to allow BIM models to contain 

such information. Shared parameter is a Revit term that can be added to the Revit family 

for custom data fields creating parameters for data that could not be obtained from the BIM 

model. It can also be accessible for any project due to holding parameters in a separate file 

(H. Alavi, Forcada, Bortolini, et al., 2021). The process of creating shared parameters can 

be done both manually and semi-automated using Dynamo, a visual programming 

extension for Autodesk Revit.  

3.3.2 Data integration 

To populate the parameters, various systems (e.g., CMMS, BMS) should be integrated into 

the BIM model using Dynamo and Python scripts. Afterwards, the BIM model will run the 

DSS (e.g., algorithm model and probabilistic models) to obtain the results, shown in Figure 

8. 
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Figure 8. Data integration of different DSS types in BIM 

The BIM model will directly run the algorithm model to obtain the results. However, the 

probabilistic models require a BN modeling tool (e.g., AgenaRisk) to obtain the results. 

Thus, the required data should be extracted from the BIM model using Dynamo and Python 

scripts, by creating a dataset in either Microsoft Excel as an intermediate format or a 

JavaScript Object Notation (.Json) format, which is a lightweight format for storing and 

transferring data. Subsequently, the dataset (.Json or comma-separated value (CSV)) 

containing all the required data should be imported into the BN modeling tool where the 

FM team can acquire the results of different analysis (e.g., building condition and 

occupants’ comfort). Finally, the results can be extracted from the BN tool into either a 

.Json or a .CSV format and imported into the BIM model using Dynamo and Python to 

visualize the results in a 3D model. 

3.3.3 Data visualization 

The BIM model can visualize the results from the algorithm model instantaneously. For 

probabilistic models, however, it requires bidirectional data transfer between BIM and the 

BN tool to visualize the results. Thus, the results obtained from the BN tool should be 

imported into the BIM model using a Python programming language in Dynamo. A Python 

code block queries the results to match with corresponding spaces/building elements. For 

instance, the results related to a building element (e.g., Fan coil) with corresponding 

equipment codes are imported and sorted to match relevant families (e.g., mechanical 

equipment) in BIM. Besides, the results related to spaces are also imported and sorted to 

match relevant rooms in BIM. Then, the results of each element and space can be mapped 

to their corresponding elements and rooms in the BIM model using GetItemAtIndex and 

SetParameterByName nodes in Dynamo. 
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Once the results from the BN tool are mapped, the BIM capabilities are utilized to visualize 

the results with different colors for both spaces and building elements. The tabulated data 

taken from Revit’s schedule are visualized in a 3D format in the BIM model by applying 

view filters. The FM team would be able to filter the elements or rooms in the BIM model 

to view the color associated with them based on the desired purposes. It is also possible to 

compare building elements and rooms between different buildings. 

3.4 Evaluation 

Model evaluations aim to ensure that the model's interactions and outcomes are realistic (S. 

Chen & Pollino, 2012). An evaluation of a model can be divided into two general 

categories: validation and verification (Sargent, 2013). A validation is the process of 

ensuring that a product, service, or system meets the requirements of its intended customers 

and other stakeholders (Engel, 2010). A verification is to demonstrate that the model has 

been transformed from a problem formulation to a model specification with sufficient 

accuracy (Balci, 1997). In this research, therefore, the proposed approach to integrate BIM 

and DSS, is validated by implementing them in case studies to ensure that the tasks are 

performing as efficiently as possible. In this case, the same approach as Kang and Hong 

(Kang & Hong, 2015) is used to identify how much the task efficiencies in comparison 

with the manual method. 

In addition, information exported from software programs should be verified according to 

Eastman (T. Eastman & Sacks, 2011) by checking the syntax and structure of project 

exchange files and checking the completeness of the contents of a project exchange file 

(objects, parameters, and their values) between two applications. In this respect, the syntax 

and the value of the transferred data are checked in the case studies to ensure that there is 

no missing data to meet the data completeness criterion. Data completeness concerns the 

degree to which all data relevant to an application domain has been recorded in an 

information system (Gertz, Özsu, Saake, & Sattler, 2004). 

The case studies include different buildings of the Terrassa campus from the Universitat 

Politècnica de Catalunya (UPC). The campus includes 25 buildings with classrooms, 

offices, laboratories, dining rooms, restrooms, common areas and study areas. The campus 

is located in a small urban area in the city of Terrassa (Barcelona) with a Mediterranean 

climate characterized by hot, dry summers and cold, wet winters. It includes 25 buildings 

involving classrooms, offices, laboratories, dining rooms, restrooms, common areas, and 
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study areas. The TR5 building was constructed in 1960 in Terrassa campus; it has 11,492 

m2 and five floors with a concrete structure, a brick façade, and an inverted roof. The 

majority of the windows are single glazed, and the interior partitions are plain brick walls. 

When TR5 was built, only a radiant system was installed, with two boilers and four air 

handling units (AHU) (one for each floor) located in the underground. A duct network 

brought the heated air from the underground to the habitable areas. There was no cooling 

system at all, and the ventilation was only natural, by opening windows. In the 1990s, splits 

providing both cooling and heating were installed in some offices. Later, the boilers were 

substituted by condensing boilers with high efficiency. Finally, by 2010 most of the third 

floor, which includes both offices and classrooms, was reconditioned, and an air-water 

system was installed to provide both heating, ventilation, and air conditioning. A chiller 

was installed in the roof while the existing boilers were also connected to the new HVAC 

system for the third floor. Then, several fan coils were installed in each room (offices, 

classrooms, and corridors) of this floor. TR5 has been using a CMMS Archibus called 

FACIL since 2012. The FACIL allows tracking all infrastructure and equipment 

inventories, as well as the management of preventive and corrective maintenance of the 

equipment. Whenever there is an incidence in any of the equipment, it can be reported by 

UPC staff and administrative personnel through the FACIL. Furthermore, TR5 has been 

using a BMS Schneider, comprising a set of products and software, multi-sensor probes for 

rooms, to improve its energy efficiency and provide the real-time building data.  
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Chapter 4 

A BIM-based DSS for HVAC root-

cause detection 

This chapter presents the work undertaken to define an algorithm model to determine the 

causes of HVAC problems as the main contributors to excessive energy consumption in the 

building operation phase. Afterwards, the algorithm model is implemented in BIM to 

visualize malfunction equipment and assist FM team to determine the most probable cause 

of an HVAC problem, reducing the time to detect equipment faults and providing potential 

actions to solve them. HVAC system failures would result not only in energy waste, but also 

in low occupants’ comfort. This implies that important energy as well as high occupant 

comfort can be achieved by applying proper maintenance plan for improving the efficiency 

of the HVAC systems. A case study in a university building is used to demonstrate the 

applicability of the approach. 
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4.1 DSS for HVAC root-cause detection 

The algorithm model to assist facility managers in identifying the root cause of HVAC 

problems and thus meet occupants’ needs is shown in Figure 9. The HVAC system is one 

of the most important factors affecting thermal comfort and when it is improperly operated, 

it may result in poor ventilation, cause health problems and discomfort to the occupants. 

Therefore, it is imperative to determine the causes of HVAC problems to know what 

actions can be taken by FM team. When thermal comfort in a building room is not achieved 

it might be attributed to either the undersized HVAC components (i.e., HVAC design 

problem) or the equipment failure (Yang & Ergan, 2017; Ilango, 2019). In such 

circumstances, end-users might complain for not having the desired indoor comfort (H. 

Alavi, Forcada, Bortolini, et al., 2021). Therefore, HVAC problems are categorized under 

two groups: a) undersized HVAC components or HVAC design problem; and b) failure of 

the equipment which is related to either an indoor or outdoor unit (Yang & Ergan, 2017; 

Ilango, 2019). 

These problems can be reported by occupants who are discomfort in terms of thermal 

sensation (H. Alavi, Forcada, Bortolini, et al., 2021). To address discomfort due to already 

installed undersized HVAC components two options are possible (H. Alavi & Forcada, 

2022): a1) reduce the thermal demand of the room by insulating the envelope including 

façade, windows, roof and/or floor, if possible; and a2) substitute indoor units for those 

with the correct cooling/heating capacity. On the other hand, the location of the specific 

equipment is needed to address the failure of an HVAC equipment. Failures can stem from 

outdoor units (e.g., frozen evaporator coils, dirty condenser coils, dirty filters) and indoor 

unit (e.g., motor fans failure, air outlet obstruction). Therefore, the algorithm model 

identifies whether the problem is related to indoor units or outdoor units to enable FM team 

to provide practical corrective actions. 
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Figure 9. Algorithm model for HVAC root-cause detection 

To analyse if the HVAC system is correctly designed, the indoor unit capacity against the 

thermal load of the room should be compared. To do so, the indoor unit capacity can be 

obtained from the equipment database while the thermal load can be automatically 

calculated if the architectural and constructive design is correctly defined. If the indoor unit 

capacity is higher than the thermal load of the room, then the thermal discomfort might be 

attributed to the failure of the equipment. However, if the indoor unit capacity is lower than 

the thermal load of the room, facility managers should check if the heat transfer through 

the envelope can be improved. To do so, all envelope elements (façade, windows, roof, 

floor) insulation should be evaluated. If all envelope elements are within the insulation 

threshold, then the only option would be substitute indoor units for those with the correct 

cooling/heating capacity. However, if any of the envelope elements have lower insulation 

properties, insulation refurbishment should be considered. 
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If the envelope insulation is within the limits and the HVAC components are correctly 

designed, the probable main cause of thermal discomfort might be attributed to a failure of 

any of the HVAC system equipment. To determine if the failure is attributed to the outdoor 

unit or the indoor unit, information about the pressure and temperature from the Building 

Management System (BMS), a computer-based system for managing, monitoring and 

controlling of building services, should be analysed. If both pressure and temperature are 

within the acceptable values, then the failure might come from the outdoor unit. If not, the 

failure might be related to the indoor unit. 

4.2 DSS implementation 

Once the algorithm model is created, the BIM capabilities are utilized to: a) implement the 

algorithm model; and b) provide the FM team with color-coded visualization to indicate 

the root cause of a certain failure or problem. 

Figure 10 shows the process of the algorithm model implementation in BIM by following 

three main steps. (1) Data requirement: the required data for the algorithm model is defined. 

(2) Data integration: the required data from various sources (e.g., CMMS) is integrated 

with the BIM model to implement the algorithm model detecting the root cause of HVAC 

problems. (3) Data visualization: the BIM visualization is used to add red colour in 

malfunction equipment. 
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Figure 10. Process of the algorithm model implementation in BIM 

4.2.1 Data requirement 

As described in Section 3.3.1, the BIM cannot represent complete information on 

maintenance activities in which the algorithm model can be implemented. Therefore, the 

data requirement for the algorithm model is defined from various sources such as CMMS 

and BMS, shown in Table 1. 

Table 1. Data requirement for the algorithm model. 

Required information Source 

Room data Number 

Area 

Thermal load 

Facade material 

U-value of envelope elements 

BIM 
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Type of heating (Radiators / Air water / Splits / 

VRV) 

Type of cooling (Air-water / Fan coils and AHU 

/ Splits / VRV) 

Description of the problem 

Location of the problem 

Date of the reported problem 

 

 

 

CMMS 

System data Equipment ID 

Cooling capacity  

Heating capacity 

Temperature                                                               

Pressure  

BIM 

 

 

BMS 

 

 

The occupants’ complaints (i.e., maintenance requests) regarding the thermal comfort 

might come from the CMMS and should include information about the building, the room, 

the date and the hour. From this information, data about the indoor unit related to that room 

can be obtained. Moreover, other relevant data such as temperature and pressure of the 

malfunction equipment’s pipes can also be obtained from the BMS or Building Energy 

Management System (BEMS) or Building Automation System (BAS). 

4.2.2 Data integration 

To populate the parameters that are created in section 4.2.1, the CMMS and BMS are 

integrated into the BIM model. To do so, the HVAC problems are extracted from CMMS 

and stored in Microsoft Excel. Then, the HVAC problems with corresponding equipment 

codes are imported and sorted to match relevant mechanical equipment in BIM by using 

Dynamo and scripts of Python. Figure 11 shows the process of mapping HVAC problems 

into the BIM model. 
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Figure 11. Dynamo scripts to map HVAC problems into BIM 

The column of equipment code in HVAC problems in the Excel file is connected to the 

Python code block as an input (input#0), whilst the mechanical equipment in the BIM 

model is also connected as inputs input#1. Next, a Python code block queries input#1 to 

find equipment that match those from the HVAC problems (input#0) and create a new list 

with HVAC problems and their corresponding information.  

To integrate the BMS with the BIM model, the similar approach to Dong et al. (Dong, 

Oneill, Luo, & Bailey, 2014) is utilized to acquire data regarding temperature and pressure 

of HVAC equipment and incorporated them into the BIM model. 

4.2.3 Data visualization 

Once the “maintenance requests” concerning the HVAC problems is being reported, BIM 

integrated CMMS/BMS provides various kind of information such as the building, the 

room and the date. Hence, the algorithm model utilizes these data as initial inputs to analyse 

the root cause of HVAC problems. When the HVAC problems and their causes are 

determined, the BIM model provides the visualization of the malfunction equipment. Thus, 

the tabulated data taken from Revit’s schedule (e.g., Calculated Value) is visualized in a 

3D format in the BIM model by applying view filters. The BIM visualization for HVAC 

equipment problems is shown in Figure 12. 
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Figure 12. BIM visualization of malfunction HVAC equipment. 

 Indoor unit 

 Outdoor unit      

(c) a malfunctioning of the outdoor unit 

(a) an under design of the indoor unit  

(b) a malfunctioning of the indoor unit 
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The FM team can filter the malfunction equipment in the BIM model to view its 

corresponding necessary information to facilitate decision making. 

4.3 Evaluation 

In this chapter, the evaluation is based on the validation, thus the TR5 building is used as a 

case study. In order to identify HVAC problems for the TR5 building, all maintenance 

requests are exported from FACIL into Microsoft Excel as an intermediate format, 

including the following information: equipment ID, floor code, space code, request code, 

and description of the problem. Table 2 shows some examples of HVAC problems in the 

TR5 building. 

Table 2. Example of HVAC maintenance requests in TR5. 

No. Equipment ID Floor 

code 

Space 

code 

Maintenance 

request 

Description 

1 TR-CLIFC0082 P03 310 33325 The fan-coil fan does not stop. 

2 TR-CLIFC0083 P03 312 40504 The air conditioning does not cool. 

3 TR-CLISI0304 P03 318 51823 The radiator does not work 

4 TR-CLISI0045 P0E 055 71944 It does not cool the air conditioning 

5 TR-CLIFC0094 P03 329 79299 The previous incident occurs again, this 

time so that the noise is not continuous. 

This is a very annoying sound. 

6 TR-CLISI0250 P03 307 80962 Heating equipment not working 

7 TR-CLISI0215 P01 130 83738 HEATING DOESN'T WORK !!!!!!! 

8 TR-CLISI0238 P03 306 98316 The 3.06 air conditioner does not work 

9 TR-CLIFC0073 P01 158 106728 The air conditioning does not cool. 

10 TR-CLISI0237 P03 305 115297 Hot air does not work. A warning LED 

has been lit, perhaps for filter cleaning. 
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11 AA-PROVA     120025 The heating doesn't seem to work. The 

radiators are cold. 

12 TR-CLISI0003 P00 0128 126853 Disassemble and remove Climate 

equipment. 

 

Among these HVAC maintenance requests, a maintenance request (No. 8) is considered as 

a scenario in this study to implement the algorithm model. The occupants located in 

building TR5, room 306 experience thermal discomfort and report a problem associated 

with the split in that room through the FACIL portal explaining the equipment is not 

working properly. This HVAC maintenance request is extracted from the FACIL and 

imported into the BIM model to match with the corresponding mechanical equipment using 

Dynamo and scripts of Python. When the maintenance request is assigned to its 

corresponding equipment, the relevant data of the equipment and the room, where the 

equipment is placed, is provided by the integrated BIM model to implement the algorithm 

model. 

The algorithm model then queries the possible causes of the problem by comparing the 

required cooling load (calculated in Revit) with the cooling capacity of the split to identify 

whether or not the problem is related to HVAC design. A “Calculated Value” within a 

Revit schedule is used to define formula driven reporting values by modifying existing 

parameter values through the use of mathematical (e.g., Volume / Area) or conditional 

expressions. The energy demands for the room 306 is calculated in Revit and compared 

with the characteristic of the split obtained from the BIM model (e.g., cooling capacity) 

using “Calculated Value”. Since the cooling capacity of the split is higher than the required 

cooling load for that room, there are no HVAC design problems or undersized HVAC 

components. In the next step, the algorithm model monitors the temperature and the 

pressure of equipment’s pipes to determine whether indoor unit or outdoor unit has a 

problem. Both the temperature and the pressure of the split’s pipes are not within the 

acceptable values; therefore, the algorithm model determines that the problem is related to 

the energy production (i.e., outdoor unit). As a result, the outdoor unit corresponding with 

the reported split is turned to red colour to assist facility managers, illustrated in Figure 13. 

Therefore, the results of the algorithm model suggest that the problem is probably related 

to the outdoor unit. Then the FM team should move directly to where the outdoor unit is 
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located and find a refrigerant leak. They repair it and solve the problem without moving to 

the room where the end-user make the complaint. 

 

Figure 13. BIM visualization of the possible causes of the problem 

4.4 Discussion  

The proposed algorithm model allows to semi automatically detect which are the causes of 

occupants’ complaints about thermal comfort in specific rooms. The proposed approach 

Malfunction 

equipment 

(outdoor unit)      

HVAC maintenance request 

14 
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integrates CMMS and BMS into the BIM model to identify the root cause of HVAC 

problems. When the end user reports a problem (e.g., too cold), the algorithm model queries 

the possible causes of the problem. It enables the FM team to address the challenges of 

information reliability, interoperability, and usability.  

Although some studies integrate BIM with other FM software, they do not provide a root-

cause detection to deal with HVAC problem in buildings, which allows the causes of 

occupants’ discomfort (in thermal comfort) to be properly understood. Existing studies 

focus on the visualization of equipment condition or building performance in different 

platforms (A. Golabchi, Akula, & Kamat, 2013; Motamedi et al., 2014; H. Alavi, Bortolini, 

& Forcada, 2022). However, they only considered spatial information of the reported 

problem. The approach of this visualization focuses on malfunction equipment illustrating 

in red colour, so that the effort of looking for the location of the real problem, is minimized. 

This type of visualization allows for a more intuitive detection of the reasons of occupant 

discomfort and makes it easier to address the issue, resulting in a significant improvement 

in occupants’ comfort and the optimization of building operation techniques to enhance 

occupant comfort and energy efficiency. 

The case study is used to validate the proposed algorithm model. For the scenario of a 

maintenance request, it is highlighted that although the occupants in room 306 are 

dissatisfied in terms of thermal comfort and reported a problem associated with the split, 

the real problem is for outdoor unit and no actions are required for the split. This helps FM 

team to plan corrective actions without going through the building physically. It also 

provides the relevant data for facility managers to perform maintenance activities on 

HVAC systems, reducing the time and effort that the FM team spends on searching 

appropriate and reliable information.  

4.5 Conclusions 

The proposed approach defines the algorithm model and integrates various sources of data 

while considering BIM as a central database. Existing studies neither detect the causality 

of HVAC problems nor provide a real problem visualization to have easily accessible data. 

This chapter presents an automated approach that provides an algorithm model for 

identifying problems and integrates CMMS and BMS into the BIM model in order to 

streamline the process of resolving HVAC problems. There are two key benefits of this 

integration: 1) BIM performs as a data repository, providing relevant data for the proposed 
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algorithm model; 2) BIM can visualize malfunction equipment and provides a potential 

solution for improving occupants’ comfort. The algorithm model semi-automatically 

detects which are the causes of HVAC problems. Based on the proposed algorithm model, 

a case study is developed to show how this approach may be used to visually analyse the 

potential causes of HVAC problems in a room. This visualization approach focuses on real 

problems in discomfort spaces and assists the FM team to establish the necessary 

measurements for improving occupants’ comfort and energy efficiency. 

The contributions of this chapter include: (1) an approach that enables integrated 

representation of HVAC troubleshooting–related information, which is typically stored in 

BIM, CMMS, and BMS; and (2) the algorithm model that identifies possible causes and 

visualizes them in order to solve a problem. The proposed approach assists the FM team in 

identifying the most probable cause of a particular HVAC problem, ensuring that they do 

not overlook the main cause or spend time tracing and locating components on the site. It 

also provides the FM team with the relevant and required data about these reasons, allowing 

them to determine the real problem. The FM team can make decisions on building 

operational problems cantered on occupants’ comfort with minimal effort which 

overcomes a key barrier both to location of the problem and collection of relevant data 

within the operation and maintenance phase.  
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Chapter 5 

A BIM-based DSS for building 

condition assessment 

This Chapter presents a conceptual model to integrate probabilistic DSS into BIM for 

building condition assessment. A condition assessment system is used primarily to facilitate 

the analysis of all elements of an asset in order to determine the extent of the necessary 

repair that is detected during an inspection and to predict failure of building elements. The 

BIM and BN models are integrated, based on the proposed conceptual model to assess 

building condition, and visualize the current condition of the building elements and systems 

by employing a color scale. Finally, the conceptual model is validated in existing software 

as a case study considering the integration of BIM and the building condition probabilistic 

model. 
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5.1 DSS for building condition assessment 

With the aim of assessing the entire condition of a building, Bortolini and Forcada 

(Bortolini & Forcada, 2019b) developed a probabilistic model based on BN for building 

condition assessment. This model is created using cause-and-effect relationships between 

uncertain elements that impact building conditions. The condition of building elements and 

systems is categorized as high, medium, or low. For example, the term “high condition” 

refers to a piece of equipment that is in high working order and can be used to its maximum 

potential for its intended function. The BN model to assess building conditions is presented 

in Figure 14. Hierarchical levels could be visualized in the model that include all the general 

civil and architectural elements, as well as MEP (mechanical, electrical, and plumbing) 

systems. 

The BN model is divided into building elements and systems. The building elements are 

classified as: 1) structure, 2) façade, 3) roofing, 4) flooring, 5) interior partitions and 6) 

doors/windows. The building systems are also defined as follows: 1) electrical systems, 2) 

plumbing systems, 3) HVAC systems, 4) elevator and 5) fire systems. 

Variables that impact the performance of building elements and systems are classified as: 

design and construction errors; policy for building operation and maintenance; defects in 

building elements/systems; environmental agents; and building properties including age, 

type of elements, and whether preventive maintenance actions are planned. Weather 

conditions, the surrounding environment, the danger of natural catastrophes and geological 

conditions are examples of environmental agents. 

In the BN model, variables that impact the condition of building elements and systems are 

represented as nodes. Depending on the data type, they are defined as discrete (labeled, 

Boolean, discrete real or ranked) or continuous (Fenton & Neil, 2018). Some nodes are 

defined as ranked and had various states such as ‘High’, ‘Medium’, and ‘Low’. Others are 

specified as Boolean, with binary states like ‘Yes’ and ‘No’. For whatever element or 

system condition, the model can be queried by inserting evidence in the BN model and 

setting its state (i.e., low condition). Then, the BN calculates the probability function of the 

parent nodes by conducting backward propagation, and estimates the most likely causes 

(e.g., age of the equipment, lack of preventive maintenance and design errors). 
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 Figure 14. BN model for assessing a building’s condition (Bortolini & Forcada, 2019b) 
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 The BN is constructed in AgenaRisk for building condition assessment, due to its power, 

versatility and user-friendly interface (Pérez-Miñana, 2016). It can visualize the sensitivity 

analysis for the BN model to represent the importance of causal factors. 

5.2 DSS implementation 

To integrate the building condition probabilistic model based on BN in the BIM model, a 

conceptual model is designed enabling bidirectional data transfer between BIM and BN. 

The conceptual model is then implemented in Autodesk Revit. The system architecture of 

implementing the conceptual model into Autodesk Revit (i.e., a BIM tool) to facilitate the 

assessment of building conditions consists of three main steps, illustrated in Figure 15. (1) 

Data requirement: the parameters for the Revit model are created as IfcPset, based on the 

required data for building condition assessment. (2) Data integration: the Revit model is 

integrated with the BN model to evaluate building condition using Dynamo. (3) Data 

visualization: the BN results of the building condition assessment are exported to local 

storage and visualized in Revit in a way that the FM team can easily understand the data. 
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Figure 15. Process of the probabilistic model implementation in BIM for building 

condition assessment 

5.2.1 Conceptual model 

The conceptual model consists of seven thematic classes, namely: “BuildingCondition”, 

“CMMS”, “EnvironmentalCondition”, “IfcBuilding”, “IfcPset”, “Interface” and 

“Visualization”. A Unified Modeling Language (UML) class diagram, which is a 

worldwide industry standard (Weilkiens, 2007), is employed to present the conceptual 

model. A class diagram in the UML is a type of static structure diagram that describes the 

structure of a system by showing its classes, attributes, and behavior (e.g., operations). 

Figure 16 highlights the conceptual design of the proposed model for BIM and BN 

integration. In Figure 16, the “interface” class for building elements/systems merges all 

data sources and transforms them into the appropriate format by creating new attributes to 

support compatibility of BIM and BN models. To create new attributes, algorithms for 

various data types such as Number, Boolean and String are created. These attributes are 

then required by the “BuildingCondition” class, using an interface to assess a building’s 

condition. 

 

Figure 16. Conceptual design of the UML diagram 

(a)  (c)  (b)  (d)  

(e)  

(f)  

(f)  (f)  

(g)  
(a) “CMMS” class 

(b) “IfcPset” class  

(c) “IfcBuilding” class 

(d) “EnvironmentalCondition” class 

(e) “Interface” class 
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To enhance the readability of the UML diagrams, classes are depicted in different colors, 

considering different data sources. The “CMMS” class (in yellow, [a]) includes 

maintenance requests and preventive maintenance records, which play an important role in 

identifying defects in building elements/systems. The “EnvironmentalCondition” class 

contains a sensor to obtain the weather conditions (in blue, [d]). Figure 17 shows the UML 

diagram for “CMMS” and “EnvironmentalCondition” classes. 

 

Figure 17. UML diagram of (a) “CMMS” class and (d) “EnvironmentalCondition” class 

The “IfcBuilding” class (in white, [c]) is considered a major data exchange schema standard 

for BIM (BuildingSMART, 2020). The IFC Property Set known as “IfcPset” is a class (in 

red, [b]) that contains required data on building condition assessments. These data are 

assigned to an IFC model object and their class names are preceded by the prefix IfcPset.  

The “BuildingCondition” classes (in green, [f]) are divided into building system condition 

and building element condition for ease of reading, as shown in Figure 18 and Figure 19. 

Due to the complexity of the model and limitations of space, the attributes are not illustrated 

in the class diagrams (for the complete conceptual model, see Appendix B).  

 

(a)  (d)  
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Figure 18. Conceptual model of the building element condition using UML diagram 

The “BuildingCondition” classes that are based on causality analysis use “interface” class 

(in grey, [e]) to assess a building’s condition. This requires the acquisition of data from 

various sources such as “CMMS”, “IfcBuilding”, “IfcPset” and “EnvironmentalCondition” 

classes, followed by the transformation of these data into an appropriate format.  
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Figure 19. Conceptual model of the building system condition using UML diagram 

UML diagrams for building system condition and building element condition differ 

according to their characteristics. For instance, the “IfcBuilding” class for building element 

condition is comprised of IFC for elements such as IfcDoor, IfcWindow, Ifcwall and 

IfcRoof, while for building system condition it consists of various IFC with respect to 

systems (e.g., IfcChiller, IfcDamper and IfcBoiler). 

Finally, among all the thematic classes, the “Visualization” class (light green, [g]) 

represents a link through which the results of the building condition assessments can be 

imported into any possible data visualization tool. 

5.2.2 Data requirement 

To allow BIM models to contain the required data on building condition assessments, a 

Dynamo script is used to create parameters for data that could not be obtained from the 

BIM model, such as the age of each building element and system. All variables of the BN 

model are considered parameters in Dynamo. Figure 20 shows the process of creating 

parameters to host relevant data in BIM using a Dynamo script. 
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Figure 20. Dynamo scripts to create parameters 

The parameter name of the required data is exported from the BN model as an .XML file 

converted into Microsoft Excel (.xls), an intermediate format, before mapping it to the BIM 

model. Then, authors manually define the parameter types and families to assign the 

required data into their relevant families in BIM. There are different kinds of parameter 

types, including Numbers, Strings and Yes/No Boolean. For example, the “HVAC age” 

parameter requires a numeric value since it contains the age of equipment. Therefore, its 

type is considered as “Numbers” and its corresponding family is defined as “Mechanical 

Equipment” in the BIM model. Next, the .xls file containing the parameter’s name, type 

(i.e., data type) and family for each item of data, is imported into the Dynamo through a 

Data.ImportExcel node. Eventually, all the parameters are created in the BIM model based 

on the required data from the BN model to host relevant data using a 

ParameterCreateSharedParameter node in Dynamo. 

The options of whether or not to have preventive maintenance, cooling, heating, and 

different kinds of data such as building properties (e.g., age, type of elements) are then 

added to the BIM model from which can be extracted. However, before extracting these 

data from the BIM model, they must be transformed into an appropriate format so as to be 

compatible with the BN model. To achieve this, a bunch of Python scripts is designed in 

Dynamo to transform data from the BIM into the appropriate format. Dynamo is a scalable 

way to extract data from centralized spreadsheets and update common parameters with a 

range of data types including Boolean, Strings and Numbers. Table 3 shows all the 

parameters that need to be transformed to be utilized in the BN model. 
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Table 3. Parameters in the BN model for building condition assessments 

Type Parameters   States in the BN model 

Boolean Façade prev. maintenance 

Roof prev. maintenance 

Doors/windows prev. 

maintenance 

Cooling 

Heating 

HVAC prev. maintenance 

Electrical prev. maintenance 

Elevators prev. maintenance 

Structure prev. maintenance 

Floor prev. maintenance 

Interior partitions prev. 

maintenance 

Plumbing–hot water 

Plumbing prev. maintenance 

Fire system prev. maintenance 

Yes, No 

String Façade type 

 

Concrete panels/masonry, 

metal panels, glazed, others 

Roof type 

 

Flat concrete, flat metal 

panels, glazed, others 

Ventilation 

 

Forced, natural 

Structure type 

 

Concrete, masonry, steel, 

others 

Floor type 

 

Continuous, discontinuous, 

others 

Interior partition type 

 

Masonry walls, light 

partition walls, others 

Number Façade age 

Roof age 

Doors/windows age 

Elevator age 

Electrical age 

<10, 10 to 20, >20 

Structure age 

Floor age 

Interior partitions age <10, 10 to 30, >30 

Plumbing age 

HVAC age 

Fire system age <3, 3 to 10, >10 

 



61 

 

 

For those data expressed in numbers (e.g., roof age, floor age), a Python code block is used 

to calculate the average age of all elements in BIM since the BN model evaluates the 

condition of entire buildings rather than a single element. For example, when one floor of 

a building is renovated, the “floor age” is determined by the Python code block calculating 

the average age of all floors in a building and transforming the results into an appropriate 

format for the BN model which is “<10” if the average age is less than 10 years, “10 to 30” 

if the average age is between 10 to 30 years, and “>30” if the average age is greater than 

30 years.  

For data expressed in a Boolean form (e.g., “Yes” having or “No” not having preventive 

maintenance, cooling, or heating), a Python code block is designed to enumerate all the 

“Yes” and “No” for each Boolean to determine which one is repeated more than the other. 

For instance, for data on Having or not having heating in a room, all the rooms are 

considered in a Python code block and all “Yes” and “No” are enumerated to find out 

whether the building has heating or not. The most repeated answer is considered the result 

for the question of whether or not there is heating in the building. If the number of “Yes” 

and “No” are equal, the result would be considered “No”.  

A similar approach to Boolean and numbers can be used for strings (e.g., ventilation). For 

example, the ventilation type in the BN model for buildings is either forced or natural. A 

Python code block recognizes whether the building has forced ventilation or not. If not, the 

type of ventilation is considered natural. If there are more than two options (e.g., façade 

type), the “if…elif…else” statement could be used (i.e., the same as floor age). Table 4 

shows an example of Python code blocks for floor age as numbers, floor preventive 

maintenance as Boolean, and ventilation as strings. 

Table 4. Examples of Python code blocks for transforming data 

Nodes Type States in BN Locate in BIM Python code block in Dynamo 

Floor preventive 

maintenance 

Boolean Yes / No Spaces Yes_Count = list.count(data, 'Yes') 

No_Count = list.count(data, 'No') 

if Yes_Count > No_Count: 

 result = "Yes" 

        else: 

                  result = "No" 
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Floor age Numbers <10 

10 to 30 

>30 

Building 

elements 

average = sum(data)/len(data) 

if average < 10: 

            result = “< 10” 

  elif average > 20: 

             result = “> 20” 

                else: 

                       result = “10 to 20” 

Ventilation String Forced/Natural Spaces if data == Forced 

 result = “Forced” 

        else: 

                  result = “Natural” 

 

5.2.3 Data integration 

To transfer data between BIM and BN models bidirectionally, firstly the required data is 

extracted from the BIM model using Dynamo and Python scripts, by creating a dataset in 

a JavaScript Object Notation (.Json) format, which is a lightweight format for storing and 

transferring data. The dataset containing all the required data is then imported into the BN 

tool, AgenaRisk, which utilizes the data as ‘evidence’. Then, the FM team could run the 

BN model straightaway to acquire the results of analyzing the condition of a building. 

Secondly, the assessment results of a building’s condition are extracted from the 

AgenaRisk tool into a Json format and imported into the BIM model using Dynamo and 

Python to visualize the results in a 3D model. 

In accordance with the BN model, the BN results assess conditions of entire buildings, 

comprising various groups of elements. For example, all windows and floors (i.e., different 

elements) in the building must be considered to evaluate the condition of the window and 

floor respectively. Therefore, various categories are designed using the “Categories” node 

in Dynamo to match the results of the building condition assessment with the corresponding 

groups of elements in the BIM model. 

Even though categories in BIM provide various groups of elements, some categories on 

building condition assessments based on the BN model still cannot be represented. Hence, 

Dynamo and Python scripts are used to create a new category for BIM to be compatible 

with the BN results. For instance, the BN model assessed the condition of either façade or 
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interior partitions individually, both of which have the same category in the BIM model 

called “wall category”. In this example, regular expressions, a sequence of characters that 

specifies a search pattern in a Python code block are designed to distinguish the wall 

category between the interior partitions and façade, to create new categories in BIM for 

both. Regular expressions utilize text to conduct pattern matching and “search-and-replace” 

operations. Figure 21 illustrates an example of creating a new category in BIM for façade. 

 

Figure 21. Dynamo scripts to create a new category in BIM for façade as an example 

Three steps are imperative to create a new category for façade as an example. Firstly, a list 

of all wall elements for the building is created in the first step. Then, this list is converted 

to string using the “String from Object” node as a regular expression supports strings. A 

regular expression is used to find the “exterior walls” among the list by string-searching 

Node for converting list to string Python scripts for creating a 

new category for façade  

Step 1 

Step 2 
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algorithms. Secondly, the material of all walls is obtained using 

FamilyType.CompoundStructureLayers and Element.Name nodes in Dynamo, creating a 

list of material (Step 2). Thirdly, the list of all wall elements is connected to the Python 

code block as input#0, and the list of material is connected as input#1. Next, a Python code 

block queries input#0 to filter a list by exterior walls (i.e., façade). Then, it queries input#1 

to find materials that match those from the exterior walls (input#0) and create a new list 

with the exterior walls and their corresponding material. Eventually, the category for façade 

is created to be consistent with the BN results of building condition assessments. 

5.2.4 Data visualization 

As described in Section 3.3.3, the results of the building condition assessments are 

extracted from the AgenaRisk tool into Json format and imported into Revit using a Python 

programming language in Dynamo to be matched with corresponding building elements. 

A Python code block queries the BN results to find the condition of elements categorized 

as high, medium, or low. Then, the condition for each element is mapped to its 

corresponding elements in the BIM model using GetItemAtIndex and 

SetParameterByName nodes. Figure 22 illustrates the process of mapping the BN results 

for interior partitions as an example. 
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Figure 22. Dynamo scripts to map the BN results for interior partitions as an example 

Lastly, the BIM model visualizes the results with different colors to vary from ‘High’ to 

‘Low’. The tabulated data taken from Revit’s schedule are visualized in a 3D format in the 

BIM model by applying view filters. For a given element, the relevant results of the 

building condition assessment are identified. Figure 23 illustrates the BIM visualization of 

the building’s condition as an example. 

Python scripts to import the BN results 

for the condition of interior partitions 
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Figure 23. BIM visualization of a building’s condition 

BIM visualization allows the FM team and owners to evaluate building and system 

elements based on the causality analysis using different color codes, where red represents 

a low performance condition, yellow a medium performance condition, and green a high-

performance condition. 

5.3 Evaluation 

In this chapter, the evaluation is based on the validation and verification. To validate the 

conceptual model, three buildings (TR5, TR11 and TR14) of the Terrassa campus are used 

as case studies (Figure 24). Furthermore, to verify data completeness of the conceptual 

model, information exported from the BIM model is checked, ensuring that there is no 

missing data. 
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Figure 24. Case study projects 

The consistency of the conceptual model is validated by running the proposed system 

architecture in TR5, TR11 and TR14 and comparing the condition assessment results with 

those obtained from the existing manual method (e.g., AgenaRisk) in which the FM is 

required to perform the data transfer process manually. Furthermore, 18 scenarios per 

building are simulated and compared with the results obtained from the existing manual 

method.  

The completeness of the conceptual model is verified by (Afsari, Eastman, & Castro-

Lacouture, 2017): a) checking the Json data formatting, b) checking either an empty or null 

value for each data item in the Json file.  

The first step verifies the Json data for correctness and provides a list of missing data in the 

validation report one after another, until all the required data is complete. In this study, a 

Json validator (e.g., http://jsonlint.com/) is used to verify Json data for formatting. If the 

data in the Json file is incorrect or incomplete, the verification will report a failure to assist 

in the debugging of Json data (Wickham, 2018). 

The second step ensures that all data have their value, demonstrating the data completeness. 

Once the Json data formatting had been evaluated, the value of the transferred data is 

checked to meet data completeness. If the value for data is missing, it should be presented 

either as empty (“”) or a null value in the Json file. Therefore, the Json file is parsed 

TR 14 

TR 11 

TR 5 

http://jsonlint.com/
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using the json.load() method in Spyder (Spyder, 2018). The Python script is then used to 

check whether the value for each data is empty (null) or not. 

The benefits of using the proposed system architecture (task efficiency analysis) are 

analyzed in terms of time reduction in comparison with the manual method. The advantages 

of the visualization in terms of intuitiveness are discussed. 

All buildings are maintained by the same FM company. Therefore, all have the same 

maintenance protocols. TR5 was constructed in 1960, it has five floors with 11,492 m2; 

TR11 was built in 1997 and has 4 floors with a total area of 2,779 m2; and TR 14 was built 

in 2011 and is a six-story building with one parking lot and 7,378 m2.  

Both TR5 and TR11 have a reinforced concrete structure, flat roofs, and masonry façades, 

while TR14 has a metal panel façade. Regarding HVAC in TR5, most classrooms and 

offices have radiators, air-water systems and multi splits while TR14 is heated and cooled 

by fan coils, one chiller and two boilers. In TR11, there is no cooling system at all, and the 

ventilation is only natural, by opening windows. 

To run the proposed system architecture, many parameters are created, such as the age of 

elements and whether or not they have preventive maintenance or ventilation. The Python 

code blocks are used to calculate the data required by the BN (square meters, average age, 

etc.). Other parameters are created to adapt the classification of the elements obtained from 

the BIM model to those required by the BN model. For example, the façade type is 

classified as “concrete panels/masonry”, “metal panels”, “glazed” and “others”. 

As an example, to allow data integration and interoperability regarding the ventilation 

system, the algorithm for “HVAC interface” creates new attributes to be compatible with 

the BN model considering the entire buildings. In TR5, for instance, since most rooms (e.g., 

offices, classrooms, and corridors) have an air-water system, the new “Forced” attribute is 

created while in TR11 the new attribute is “Natural”. For TR14, it is also considered as 

“Forced” on account of having air handling units (AHU) and fan coils in all rooms. 

With respect to flooring, the algorithm for floor “interface” creates new attributes for 

buildings. In TR14, the floor is “discontinuous” as it is constructed in various phases. For 

other buildings (TR5, TR11), the attribute is “continuous”.  

The BN results (condition of the building elements and systems) are visualized in the BIM 

model (Figure 25) by the proposed system architecture and compared with those obtained 

using the AgenaRisk in which data are introduced manually. The system architecture shows 
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the same results as the existing manual method but in a user-friendly way, allowing the FM 

team to quickly identify problems in buildings. Besides, 54 different scenarios for all three 

buildings (i.e., 18 scenarios for each building) are simulated in the proposed system 

architecture and the existing manual method. After running all these scenarios, the results 

in both methods are the same and thus confirms the data consistency.  

Regarding the task efficiency analysis, the same approach as Kang and Hong (Kang & 

Hong, 2015) is used in this study. To achieve this, two tasks are classified as follows. (1) 

BIM Data Transfer Process (BDTP), which transfers data from the BIM into the BN model. 

(2) Mapping BN results into BIM (MBB), which imports the BN assessment results into 

the BIM model to visualize a building’s condition. Then, each task is timed and compared 

with the others listed in Table 5. 

Table 5. Task efficiency analysis 

Building Task Time to perform each task (minutes [hours]) 

   AgenaRisk (manual) Proposed system architecture (automated) 

TR5 BDTP 1845 (30.7) 44 (0.7) 

 MBB 530 (8.8) 15 (0.25) 

TR11 BDTP 1390 (23.2) 40 (0.7) 

 MBB 510 (8.5) 13 (0.2) 

TR14 BDTP 1000 (16.6) 37 (0.6) 

 MBB 495 (8.2) 10 (0.2) 

 

The time for performing the “BDTP” task, which is known as the most time-consuming, 

decreases nearly 100% in all buildings when the proposed system architecture is used. This 

shows the importance of automation of data transfer. In general, using the existing manual 

method, it takes 39.5 hours for TR5, 31.7 hours for TR11 and 24.8 hours for TR14 to 

perform “BDTP” and “MBB” tasks. When the system architecture is used, the same task 
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takes 0.95 hours, 0.9 hours, and 0.8 hours for each building respectively to check that all 

algorithms are running correctly. 

Regarding data completeness, the results from a Json validator shows that the Json data 

(containing BIM data) formatting is correct and there is no incorrect Json syntax or missing 

data. Once the Json data formatting is found to be correct, the value of the transferred data 

is checked to meet the data completeness criterion. To achieve this, the Python script is 

used for all 54 scenarios. The results demonstrates that there are 1,728 data items, all of 

which had a specific value, explaining that data from the BIM model are transferred to the 

BN model completely without losing data.  

With regard to the transfer of the assessment results of a building’s condition to the BIM 

model, the same approach is applied. Firstly, the Json data formatting is checked for the 

Json file containing the results of the building condition assessments, which are correct. 

Secondly, the Python script reveals that none of the values are empty (null). Besides, if a 

value is missing, the Dynamo will report an error while it runs for the visualization. Hence, 

it is concluded that the process of data transfer from the BN model to the BIM model is 

also performed properly and thus shows no data loss. 

From a sensitivity analysis of the TR5 roof, cracks in the tiles due to age and a lack of 

preventive actions are found to be the main causes of this poor condition. Substituting tiles, 

painting them with a waterproof coating to avoid efflorescence and sealing them are found 

to be appropriate corrective actions for the poor roof condition, while periodic inspections 

of roof tiles (cracked or chipped tiles) and replacement when necessary are implemented 

as preventive maintenance actions. 
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Figure 25. BIM visualization of building conditions and causality analysis results 
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5.4 Discussion 

This chapter presents a conceptual model to enable interoperability between BIM models 

and the building condition probabilistic model based on BN. The research provides the 

system architecture to implement the conceptual model in a case study. The integration of 

BIM with BN models facilitates data transfer and reduces the time and effort that the FM 

team spends on manual input. It also allows BIM tools to visualize the building 

elements/systems in an integrated, interactive way for decision-makers. 

The conceptual model allows bidirectional transfer data between BIM and the BN models. 

It integrates BIM with the probabilistic model based on BN for building condition 

assessment. Therefore, it enables the FM team to address the challenges of information 

reliability, interoperability, usability, and minimization of labor time. It also helps the FM 

team to optimize building operation strategies and supports decision-making on FM 

activities (e.g., predictive maintenance) to improve building performance. 

The conceptual model is implemented in Autodesk Revit and AgenaRisk. However, both 

the process of data extraction from AgenaRisk and the process of mapping the results in 

the BIM model are based on Python and Dynamo respectively, allowing a high level of 

customization and interoperability with the majority of existing platforms. 

The case study is used to validate the proposed approach. The visualization of the condition 

of the elements and systems from the campus buildings facilitates prioritization of 

investments in buildings. In the case of the three campus buildings, the roof from TR5 is 

found to require renovation and thus prioritization. Furthermore, the BN results allow an 

evaluation of the causal factors of the condition of the elements, using sensitivity analysis. 

The length of the bars is a measure of the influence of parameters on the building condition 

assessment. Therefore, the FM team can evaluate the most probable cause of those building 

elements/systems associated with poor condition to implement corrective actions and plan 

future preventive measures. 

5.5 Conclusions 

The conceptual model allows interoperability between the BIM and probabilistic model to 

evaluate building elements and systems. The proposed system architecture automatizes the 

data workflows to increase the use efficiency of the BN model, reducing the time and effort 

that the FM team spends on manual input. Enabling interoperability between BIM and the 
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BN model allows transformation of the data into an appropriate format automatically to run 

the BN model. Automating data transfer enables the FM team to take advantage of the BN 

model in favor. Thus, the FM team could use the proposed system architecture to prioritize 

the work order to improve maintenance activities, extend the lifespan of building elements 

or systems and increase building durability. The conceptual model can be applied to any 

building typology and is very relevant because its application allows the assessment of 

building conditions in a semi-automated way. 

The method of visualization in this approach focuses on the condition of building elements 

and systems, which is demonstrated on a color scale where red indicates urgency in 

building elements and systems intervention, yellow indicates deteriorating performance 

condition, and green indicates satisfactory condition of the building elements and systems. 

This visualization makes it possible to detect the condition of current building elements 

and systems more intuitively, and potentially makes it easier to deal with the problem. This 

will result in a considerable improvement in building performance. Overall, the workflow 

for the FM team to use the system architecture is: 

1) Run the system architecture in all buildings managed by the FM company 

2) Visualize the condition of the building elements/systems for those buildings 

3) Check sensitivity analysis to determine the most probable causes for the building 

elements/systems with low-performance condition 

4) Make corrective action plans 

5) Propose preventive maintenance plans 
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Chapter 6 

A BIM-based DSS for enhancing 

occupants’ comfort 

This chapter describes the process of BIM integration with  an occupants’ comfort 

probabilistic model  as well as occupants’ feedback with respect to the comfort aspects: 

thermal comfort, acoustic comfort, indoor air quality, visual comfort, and space adequacy. 

Hence, a satisfaction survey and an occupants’ comfort probabilistic model are utilized to 

evaluate the causal factors of occupants’ discomfort. The required data for the occupants’ 

comfort probabilistic model is then identified. Afterwards, BIM is integrated with the 

probabilistic model and occupants’ feedback to enable the visualization of average 

occupants’ comfort level, employing a color scale in rooms. This integration can also assist 

facility managers and owners in identifying causal factors of occupants’ discomfort and 

properly establishing the necessary measurements to moderate the negative consequences 

on occupants and thereby improve their comfort. Finally, a case study is used to validate 

the proposed approach. 
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6.1 DSS for occupants’ comfort 

To evaluate the causal factors of occupants’ discomfort, Bortolini and Forcada (Bortolini 

& Forcada, 2019a) developed a probabilistic model based on BN for occupants’ comfort. 

This model is created using cause-and-effect relationships between uncertain elements that 

impact occupant’s comfort in non-residential buildings, illustrated in Figure 26. 

 

Figure 26. BN model for occupants' comfort 

In the BN model, variables that impact the occupants' comfort for various aspects (e.g., 

thermal comfort, visual comfort, acoustic comfort, and indoor air quality) are described as 

follows. Indoor air quality is one of the primary disturbances among the occupants. 

Additionally, daylight penetration in buildings and harmful noise level straightforwardly 

affect the occupants’ psychology. Thus, disturbing physical aspects slow down occupants' 

job levels and raise the number of mistakes due to interruption (Korkmaz, Messner, Riley, 

& Magent, 2010; Chidiac, Catania, Morofsky, & Foo, 2011). The physical condition of the 

workplace influences 15-20% of the occupants’ productivity. Productivity thus constitutes 

the economic dimension of comfort conditions by ultimately impacting the business 

financially (Rostron, 2008; Shrestha & Kulkarni, 2013). 

For acoustic comfort, the insulation characteristics of all walls, windows, and doors of each 

room are contributing factors in the BN model. Acoustic attenuators used in mechanical 

ventilation systems can reduce noise from air systems and are considered as a contributing 

factor to understanding occupants’ acoustic discomfort. Buildings with natural ventilation 
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might lead to discomfort due to outside noise; hence the type of ventilation system is 

identified as a further factor affecting acoustic comfort. Factors such as building and spatial 

information are considered as nodes in the BN model (e.g., causal factors). The type of 

ventilation system is defined as a labeled node with the following states: natural, forced, 

and mixed. Envelope and interior acoustic insulation are defined as ranked nodes. Finally, 

an acoustic attenuator is defined as a Boolean node (Yes/No). Regarding the importance of 

the parent nodes, interior acoustic insulation, envelope acoustic insulation, and acoustic 

attenuator have the same impact on acoustic comfort. 

Indoor air quality depends on the type of ventilation system which can influence occupants’ 

comfort perception. Generally, naturally ventilated buildings have higher rates of comfort 

than air-conditioned buildings (Rostron, 2008). The occupants can open windows and thus 

vary the indoor environment to some extent. However, natural ventilation is dependent on 

weather conditions (Chilton et al., 2012), and might not be adequate in environments with 

extreme temperatures. Obtaining information on outdoor conditions from an exterior 

meteorological station is, therefore, a relevant factor for determining the air quality 

comfort. 

On the other hand, for buildings with mechanical ventilation, the condition of the HVAC 

system is an essential factor, as its improper operation may lead to poor ventilation and 

cause health problems and discomfort (Rostron, 2008; Au-Yong, Ali, & Ahmad, 2014; 

Bortolini & Forcada, 2019a). The HVAC condition, which refers to the condition of the 

component, is categorized as high, medium, or low. For instance, high condition would 

describe an item of equipment in excellent condition, capable of being used to its fully 

specified utilization for its designated purpose. HVAC design errors (wrong design of the 

system) might have an impact on occupants’ discomfort in indoor air quality and thermal 

comfort (Roulet et al., 2006; Aghemo, Blaso, & Pellegrino, 2014). For example, a good 

HVAC system design depends on the architecture of the building. If there are single thermal 

zones, then centralized systems are the best option, whereas, for buildings with different 

thermal zones, decentralized systems are a better option. 

Furthermore, occupancy density (m2/person) affects air quality comfort, so it is also 

considered as a contributing factor in indoor air quality. In the BN model, HVAC design 

errors, HVAC condition and occupancy density are defined as ranked nodes and ventilation 

control and filter are considered as Boolean nodes. Exterior condition is defined as a 

labelled node (e.g., extreme cold, cold, and mild for winters and extreme hot, hot, and mild 

for summers). HVAC condition and HVAC design errors are the most important factors 
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that affect indoor air quality, while ventilation filter has the least impact on indoor air 

quality. 

With respect to thermal comfort, thermal sensation is the condition of mind that 

expresses comfort with the thermal environment. The exterior conditions play an essential 

role in thermal sensation. The type and characteristics of HVAC systems (e.g., cooling and 

heating type) and thermal adaptive opportunities are also identified as relevant factors in 

thermal comfort (Hua, Göçer, & Göçer, 2014; Bortolini & Forcada, 2018). Radiant 

systems, for example, can provide higher comfort levels for indoor temperature (Karmann, 

Schiavon, Graham, Raftery, & Bauman, 2017). The age of HVAC components (such as 

splits, boiler, chiller, etc.) can affect their performance and thus the thermal comfort. 

Occupants with thermal adaptive opportunities such as operable windows and thermostats 

present high levels of comfort (J. Kim & De Dear, 2012; Al-Atrash, Hellwig, & Wagner, 

2018). The characteristics of a building include envelope material and insulation, 

comprising both façade, roof, and windows (Catalina & Iordache, 2012). In this sense, an 

envelope with a low thermal transmittance (U-value) can help extend the periods of thermal 

comfort without reliance on mechanical air-conditioning (Al-Homoud, 2005; Bortolini & 

Forcada, 2019a). The material and insulation properties of partitions also play an important 

role when the adjacent rooms do not keep thermal comfort characteristics. In the BN model, 

the heating and cooling types are defined as labeled nodes with the statement of radiant, 

all-air, others, and not applicable. Both the possibility of controlling temperature and 

operable windows are considered as Boolean nodes. Although HVAC conditions, 

temperature control possibility, and envelope performance are classed as essential factors, 

thermal comfort is mostly affected by HVAC design errors and exterior conditions. 

For visual comfort, the impact of daylighting can be considered quantitatively through the 

window-wall-ratio (WWR) (Li, Zhang, Edwards, & Hosseini, 2019). There is a strong 

preference for daylight in workplaces, which is closely associated with the belief that 

daylight is better for health (Galasiu & Veitch, 2006). Therefore, dimensions of façade and 

windows should be modeled in BIM, and the WWR per space calculated. The availability 

of interior curtains and/or exterior window shading (louvers) is a critical component in 

controlling glare and overheating, both of which affect occupants’ comfort (Galasiu & 

Veitch, 2006). Design errors might also have an impact on occupants regarding visual 

comfort; for example, failure to design appropriate daylight controls can affect visual 

comfort. The light and shade control possibilities are defined as Boolean nodes in the BN 

model. The WWR is defined as the ratio of the glazed area to the entire area of the envelope 

and considered as a ranked node (i.e., low (<10%), medium (10-40%), and high (>40%)). 

https://en.wikipedia.org/wiki/Contentment


78 

 

 

Regarding the importance of parent nodes for visual comfort, the ‘design error’ factor is 

more effective than light and shade control factors. 

As described in 51, each variable of building and spatial information is represented as a 

node in the BN model, and depending on data type, they are defined as discrete or 

continuous. Due to the underlying numerical scale of the ranked nodes, the truncated 

Normal distribution (TNormal) is used for defining numerical statistical distributions as 

expressions (Fenton & Neil, 2018). 

6.2 DSS implementation 

There are three main steps to implement the occupants' comfort probabilistic model based 

on BN in the BIM model, making the analysis of occupants' comfort causal factors easier. 

(1) Data requirement: firstly, a satisfaction survey is developed and designed in Google 

forms, based upon comfort aspects (e.g., thermal comfort, acoustic comfort, indoor air 

quality, visual comfort, and space adequacy). Secondly, the probabilistic model is utilized 

to determine  occupants' comfort causal factors based on BN, obtained from (Bortolini & 

Forcada, 2019a). In order to take advantage of the BN model, building information (e.g., 

building characteristics or HVAC system) and spatial information (e.g., occupancy density) 

are collected for each comfort aspect. Some of this information (e.g., building 

characteristic) could be obtained from a BIM model, but for that information which is not, 

parameters are created in the BIM model to host it. (2) Data integration: the BIM model is 

integrated with occupants’ feedback from the POE survey and the occupants’ comfort 

probabilistic model to support occupants’ comfort, utilizing a visual programming 

extension for Autodesk Revit, Dynamo, and the Python programming language. (3) Data 

visualization: The feedback of occupants and the BN results of occupants' discomfort 

causal factors are exported to local storage and visualized in Revit in a way that allows the 

FM team to comprehend the information. Figure 27 illustrates the process of integrating 

occupants’ feedback and the occupants’ comfort probabilistic model into the BIM model. 

 



79 

 

 

 

Figure 27. Process of the probabilistic model implementation in BIM for occupants’ 

comfort 

6.2.1 Data requirement 

As described in 3.3.1, shared parameter is utilized to allow BIM models to contain 

information regarding occupants’ comfort. In this case, occupants’ feedback is collected 

through a questionnaire survey consisting of three sections (see Appendix A): 

Section 1. Occupants are asked to select their workplace location, as defined by building, 

floor and room. 

Section 2. Occupants are asked to rate their satisfaction in relation to various workplace 

comfort aspects, including thermal comfort in winter and summer, indoor air quality in 

winter and summer; visual comfort; acoustic comfort; and space adequacy. The survey used 

a 5-point Likert rating scale to rate occupant feedback, ranging from ‘very satisfied’ (5) to 

‘very dissatisfied’ (1), with a neutral midpoint (3). The survey also asked the reasons for 

discomfort given the predefined options, and included a text entry box for respondents to 

add other reasons. 

                                                                 + 
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Section 3. Occupants are also asked to rate their satisfaction in relation to comfort aspects 

of the common spaces of the building that they used most (e.g., corridors, conference 

rooms, restrooms, and dining rooms), including thermal comfort in winter and summer; 

indoor air quality in winter and summer; visual comfort; acoustic comfort; and space 

adequacy. 

Since occupants’ feedback is reported by the spaces, the rooms are suitable hosts for the 

satisfaction survey. Hence, all comfort aspects of the satisfaction survey (e.g., indoor air 

quality and visual comfort) are created, defined, and linked to the rooms in BIM to host 

occupants’ feedback. The same approach is used to create parameters for hosting building 

and spatial information with respect to the BN model for each comfort aspect that is not 

available in BIM (e.g., occupancy density). 

After creating parameters, occupants’ feedback, and the occupants’ comfort probabilistic 

model are integrated into BIM. First, the occupants’ feedback from the satisfaction survey 

is mapped into the corresponding parameters in BIM concerning each room. Second, 

bidirectional data transfer is implemented from BIM to a BN tool (AgenaRisk) and vice 

versa to integrate the occupants’ comfort probabilistic model into BIM. Finally, the 

occupants’ feedback from the satisfaction survey and the occupants’ comfort probabilistic 

model is visualized in BIM using different color codes for the spatial distribution and 

Archi-lab_Mandrill package in Dynamo, respectively. 

6.2.2 Data integration 

6.2.2.1 Integration of occupants’ feedback into BIM 

The process of mapping occupants’ feedback into BIM consisted of three steps. First, the 

occupants’ feedback is exported into Microsoft Excel as an intermediate format, prior to its 

mapping within BIM. Then, the occupants’ feedback for each comfort aspect is imported 

and sorted to match relevant rooms in BIM by using Dynamo and scripts of Python 

respectively. Finally, all occupants’ feedback is mapped into the appropriate spaces using 

dynamo scripts as shown in Figure 28. 
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Figure 28. Dynamo script to map occupants’ feedback into BIM 

Occupants’ feedback is imported in Dynamo from the .xls file and classified to different 

comfort aspects using ReadFromFile and GetItemAtIndex nodes respectively. At the same 

time, the list of all rooms is extracted from the Revit file and sorted to match the room 

numbers in the occupants’ feedback using code blocks developed in Python, a similar 

approach to Bortoluzzi (Bortoluzzi, Efremov, Medina, Sobieraj, & McArthur, 2019). 

Python code block queries the occupants’ feedback (the spreadsheet file) to find room 

numbers that match those from the Revit file. Eventually, the final list is mapped to BIM 

using the SetParameterByName node to match occupants’ feedback to the proper parameter 

names with corresponding rooms. 

6.2.2.2 Integration of occupants’ comfort probabilistic model into BIM 

To integrate BIM and the occupants’ comfort probabilistic model, the building and spatial 

information concerning each comfort aspect together with occupants’ feedback is extracted 

from the BIM model using Dynamo, by creating a dataset in a comma-separated value 

(CSV) format. Figure 29 shows the extraction of the building and spatial information from 

BIM regarding different comfort aspects. 
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Figure 29. Dynamo script to extract information from BIM 

Next, the dataset containing building and spatial information as well as occupants’ 

feedback, is imported into the BN tool AgenaRisk, which utilizes the information as 

‘evidences’ to run the occupants’ comfort probabilistic model as backward propagation to 

find out the probable causes of comfort or discomfort. The results of causal analysis are 

then extracted from the AgenaRisk tool into a CSV format and imported into BIM using 

Dynamo to be matched with corresponding rooms. 

Extracting building and spatial 

information for each comfort aspect 
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Further, Python code block is used to assign the results of causal analysis to the 

corresponding rooms, considering the building and spatial information in that room. For a 

given room, the relevant results of the causal analysis are identified. This data supports the 

integration of customized sliders in the visualizations to permit the appraisal of each room. 

The Dynamo script and Python code blocks support this functionality and are presented in 

Figure 30 (for indoor air quality). 

 

Figure 30. Dynamo script to integrate occupants’ comfort probabilistic model into BIM 

The results of causal analysis are connected to the Python code block as an input (input#0), 

whilst the building and spatial information for each room are also connected as inputs (from 

input#1 to input#6 regarding indoor air quality). Then, a Python code block queries from 

input#1 to input#6 to find building and spatial characteristics in rooms that matches those 

from the results of causal analysis (input#0) and filters these to create a final multi-

dimensional list with the required room numbers and their corresponding parameter data. 

6.2.3 Data visualization 

Two kinds of visualization are considered for displaying occupants’ feedback and the 

results of causal factors. The former visualizes the results of the satisfaction survey and the 

latter visualizes the information coming from the probabilistic model to determine the 

causal factors of dissatisfaction. (1) The first proposed visualization mapped occupants’ 

feedback with different colors to vary from ‘Very satisfied’ to ‘Very dissatisfied’, 

considering comfort aspects. The tabulated data taken from Revit’s schedule is visualized 

in a 3D format in the BIM model. The visualization of the occupants’ feedback by rooms 

for each comfort aspect is implemented by applying view filters. The FM team would be 

Python code block to match the results of 

causal analysis with the rooms 
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able to filter comfort aspects in order to view the average level of occupants’ comfort by 

room, and it is also possible to compare occupants’ comfort between different rooms. (2) 

The second proposed visualization is to visualize the relevant results of the causal analysis 

coming from the probabilistic model, as related to each room (using Python scripts), which 

is then connected to the NormalizedStackedBarChart.Data node as values in Dynamo in 

order to visualize the normalized stacked bar chart for each room using the Archi-

lab_Mandrill package. For a given selected room, the results of causal analysis (i.e., the 

importance of causal factors) are then displayed in BIM.  

To give an example and illustrate it, the main factors affecting acoustic comfort are 

analyzed (see Figure 31). 

 

Figure 31. BN model for “acoustic comfort” as an example 

 

The importance of the causal factors on the acoustic quality can be visualized in Figure 32. 

The sensitivity analysis shows the importance of the causal factors when acoustic quality 

is very high. It can be visualized that the probability of a building having a high acoustic 

comfort level is more sensitive to changes in the states of envelope and interior acoustic 

insulation, and least sensitive to changes in the type of ventilation. 
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Figure 32. Tornado graph to analyze the sensitivity of acoustic quality as an example 

 For this example, as-built information is not updated, so not all information is available. 

The information about the acoustic insulation is unknown, so no evidence would be 

established for that node in the probabilistic model. In this example, to evaluate acoustic 

comfort for each room, the nodes (i.e., building, and spatial information) that are known in 

that room (such as type of ventilation, acoustic attenuator, and occupants’ acoustic comfort) 

are obtained from BIM. For those nodes that are unknown (e.g., envelope and interior 

acoustic insulation), the backward propagation analysis in the BN model is used to obtain 

the results of causal analysis and link to the corresponding rooms in BIM using Python 

scripts. When including the results of the satisfaction survey as evidence for a specific 

room, the probabilistic model calculates the most probable state of the unknown variables. 

Then, BIM visualized the average comfort of occupants regarding acoustic comfort in a 

color scale and the results of causal analysis in normalized stacked bar charts to facilitate 

future analysis. Figure 33 illustrates an example of occupants’ feedback regarding acoustic 

comfort and the results of causal analysis visualized in BIM. 
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Figure 33. BIM visualization for “acoustic comfort” as an example 

In this example, although the classroom has natural ventilation, which might lead to 

discomfort due to outside noises, occupants are very satisfied regarding acoustic comfort. 

On the other hand, occupants are not satisfied with the acoustic in the office. The stacked 

bar charts for the office shows that the cause of acoustic discomfort, apart from the 

ventilation system and not having attenuators, is the acoustic insulation of interior 

partitions, having a probability of 49% of being low.  

From the visualization on BIM, the facility manager can provide hypothetic scenarios by 

modifying the state of the causal factors and check the probable occupants’ satisfaction 

under these conditions. Therefore, results of the causal analysis suggest that although 

having the same acoustic insulation of interior partitions, insulating the interior partitions 

of the office can improve occupants’ acoustic comfort in that room. However, installing 

acoustic attenuators in ventilation systems is the most comfortable solution for the office. 

Acoustic comfort  

Classroom 

Office 
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6.3 Evaluation 

In this chapter, the evaluation is based on the validation. To validate the applicability of 

integrating occupants’ feedback and occupants’ comfort probabilistic model into BIM, 

Building TR5 is used as a case study. 

The satisfaction survey is conducted in different TR5 building spaces including classrooms, 

offices, corridors, restrooms, laboratories, conference rooms, study rooms and dining 

rooms. This information is integrated into the BIM model and imported to the probabilistic 

model together with the building and spatial information of each room (e.g., occupancy 

density (m2/person), operable windows (yes/no) and ventilation type, among others). 

 

Figure 34. Occupants’ comfort level for indoor air quality in summer 
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The indoor air quality comfort in one part of the third floor of TR5 is presented as a 

scenario. Figure 34 shows the occupants’ comfort level for indoor air quality in summer. 

The options of ventilation control, ventilation filter, occupancy density, and exterior 

conditions are obtained from the BIM model defined as ‘evidences’ to run the occupants’ 

comfort probabilistic model in the BN model and find out the probable causes of comfort 

or discomfort. The quality comfort level in each room is also obtained from the satisfaction 

survey integrated into BIM and defined as “evidence” in the BN model. The BN model for 

indoor air quality in summer is shown in Figure 35. 

 

Figure 35. BN model for indoor air quality in summer 

 

The building and spatial information for indoor air quality obtained from the BIM model 

for the third floor of building TR5 is shown in Table 6. 

Table 6. Room information for indoor air quality obtained from BIM 

Room Indoor air 

quality 

satisfaction 

in summer 

Ventilation 

type 

Ventilation 

control 

Ventilation 

filter 

Occupancy 

density 

(m2/person) 

External 

condition 

Operable 

windows 

301 (office) V. Satisfied Mixed Yes Yes 2.86 (Medium) Hot Yes 

302 (office) Dissatisfied Mixed Yes Yes 5.15 (Low) Hot Yes 

Ventilation 

type 

HVAC 

design errors 
HVAC 

condition 

Indoor air 

quality in 

summer 

Ventilation 

control 

Ventilation 

filter 

Exterior 

condition 
Occupancy 

  

Building and spatial information obtained from BIM  

Operable 

window 

Causal analysis calculated by BN 

Occupants’ feedback regarding indoor air 

quality from POE survey (stored in BIM) 
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303 

(classroom) 

Dissatisfied Mixed No Yes 0.48 (High) Hot Yes 

304 (office) V. Satisfied Natural No No 5.84 (Low) Hot Yes 

305 

(classroom) 

Neutral Mixed No Yes 1.92 (Medium) Hot Yes 

306 

(classroom) 

Dissatisfied Mixed No Yes 0.61 (High) Hot Yes 

 

BIM visualization allows the FM team and owners to obtain the probabilities of causal 

factors for indoor air quality comfort or discomfort in each room. The probabilities of 

having design errors in the HVAC or have a high condition for the HVAC system for each 

room is presented in the BIM model (see Figure 36). The results demonstrate that room 

301 has a 56% probability of the HVAC being in a high condition (i.e., HVAC system 

operation without problems), which provides proof for the high comfort level for occupants 

in this room regarding indoor air quality. On the other hand, occupants in rooms 302, 303, 

and 306 are not satisfied with indoor air quality. The model results indicate that HVAC 

design errors is the most probable cause for rooms 303 and 306 since they have an 81% 

probability of having high design errors in HVAC system. These results must be contrasted 

with the HVAC requirements (air renovation requirements, pressure of the fan, etc.) to 

determine if the ventilation system is correctly designed. The second most probable cause, 

high occupancy density, is also found to be one of the major causes of air quality 

dissatisfaction in these rooms. These results are coherent with those obtained for room 305 

with the same construction characteristics but medium occupancy where occupants reveal 

to have a neutral indoor air satisfaction. 



90 

 

 

 

Figure 36. Probabilities of having HVAC design errors or having a high HVAC condition 

for each room 

For those rooms with a low level of indoor air quality comfort, a sensitivity analysis is 

carried out to determine which parameters (previous nodes) have more impact in achieving 

a ‘very high indoor air quality comfort’. From a purely visual perspective, the length of a 

bar represents the measure of the impact of that node on the building condition performance 

(target node). 

 

Figure 37. Tornado graph to analyze the sensitivity of indoor air quality for rooms 303 

and 306 in summer (Very high = 4.6%) 

Figure 37 shows the probability of the indoor air quality comfort performance being ‘very 

high’ (4.6%). It can be concluded that the probability of rooms 303 and 306 having very 

Room number Room number 
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high comfort levels is more sensitive to occupancy and HVAC design errors and least 

sensitive to ventilation control possibility. The HVAC system of rooms 303 and 306 is 

based on general AHU for all classrooms, which might be under dimensioned. However, 

the occupancy is high in these rooms, and instead of changing the AHU, which is costly, 

reducing the occupancy might bring higher levels of comfort in terms of indoor air quality. 

 

Figure 38. Tornado graph to analyze the sensitivity of indoor air quality for room 302 in 

summer (Very high = 5.7%) 

The sensitivity analysis for indoor air quality for room 302 in summer is also carried out. 

Figure 38 shows the impact of three factors when the indoor air quality in summer is ‘very 

high’ (5.7%). The formal interpretation is that the probability of indoor air quality being 

very high, given the results of the parent nodes, rises from 3.3% (when HVAC design errors 

are ‘high’) to 24.1% (when HVAC design errors are ‘low’). The HVAC condition and 

occupancy density did not significantly affect occupants’ comfort in this room regarding 

indoor air quality in summer. Therefore, the most probable cause of discomfort in room 

302 is ‘HVAC design errors’ which has a 91% probability of being high. Hence, a good 

design would include different equipment (changing the fan coil) to improve occupants’ 

comfort in room 302 in terms of indoor air quality. 

6.4 Discussion 

The proposed approach of integrating occupants’ feedback and the occupants’ comfort 

probabilistic model into the BIM model classifies comfort aspects into thermal comfort, 

indoor air quality, visual comfort, acoustic comfort, and space adequacy, referred to each 

room of a building. The visualization of the probabilistic model results is implemented in 
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Revit. However, the automation process of extracting and mapping information is 

incorporated in Dynamo allowing customization and interoperability with most existing 

platforms (e.g., Power BI). 

This approach presents a novel integration to facilitate data collection for the probabilistic 

model to evaluate the comfort performance of existing buildings, which allows the causes 

of occupants’ discomfort in specific comfort aspects to be properly understood. It also 

enables the FM team to address the challenges of information reliability, interoperability, 

usability, and minimization of labor time. 

Existing studies focus on the visualization of occupants’ comfort in different platforms 

(Göçer et al., 2015, 2016). However, they only considered spatial information. The method 

of visualization in this approach focuses on real problems in discomfort spaces, 

demonstrating occupants’ feedback in a color scale, and the results of causal factors of 

occupants’ discomfort in a stacked bar chart, so that the effort of looking for appropriate 

information (e.g., building, and spatial information) is minimized. The visualization of 

causal factors makes it possible to detect the causes of occupants’ discomfort more 

intuitively and potentially makes it easier to deal with the problem, which will result in a 

considerable improvement in occupants’ comfort and optimize building operation 

strategies to increase occupants’ comfort. 

The case study is used to validate the proposed approach. For the scenario of indoor air 

quality in summer, it is highlighted that although there are similar rooms with the same 

HVAC system, occupants presented different perceptions of the indoor air quality. It is 

identified that occupancy density (m2/person) has a considerable impact on indoor air 

quality perception and that redesigning these spaces, or reducing the occupancy, might 

improve indoor air quality comfort.  

6.5 Conclusions 

The assessment of building performance involves the analysis of multiple factors together 

with the occupants’ feedback. This chapter presents the process of BIM integration with 

occupants’ feedback and the occupants’ comfort probabilistic model, organized by comfort 

aspects including thermal comfort, indoor air quality, visual comfort, acoustic comfort, and 

space adequacy. There are three key benefits of this integration: 1) BIM performs as a data 

repository, providing building and spatial information; 2) BIM can visualize causal factors 

of occupants’ discomfort using an occupants’ comfort probabilistic model and provides a 

potential solution for improving occupants’ comfort; 3) BIM intrinsically supports data 
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management and visualization (e.g., the visualization of occupants’ feedback in color). The 

integration process can be used for other building performance aspects such as building 

condition, energy efficiency, in which occupants’ feedback combined with building 

technical information might help FM decisions. Unlike existing models, using BIM as an 

integration tool allows automatic updates of the components’ characteristics and data 

management, and enables visualization. This visualization method, based on occupants’ 

feedback and the results of causal analysis, focuses on real problems in discomfort spaces 

and assists the FM team or owners to establish the necessary measurements for improving 

occupants’ comfort. Scenarios to evaluate the comfort of different groups of occupants 

could also be performed. 

The results and a case study show that the proposed approach could yield a better 

understanding of the dependent factors of discomfort and the relationship between 

occupants’ comfort, indoor environment and building characteristics. This integration and 

visualization process is likely to be valuable to facility managers and owners who will be 

able to make a more precise analysis of building performance based on occupants’ 

feedback; adopt building operational adaptations, and propose retrofit actions. Designers 

can also utilize the information to create future buildings that consider the real needs of 

occupants. This process will also be of interest to other researchers who are integrating and 

visualizing different operational data into BIM. 
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Chapter 7 

Conclusions 

This chapter concludes the thesis with an overview of the key contributions. The objectives 

of the study are reviewed to determine if they have been reached. Finally, on the basis of 

the limitations in this work, several additional future research possibilities are also 

recommended. 
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7.1  Main contributions 

This study presents an approach to enable interoperability between DSSs and BIM for the 

O&M phase which leads to the improvement of a building’s performance including 

building condition assessment, maintenance management (e.g., HVAC problems analysis) 

and thus occupants’ comfort. Addressing interoperability will leverage the BIM tool as a 

data repository to automate the data transfer process and improve its consistency and 

reliability. This approach presents innovative techniques to facilitate data transfer which 

enables the FM team to address the challenges of information reliability, interoperability, 

usability, and minimization of labor time. It also allows automatic updates of the 

components’ characteristics, and data management. Enabling interoperability between 

BIM and the DSSs allows bidirectional data transfer and transformation of the data into an 

appropriate format automatically to take advantage of DSSs. 

The approach enables BIM as a more effective platform for visualization to guide decision-

makers in addressing building operational problems. The visualization translates the data 

into a form that would be easy to understand for facility managers, highlighting useful 

information and eliminating the noise. Although the visualization is implemented in Revit, 

the automated procedure for data extracting and mapping are based on Python and Dynamo, 

allowing a high level of customization and interoperability with the majority of existing 

platforms (e.g., Data studio). 

The pragmatic findings of this study are two-fold. First, the integration of DSS into BIM 

models facilitates data transfer and reduces the time and effort that the FM team spends on 

manual input which also overcomes a key barrier to data collection within the O&M phase, 

optimizing building operation strategies. The proposed approach can assist FM team in 

properly establishing the necessary measurements to moderate the negative consequences 

on buildings and thereby improve their performance and occupants’ comfort. Moreover, it 

could be used to prioritize the work order to improve maintenance activities, extend the 

lifespan of building elements or systems and increase building durability. Second, the 

visualization permits a much broader range of FM data (i.e., building, and spatial 

information) to be mapped to such models, with a minimum of effort. The proposed 

approach utilizes BIM to deliver visualization to the FM team, allowing them to provide 

practical maintenance plans to improve building performance and occupants’ comfort. The 

implication of this is that the approach will become much easier for buildings to pursue, 

enabling academic work, and encouraging business adoption to increase. It also supports 
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facility managers to keep their team engaged in the process and enabling any concerns to 

be easily addressed. 

The applications of the proposed approach provide benefits for the different stakeholders. 

Facility managers can use it to analyze the economic aspects that support the decision-

making regarding renovation and retrofit actions, and prioritize maintenance actions to 

enhance the performance of the buildings. Owners and FM team can easily understand data 

through the method of visualization in which useful information would be highlighted and 

the noise would thus be eliminated from the data. They can use it find out how their 

investments on the problem may impact their building performance, occupants’ comfort, 

and energy efficiency. 

Public and business administrations can benefit of several tools proposed in this thesis, 

such as the method to add parameters in the BIM model with Dynamo. This approach is 

way faster than the shared parameter and it can be used to include data as much as their 

wish in the BIM models. Furthermore, organizations usually design their own data 

classification models and categories. In this respect, they can use the proposed method of 

creating a new category in BIM (e.g., distinguish the wall category between the interior 

partitions and façade) to help business manage assets effectively. 

Researchers can also take advantage of the proposed method of transforming data into an 

appropriate format to be compatible with other software by applying it for different 

research objectives. For example, they can develop different types of DSSs in whatever 

data format and utilize this approach to make it compatible with BIM. In addition, they can 

analyze other building performance aspects in which occupants’ feedback combined with 

building technical information thanks to the method of occupants’ feedback integration into 

the BIM models. 

In addition, the contributions of this thesis are also compared with the primary objectives. 

The first objective was to identify and analyze shortcomings of the implementation of BIM 

in the O&M phase. In this sense, Chapter 2 imparted the findings of a literature review 

carried out regarding existing DSS to evaluate building performance, including 

probabilistic models. After identifying different BIM information standards, the problem 

related to the BIM interoperability is explored. Based on a critical review of the related 

literature, Chapter 2 also presented the identification of the challenges and obstacles faced 

by facility managers during the O&M phase. A literature review regarding the use of BIM 

and AR at the O&M phase is also provided. 
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The second objective was to identify and devise a solution for generic interoperability 

problems. In this regard, Chapter 4 developed the DSS to determine the causality of HVAC 

problems, aiming to optimize positive interactions between occupants and buildings. 

Firstly, the DSS and the necessary information to develop the HVAC causality framework 

is defined. Then, the framework is integrated in to the BIM model. Finally, a color and 

friendly visualization is incorporated into the model. The framework allowed to detect semi 

automatically which are the causes of occupants’ complaints (i.e., maintenance requests) 

about thermal comfort in specific rooms. Furthermore, it helps the FM team to optimize 

building operation strategies and supports decision-making on maintenance activities to 

enhance both occupants’ comfort and energy efficiency. 

The third objective of this thesis was to develop a conceptual model to enable 

interoperability between BIM models and probabilistic models. In this respect, Chapter 5 

and Chapter 6 developed a conceptual model to integrate probabilistic DSSs based on BN 

into the BIM model. First, the required data for the BN model is identified. Then, BIM and 

BN models are integrated, based on the proposed conceptual model to assess building 

condition, and enhance occupants’ comfort. The method of integrating occupants’ feedback 

into the BIM models are also explored in Chapter 6. 

The fourth objective was to establish an effective platform for data visualization. In this 

sense, the development of the model for the visualization presented in Chapters 4, 5 and 6 

to display data in a very sensible way by using the most appropriate chart and formatting 

options. In Chapter 4, the model developed to visualize malfunction equipment to 

determine the most probable cause of an HVAC problem. In Chapter 5, the model is 

developed to visualize the current condition of the building elements and systems, 

established within Revit Software. In Chapter 6, the model developed to visualize the 

occupants’ feedback and the results of causal factors related to the occupants’ comfort, 

providing an effective platform for data visualization. 

The fifth objective was to evaluate the proposed model. In this regard, case studies are used 

to validate the proposed approach and presented in separated chapters. Case studies allow 

to illustrate the applicability of the model for ensuring that its interactions and outcomes 

are feasible and the tasks are performing as efficiently as possible. In addition, the quality 

of data in the integration process, is checked through the use of case studies to meet the 

data completeness criterion.  
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7.2 Future research 

A list of future research directions that could build on the current investigation are outlined 

below. 

More case studies with greater volume of information could be assessed in order to validate 

the findings of the current project. Moreover, investigating the integrity of an IFC file 

generated by a BIM software application may provide insight into the overall decision-

making process during O&M phase. 

Since the integration process is based on Python, it can be used for different types of DSSs. 

Thus, further development of this integration can analyze other building performance 

aspects, such as energy performance and accessibility. 

As highlighted across this thesis, the proposed approach can be implemented into most 

existing platforms. Hence, future work could be performed in this area by implementation 

of this approach not only in other BIM software but also in other visualization platform 

such as Power BI. In this regard, most BIM software do not provide a direct link to Power 

BI. Accordingly, further development of a plug-in for BIM software can automatically 

imports required data and visualizes real-time data in a user-friendly way. 

Buildings of the future will offer a wide array of "smart technologies" – networked 

technology that controls aspects of occupants’ comfort and improves building 

performance; therefore, future steps will include: 

1) integrating wearable technologies (e.g., sensor-based networks) that allow them to 

plug into the building system automatically and control their comfort.  

2) employing Artificial Intelligence (AI) and Internet of Things (IOT) technologies, 

which would coalesce together to create a fully integrated and automated solution.  

3) using machine learning, a subset of AI that trains a machine on how to learn from 

data and identify patterns. It could then make independent decisions on how to 

improve occupants’ comfort. People would thus live in a truly smart built 

environment that automatically caters for the needs of every citizen. 

It could also move further still towards dark factory environments where a building is 

controlled by robots without any human intervention. 
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Section 1: Interviewee’s details 

 

1. Please specify the subject of your degree 

 Technical degree subjects (Architect/Engineer) 

 Administrative degree subjects (Business and Finance) 

 Technician 

 Other: 

 

2. Please specify your work experience type 

 Owner side 

 Facility service side 

 Professor/Researcher 

 Other: 

 

3. Please specify your work experience activity 

 Designer 

 Construction manager 

 Maintenance 

 Facility manager 

 Energy manager 

 Asset manager 

 Consultant 

 Other: 

 

4. Please specify the years of your working experience 

 Less than 10 years 

 Between 11 and 19 years 

 More than 20 years 

 

Section 2. Building performance categories 

 

Performance can be described as behavior in service of a facility for a specified use. The 

table below shows the main important areas to consider when assessing the performance of 

a building based on a literature review and experts opinion. 

 

Areas Description 

Safety and Assets working 

properly 

It is related to structural and physical condition of the building and the 

correct functioning of its elements 

Health and Comfort 
It is related to the air quality, thermal comfort, light and acoustic quality 

in building spaces 

Suitability of space 
It is related to the availability of space to perform activities, including 

its accessibility and ergonomic aspects 

Cleanness of spaces It is related to the cleaning of spaces 

Energy efficiency It is related to the control of the growth in energy consumption 

 

5. Are all the terms understandable? 

 

 1 (Not understandable) 
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 2 

 3 

 4 

 5 (Very understandable) 

 

6. Do you think these areas represent the most significant aspects for assessing the 

performance of a building? 

 Yes 

 No 

 

7. If not, please justify: 

 

Section 3: Definition of factors 

 

Environmental agents 

Environmental agents might affect the performance of a building. This is related to different 

factors related to the building location and type of exterior condition, as show in the table 

below. 

 

Environmental agents Description 

Weather condition Solar radiation, wind, temperature, humidity, snow and rain water loads 

Surrounding 

environment  

Type of environment such as industrial, seaside, and if there is vegetation, 

pollutants, chemicals 

Natural disasters Storms, fire, landslide, earthquakes 

Geological conditions Type of soil such as clay, sand, loam 

 

8. Are all the terms understandable? 

 

 1 (Not understandable) 

 2 

 3 

 4 

 5 (Very understandable) 

 

9. Do you think these terms cover the most relevant environmental agents that might affect 

the performance of a building in general? 

 Yes 

 No 

 

10. If not, please justify: 

 

Building properties 

The performance of a building can also be affected depending on the characteristics of the 

building. The table below shows the properties that might influence the performance of a 

building in general. 
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Building properties Description 

Type of 

structure/façade/roof  

Type of material and its properties (i.e., porosity, acoustical absorption, 

resistance, thermal conductivity, etc) 

Age The period of time the building was built until the present 

Type of heating/cooling 

system 

The type of system/equipment to heat and cool the building (i.e., gas-fired 

heaters, electric heaters, central heat, split unit, etc) 

Geometry The shape of the building including height  

Orientation Solar orientation of façades  

Type of use 
The building typology (i.e., schools, shopping centers, offices, government 

buildings, etc) 

 

11. Are all the terms understandable? 

 

 1 (Not understandable) 

  

  

  

 5 (Very understandable) 

 

12. Do you think these terms cover the main building properties that might affect the 

performance of a building in general?? 

 Yes 

 No 

 

13. If not, please justify: 

 

Section 4: Defects on construction elements and systems. 

 

The detection of building defects is an important task to assess the performance of a 

building. The aim of this section is to determine the most influential defects on the 

performance of a building. This classification aims to be generic to be applied to any type 

of construction solution. 

Think back over all the years of your experience and choose a building that you worked 

with. 

 

14. Select the building typology you are thinking (not residential) 

 Academic building 

 Office building 

 Government building 

 Commercial building 

 Other: 

 

Structure: 

15. In the structure, which defects influence majoritarily the performance of a building? 

 Biological action and change (e.g., mold, microbiological and plants growth) 

 Chemical action and change (e.g., corrosion in metalic structure, bars with corrosion) 

 Cracking (e.g., cracks in pillars) 
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 Deformation/Settlement (e.g., deflection in a beam, pillar deformed, fatigue, landslip) 

 Structural vibration 

 Surface problems (e.g., honeycombs in concrete, efflorescence, delamination, 

discoloration of concrete) 

 Water problems (e.g., excess moisture in slabs) 

 Detachment/Broken (e.g., part of the concrete broken) 

 Other: 

 

Façade: 

16. In the façade, which defects influence majoritarily the performance of a building? 

 Biological action and change (e.g., plants, algae growth) 

 Chemical action and change (e.g., oxidation of metalic components) 

 Cracking (e.g., fissure in panels of the covering) 

 Surface problems (e.g., efflorescence, bumps, dips, graffiti, discoloration of the painting, 

 deposit of dirt, uneven covering) 

 Water problems (e.g., condensation, rising damp from floor, penetration damp) 

 Detachment/Broken (e.g., tile broken, detachment of façade covering) 

 Other: 

 

Roofing: 

17. In the roofing, which defects influence majoritarily the performance of a building? 

 Biological action and change (e.g., birds action, gutters clogged with leaves) 

 Chemical action and change (e.g., oxidation of metal components) 

 Cracking (e.g., cracks in roof covering) 

 Deflection (e.g., deflection of roof structure) 

 Surface problems (e.g., efflorescence, bumps, dips, uneven covering, discoloration, 

deposit of dirt) 

 Water problems (e.g., leaks, entrapped water, accumulation of moisture) 

 Detachment/Broken (e.g., waterproofing detached) 

 Other: 

 

Flooring: 

18. In the flooring, which defects influence majoritarily the performance of a building? 

 Chemical action and change (e.g., change of color due to cleaning with chemical product) 

 Cracking (e.g., cracks floor covering) 

 Surface problems (e.g., efflorescence, soiled, hitch/scratch, discoloration, uneven surface 

of covering) 

 Water problems (e.g., entrapped water, accumulation of moisture) 

 Detachment/Broken (e.g., floor covering broken) 

 Other: 

 

Interior partitions: 

19.  In the interior partitions, which defects influence majoritarily the performance of a 

building? 

 Cracking (e.g., fissures in plaster boards) 

 Surface problems (e.g., dips, discoloration, paint peeling, blister) 

 Water problems (e.g., moisture due to a broken pipe, condensation due to not insulated 

window) 

 Detachment/Broken (e.g., detachment of a plaster wall) 

 Other: 

 

Doors/windows: 
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20. In the doors/windows, which defects influence majoritarily the performance of a 

building? 

 Biological action and change (e.g., lichens in windows) 

 Chemical action and change (e.g., corrosion of the window frame and ironmongery) 

 Surface problems (e.g., uneven door, paint peeling) 

 Water problems (e.g., moisture concentration in wood window frame) 

 Detachment/Broken (e.g., window glass broken) 

 Operational faulty functioning (e.g., door do not close, broken rolling window shutter) 

 Other: 

 

Electrical system: 

21. In the electrical system, which defects influence majoritarily the performance of a 

building? 

 Operational fault functioning of electrical supply elements (e.g., transformer problems, 

voltage, frequency, stoppage of electricity supply) 

 Accumulation of dirt in electrical distribution elements 

 Insulation problems in electrical distribution elements (e.g., cables insulation damaged) 

 Operational faulty functioning of electrical distribution elements (e.g., electric sparks, 

short circuit) 

 Operational faulty functioning of electrical fixtures (e.g., faulty functioning of equipment, 

light burnt) 

 Other: 

 

Plumbing system: 

22. In the plumbing system, which defects influence majoritarily the performance of a 

building? 

 Algae in water supply tanks 

 Corrosion in water supply elements (e.g., corrosion of solar panel) 

 Leakage in water supply elements (e.g., leakage in water tanks) 

 Operational faulty functioning of water supply elements (e.g., equipment malfunction, 

problems with temperature, pressure, water level, vibration) 

 Microorganisms in water distribution elements (e.g., microorganisms in pipes) 

 Corrosion in water distribution elements (e.g., corrosion of pipes and valves) 

 Accumulation of dirt in water distribution elements (e.g., pipes clogged) 

 Insulation problems in water distribution elements (e.g., pipes insulation damaged) 

 Leakage in water distribution elements (e.g., pipes leakage) 

 Plumbing fixtures broken (e.g., sanitary equipment broken) 

 Leakage in plumbing fixtures (e.g., leakage in water tap) 

 Operational faulty functioning of plumbing fixtures (e.g., water tap not working) 

 Other: 

 

HVAC system: 

23. In the HVAC system, which defects influence majoritarily the performance of a building? 

 Algae in water tanks 

 Corrosion in HVAC production elements 

 Leakage in HVAC production elements 

 Operational faulty functioning of HVAC production elements (e.g., chiller 

malfunction, noisy boiler, mechanical problems, fan motor failure) 

 Microorganisms in HVAC distribution elements (e.g., microorganisms in pipes) 

 Corrosion in HVAC distribution elements (e.g., corrosion of ducts and pipelines) 

 Accumulation of dirt in HVAC distribution elements (e.g., dirt in filters and ducts) 

 Insulation problems in HVAC distribution elements (e.g., pipes insulation damaged) 

 Leakage in HVAC distribution elements (e.g., pipes leakage) 
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 Leakage in HVAC fixtures elements (e.g., leakage in air unit, condensation dripping 

from diffuser) 

 HVAC fixtures broken (e.g., grills broken) 

 Operational faulty functioning in HVAC fixtures elements (e.g., excessive noise and 

vibration of air unit, thermostat malfunction) 

 Other: 

 

Fire system: 

24. In the fire system, which defects influence majoritarily the performance of a building? 

 Algae in water supply tanks 

 Corrosion in water supply elements 

 Operational faulty functioning of water supply elements (e.g., equipment 

malfunction, pressure problems) 

 Microorganisms in water distribution elements (e.g., microorganisms in pipes) 

 Corrosion in water distribution elements (e.g., corrosion of valves) 

 Leakage in water distribution elements (e.g., pipes leakage) 

 Accumulation of dirt in water distribution elements (e.g., pipes clogged) 

 Leakage in fire fixtures (e.g., water leakage in sprinkler) 

 Fire fixtures broken (e.g., sprinkler broken) 

 Operational faulty functioning of fire fixtures (e.g., smoke detector not working, fire 

alarm malfunction, fire hose not working, fire extinguisher not working) 

 Other: 

 

Elevator: 

25. In the elevator, which defects influence majoritarily the performance of a building? 

 Corrosion in the distribution elements (e.g., cables with corrosion) 

 Operational faulty functioning of distribution elements (e.g., mechanical problems, 

electric motor with excessive noise, abrupt landing, overheating of control system) 

 Accumulation of dirt in elevator cabin 

 Elevator cabin parts broken (e.g., buttons broken) 

 Operational faulty functioning of elevator cabin elements (e.g., doors not closing 

properly) 

 Other: 

 

26. Do you agree that these terms cover all potential defects that might appear in a building? 

 Yes 

 No 

 

27. If not, please justify: 

 

28. Additional comments: 
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B. Conceptual model 
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