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ABSTRACT

Many remote sensing applications require high spatial resolution images, but the elevated cost of these images
makes some studies unfeasible. Single-image super-resolution algorithms can improve the spatial resolution of a
low-resolution image by recovering feature details learned from pairs of low-high resolution images. In this work,
several configurations of ESRGAN, a state-of-the-art algorithm for image super-resolution are tested. We make
a comparison between several scenarios, with different modes of upsampling and channels involved. The best
results are obtained training a model with RGB-IR channels and using progressive upsampling.

Keywords: Super-resolution, Deep Learning, Remote Sensing, WorldView-2

1. INTRODUCTION

Today several satellite platforms for remote sensing are available. However, due to limitations in imaging
sensors, acquired images usually have limited spatial resolution. For instance, a Landsat-8 satellite produces
images with a 30m of Ground Sampling Distance (GSD), which is the minimum surface cover of the Earth
projected by a pixel. This resolution is good enough for large scale studies but it can not be used for detecting
objects with sizes smaller than this resolution. On the other hand, WorldView-2 (WV2) is a commercial very
high-resolution satellite that provides images with a GSD around 2m. Nevertheless, these images might not
always be available and in some cases may be difficult to obtain, making a challenge to tackle small scale studies.
Reconstruction of a high resolution image from a low resolution image of the same scene, acquired from different
views, different sensors or at different conditions is therefore a very interesting and challenging problem.

Single image super-resolution (SISR) aims to estimate a High Resolution (HR) version image from a Low
Resolution (LR) one. It is an ill-posed problem because multiple HR versions can be obtained from a particular
LR image [1]. Simple super-resolution methods like linear or bicubic interpolation are very fast and do not require
training but tend to over-smooth image textures [2]. Recently, deep learning convolutional neural networks (CNN)
have been shown to outperform traditional methods on natural images. CNNs try to establish an end-to-end
mapping between low and high-resolution images, but they may fail to produce good results for high scaling
factor values [2].

There have been several improvements since the work presented in [1], where a shallow network with four
layers was trained. The concept of residual learning [3], that learns differences between the LR-HR resolution
instead of learning a sophisticated mapping to produce the fine resolution image directly, has led to significant
improvements. SRGAN [2] introduces the idea of adversarial learning, producing a more photo-realistic result
on the upscaled LR image. ESRGAN [4] follows the same approach, with an improved architecture that uses a
more complex and dense combination of residual layers.

Several works address the problem of enhancing the spatial resolution of satellite images due to the increasing
availability of data collections. In [5], a shallow and a deep neural network are trained to improve the resolution of
the Advanced Wide Field Sensor with 54m GSD, to resemble the resolution of the Linear Imaging Self Scanner
satellite with 24m GSD. In [6], CNN architectures are trained to enhance Landsat images (30m GSD) using
Sentinel-2 images (10m GSD).

The goal of this work is to compare several configurations of ESRGAN, a state-of-the-art algorithm for image
super resolution, on remote sensing data. For testing the models, we work with original and low-resolution
versions of the WorldView-2 Euopean Cities dataset [7].
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2. DATA

The data used in this study is the WorldView-2 European Cities [7] dataset. This collection of WorldView-2
(WV2) images is provided by the European Space Agency. Images have been acquired between July 2010 and
July 2015, and cover the most populated areas in Europe.

The dataset is available with Level-3 processing, i.e. a digital elevation model was used to accurately georef-
erence pixels [8]. Images are available in 11-bit digital value format, and for the correction process, the ENVI
software [9] was used. First, radiometric calibration was applied to convert digital values to radiance values,
then the FLAASH algorithm [10] was used for the atmospheric correction. This algorithm requires the setting of
several parameters: atmospheric model, aerosol model, azimuth and zenith angles. For simplicity, none aerosol
model was used and the zenith and azimuth angles were determined using the configuration files that came with
the images. The atmospheric model was established depending on the coordinates and the acquisition season.

A total of 32 WV2 images were used, with sizes around 10Kx10K pixels. Also, 4 of the 8 channels were
considered, specifically RGB and IR channels, commonly used in remote sensing applications. The spatial
resolution is 1.6m/pixel. For testing the super-resolution algorithms, low-resolution images were generated using
a Gaussian filter for anti-aliasing and downsampling by a factor of 4.

We split the dataset into training (90%), validation (5%) and test (5%) subsets. Each subset contains
corresponding pairs of LR and HR tiles (1Kx1K pixels in the LR image and a 4Kx4K in the HR image).

3. METHODOLOGY

3.1 Super-resolution network

SRGAN was one of the first models capable of generating photo-realistic images with a scaling factor of 4,
recovering high detail texture from a downsampled image [2]. The generator network, called SRResNet, was
trained with the mean squared error (MSE) loss and introduced the use of several residual blocks, as depicted
in Figure 1. They used two upsampling modules, each module upscaling the image by a factor of 2, making the
upsampling in a progressive way and leaving the model to learn the right weights to upscale the LR images.

Figure 1. SRResNet architecture. Source [2]

The SRGAN residual block (see Figure 2) is composed of a concatenation of convolution, batch normalization
(BN) and Leaky-ReLU activation layers. The output of each block is added to its input through a skip connection.
Blocks are concatenated and the output of the residual blocks is combined with the input by an element-wise
sum operation, before the upsampling modules.

ESRGAN proposed some improvements over the SRGAN. Since batch normalization layers tend to produce
artifacts in the SR images, each residual block was replaced with a more efficient block, composed of just a
combination of convolutional and activation layers, Also, a more complex residual configuration, called Residual
in Residual Dense Block (RRDB) (see Figure 3) was used for multi-level residual learning. With these changes,
more residual blocks were added and boosted the performance. The generator model, called the PSNR-Oriented
model, was trained with L1-loss, and later the model was fine-tuned following an adversarial approach. ESRGAN
is currently considered the state-of-the-art algorithm for super-resolution with a scale factor of 4 [11].
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Figure 2. Residual blocks. Source: [4]

Figure 3. Residual in Residual Dense Block (RRDB). Source [4]

In this work, a comparison between the learning-based upsampling of the ERSGAN PSRN-oriented model
and a pre-upsampling method for super-resolution was performed, where the upsample modules were removed
for the pre-upsampled method. Also, fine-tuning was done using the weights of a pretrained PSNR-Oriented
model provided by the authors of ESRGAN [12].

3.2 Experiments

First, experiment T1 used the raw-weights of the PSNR-oriented model to test the efficiency of using cross-
domain trained models. This model was trained on the DIV-2K dataset (natural RGB images).

Then, in experiment T2, we fine-tuned the PSNR-Oriented model with the WV2 dataset, training all the
layers with three channels (RGB). In experiments T1 and T2 the output images are obtained in two steps. We
first super-resolve RGB channels, then RG-IR channels and we finally concatenate the results to produce the
RGB-IR image.

Experiment T3 is similar to T2, but modifying input and output layers to work with 4 channels (RGB-IR).
T3 and T2 make the upsampling progressively as in SRGAN and ESRGAN, two modules of an upsampling
factor of 2 were used to obtain final images scaled by a factor of 4. With these two experiments, we test the
contribution of the IR band in the performance of super-resolution in remote sensing images.

In experiment T4, the upsampling stage is done with just one block instead of the two blocks used by the
original PSNR-oriented model. The original weights of the residual part of PSNR-oriented model (pre-trained
on DIV-2K) were used to initialize the model. The input and output layers were modified as in experiment T3
and the new weights were initialized with random values, following a Gaussian distribution with 0 mean and
0.001 of variance.

In experiment T5, the upsample modules of the PSNR-oriented model were removed, and the LR images were
upsampled to the resolution of the HR images before being input to the network, using bicubic interpolation.
The initial weights of the residual part of PSNR-oriented model were copied from the pre-trained model, as in
T4, and then fine-tuned with the WV2 dataset. This experiment is useful especially when the dataset contains
pair LR-HR images obtained from different platforms, where pre-processing steps like co-registration, the LR
images need to be upsampled to be with the same scale of the HR image, providing a common reference to the
images to be able to be compared.

Table 1 provides a brief summary of all the experiments.
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Experiments Description
T1 No Fine tuning 3D (Model PSNR-Oriented)
T2 Fine Tuning 3D
T3 Fine Tuning 4D
T4 Fine Tuning 4D with only 1 module of upsample
T5 Fine Tuning 4D and Pre-Upsample

Table 1. Summary of experiments

We used the code and pre-trained models of the authors of ESRGAN [12], making the necessary changes to
work with remote sensing images. We used Adam optimization with a learning rate of 10−4 and L1-loss. The
models were trained for 45K iterations with a mini-batch of size 2, halving the learning rate at 20k, 30k and 40k
iterations. Random crops of 128x128 were extracted from image tiles, making the training process faster and
lowering memory consumption. Horizontal and vertical flips were applied for data augmentation.

Metrics used for evaluation are Peak-Signal-to-Noise-Ratio (PSNR), Structural Similarity Index (SSIM) and
ERGAS index [13] (Erreur Relative Globale Adimensionnelle de Synthese), computed using the four (RGB-IR)
channels. PSNR and SSIM are the standard metrics, computed on 16-bit data due to the dynamic range of the
remote sensing images. The ERGAS index measures the quality of the super-resolved image taking into account
the scaling factor (ratio) between the low resolution and high-resolution images. The ERGAS index, unlike the
PSNR and SSIM, is better when it is closer to zero:

Ergas(X1, X2) = 100ratio

√√√√ 1

nbands

nbands∑
i=0

[
RMSE(Xi

1, X
i
2))

X̂i
2

]2

(1)

4. RESULTS

Figure 4 shows plots of PSNR, SSIM and ERGAS metrics for experiments T1 to T5 as well as the metrics
for the LR image and a baseline bicubic interpolation on the test set, that is composed of 16 images. Tables 2
to 4 in the appendix present the numerical values per image.

We observe that experiment T1 presents almost the same results as the bicubic interpolation, in contrast to
fine-tuning the pre-trained models (T2 to T5), where in most of the images there are noticeable differences with
the corresponding LR values.

In most cases experiments T2 and T3 show better numerical results than T4 and T5, which suggests that
fine-tuning either with three (RGB) or four channels (RGB-IR) using two consecutive blocks of upsampling is
better than using a single upsampling block or applying a previous upsampling stage, at least for the European
Cities dataset. In some textured images (e.g. a dense forest as in Figures 5), results show almost no improvement
in metrics, even though visual inspection shows noticeable improvement of methods T2 to T5 over LR and T1.

Experiment T5 shows that spatial details in the LR image can be improved after upscaling the image with
a bicubic interpolation, with a PSNR difference of 0.32 dB in mean over the bicubic result.

The strategy proposed in experiment T5 could be useful when the approach is used on pairs of low and high
resolution images acquired with different sensors (e.g. Landsat and WordView-2). In this case, a co-registration
step is mandatory, and therefore low resolution images must be previously upsampled to be on the same scale
as the high resolution image. Moreover, comparing T5 and T3 results, the difference in mean of 0.65 dB may
suggest that a better solution for multi-sensor applications could be to downgrade again the previously upscaled
LR image and use the configuration proposed for experiment T3.

Another interesting experiment is T4, where only one block was used for upsampling (since the upsampling
module can be configured for any scaling factor). Table 2 shows that the difference in mean PSNR with T3 is
0.636 dB. Compared with T5, T4 obtained a mean improvement of only 0.011 db on the test set. These results
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(a) PSNR (b) SSIM

(c) ERGAS

Figure 4. PSNR, SSIM and ERGAS metrics for each image in the test set.

suggest that making an upscaling with only one block may not be a good strategy for high scaling factors, while
a progressive upsampling may be a better solution.

Figure 5 presents the box-plots for the different experiments and metrics on the test set. The box-plots
provide a good indication of the distribution of results, where the size of the box encloses the inter-quartile range
which encompasses 50% of the data around the median. The plots also show that T3 presents the best results
according to the three metrics, with a marginal gain above the second one, which is T2. The methodological
difference between these two experiments is that T3 was trained with an additional channel (IR), which is
important for several types of analysis in remote sensing. Typical super-resolution algorithms consider only
3 channels. In general, experiments using the pre-trained model show better results that directly using the
PSNR-oriented model or the bicubic interpolation.

(a) Box-plot - PSNR (b) Box-plot - SSIM (c) Box-plot - ERGAS

Figure 5. Box-plot showing median, inter-quartile range and some outliers on the test set.

Figure 6 shows some RGB images and false colour images (Infrared, Red and Green) from the test set. The
false-color in remote sensing is usually used for analyzing vegetation areas, where depending on the vegetation
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type and condition, several shades of red appear due to the high reflectance that vegetation presents in the
infrared band [14].

5. CONCLUSION

This work evaluated the use of the ESRGAN architecture for the super-resolution of remote sensing images.
Several configurations were tested, considering the number of channels involved and the upsampling methodology.
The European Cities WorldView-2 dataset was used for training and testing the models. The best results were
obtained using four channels (RGB-IR) and initializing the network with the weights of the pre-trained model,
with a progressive upscaling approach. As future work we plan to add an adversarial training stage, and to test
the models using LR and HR pairs from different sensors.
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(a) Image 9

(b) Image 14

(c) Image 16

Figure 6. Results for test images 9, 14 and 16. RGB and IR-RG (false-color) channels
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6. APPENDIX

LR Bicub T1 T2 T3 T4 T5
Image 1 52.31 52.31 52.31 52.49 52.49 52.47 52.43
Image 2 53.25 53.28 53.27 54.11 54.2 53.77 53.69
Image 3 54.49 54.56 54.52 55.64 55.84 55.16 55.05
Image 4 51.95 51.96 51.96 52.17 52.17 52.11 52.11
Image 5 56.97 57.08 57.02 57.19 57.89 57.52 57.37
Image 6 61.11 61.19 61.1 61.95 62.48 62.11 61.99
Image 7 57.15 57.25 57.2 58.15 58.98 58.38 58.08
Image 8 62.06 62.13 62.08 63.31 63.42 59.49 62.44
Image 9 57.5 57.59 57.54 58.51 58.53 57.74 58.1
Image 10 52.76 52.78 52.77 53.36 53.39 53.13 53.11
Image 11 54.62 54.7 54.66 55.96 56.36 55.46 55.32
Image 12 54.28 54.35 54.32 55.57 55.9 54.98 54.89
Image 13 55.24 55.3 55.26 56.32 56.58 56.19 56.04
Image 14 54.28 54.31 54.28 54.25 54.31 54.28 54.31
Image 15 56.23 56.32 56.27 56.78 57.46 57.2 56.99
Image 16 54.98 55.04 55 55.59 55.79 55.62 55.47
Mean 55.573 55.634 55.59 56.334 56.611 55.975 55.961
Std-dev 2.878 2.9 2.88 3.0678 3.188 2.682 2.965

Table 2. PSNR on test set

LR Bicub T1 T2 T3 T4 T5
Image 1 0.963307 0.963512 0.96347 0.971557 0.971735 0.97081 0.969484
Image 2 0.958772 0.960148 0.959754 0.977177 0.978788 0.975053 0.972508
Image 3 0.985038 0.985643 0.985414 0.992671 0.993321 0.991235 0.990133
Image 4 0.891678 0.894971 0.894471 0.909703 0.911064 0.907371 0.906537
Image 5 0.989018 0.989487 0.98935 0.990938 0.992193 0.992213 0.991538
Image 6 0.992661 0.993009 0.992823 0.995043 0.996734 0.996379 0.996169
Image 7 0.991081 0.991583 0.9914 0.994257 0.996356 0.995852 0.995205
Image 8 0.993888 0.994171 0.994066 0.99666 0.99738 0.991429 0.996134
Image 9 0.985004 0.985743 0.985533 0.990717 0.991416 0.989118 0.989937
Image 10 0.936682 0.938544 0.937945 0.961764 0.96274 0.959171 0.956466
Image 11 0.979202 0.980393 0.980118 0.989476 0.992473 0.989934 0.988154
Image 12 0.976008 0.977337 0.977015 0.988345 0.991122 0.988088 0.986059
Image 13 0.967603 0.968864 0.968357 0.979492 0.985778 0.984207 0.98285
Image 14 0.949775 0.9509 0.950808 0.945239 0.939135 0.941506 0.941664
Image 15 0.981812 0.982581 0.982326 0.986429 0.99051 0.990199 0.989251
Image 16 0.97494 0.975849 0.975557 0.980708 0.983144 0.983423 0.981954
Mean 0.969 0.9707 0.9705 0.978 0.9796 0.9778 0.97715
Std-dev 0.0264 0.0257 0.0258 0.0228 0.0238 0.0238 0.0241

Table 3. SSIM on test set
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LR Bicub T1 T2 T3 T4 T5
Image 1 94.44 94.1 94.21 82.46 82.23 83.6 85.43
Image 2 131.74 129.08 129.79 89.04 88.69 95.76 102.07
Image 3 75.18 73.42 74.04 47.56 47.45 54.26 58.38
Image 4 142.1 139.66 140.01 129.43 128.09 132.29 132.31
Image 5 46.1 44.9 45.27 40.15 38.76 40.02 41.25
Image 6 112.94 109.97 111.23 78.32 69.1 76.49 80.83
Image 7 56.8 55.21 55.76 38.45 35.51 40.53 43.52
Image 8 165.95 161.56 162.58 114.33 103.53 125.67 126.4
Image 9 113.23 110.41 111.1 88.05 84.98 89.78 92.65
Image 10 147.65 144.85 145.76 104.68 105.99 110.61 115.39
Image 11 74.08 71.82 72.36 41.51 40.1 49.15 54
Image 12 75.12 72.87 73.45 42.95 41.96 50.51 55.16
Image 13 127.81 124.96 125.88 82.94 78.93 87.45 93.05
Image 14 167.86 165.59 165.81 189.56 188.7 185.36 183.8
Image 15 71.23 69.57 70.14 54.86 51.33 54.58 56.85
Image 16 94.77 92.98 93.54 80.21 78.67 79.98 82.37
Mean 106.06 103.81 104.43 81.53 79.00 84.75 87.72
Std-dev 38.3813 37.7794 37.8561 40.1779 40.1407 39.3340 38.2496

Table 4. ERGAS on test set

Name Title Research Field Personal Website
Luis Salgueiro PhD. Candidate Deep learning models applied to remote sensing. https://imatge.upc.edu/web/people/luis-fernando-salgueiro

Vernica Vilaplana Associate Professor
Computer vision, image processing, machine learning, deep learning
biomedical and remote sensing applications.

https://imatge.upc.edu/web/people/veronica-vilaplana

Javier Marcello Full Professor Remote sensing image processing techniques. http://iocag.ulpgc.es/people/javier-marcello-ruiz
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