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Abstract: Lithium-Sulfur is a promising technology for the next generation of batteries and research
efforts for early-stage prototype implementation increased in recent years. For the development
of a suitable Battery Management System, a state estimator is required; however, lithium-sulfur
behavior presents a large non-observable region that may difficult the convergence of the state
estimation algorithm leading to large errors or even instability. A dual Extended Kalman Filter is
proposed to circumvent the non-observability region. This objective is achieved by combining a
parameter estimation algorithm with a cell model that includes non-linear behavior such as self-
discharge and cell degradation. The resulting dual Kalman filter is applied to lithium–sulfur batteries
to estimate their State-of-Charge incorporating the effects of degradation, temperature, and self-
discharge deviations.

Keywords: lithium–sulfur battery; Battery Management System; cell model; SoC estimation

1. Introduction

Lithium–Sulfur (LiS) is a promising system among post-Li-ion technologies to power
up electrical vehicles in the near future [1–3]. In a LiS battery, sulfur is used as the cath-
ode, which is cost-effective, abundant, and stores a larger capacity than oxide materials
commonly used for Li-ion batteries, and the lithium metal anode ensures high energy
density. Developments conducted over the last 10 years on each individual component led
to complex cathode composites with improved kinetics [4] or more stable Li anodes [5]
which, together with new electrolyte formulations and additives, have maximized the per-
formance of the system. However, up-scaling to high-capacity cells remains a challenge [6]
and more research efforts are indeed required before this technology can be commercially
viable. Currently, discharge capacity, cycling stability, self-discharge characteristics, and
performance at high temperatures are still issues to be addressed at the full cell level. Up to
now, few demonstrators based on LiS have been presented with reported energy densities
in the range of 500 Wh/kg [7].

Advances in LiS batteries lead to the necessity of having a suitable management
system to supervise its operation and safety. To acquire relevant information, the Battery
Management System (BMS) requires a cell model to identify non-measurable parameters.
A Thevenin-based model obtained from current-voltage experiments in the time domain is
the most suitable for run-time estimations and for BMS implementation. Resistances and
capacitors of the Equivalent Circuit Model (ECM) are usually non-linear functions of the
State-of-Charge (SoC) and current rate [8].

The State-of-Health (SoH) estimation computes the remaining useful capacity of the
cell as a percentage of the nominal capacity, that is, the capacity measured during initial
cycles. In general terms, the capacity of cells degrades over time (calendar aging) and use
(cycling aging), and, in both cases, several factors contribute to accelerating or decelerating
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the aging phenomena [9,10]. The aging factors are not the same for all cell chemistries, for
instance, LiS batteries seem to be not much affected by temperature or C-rate, which are
two key aging factors for Li-ion batteries [11–13].

Typically, SoC estimation algorithms rely on current and voltage measurements to
compute the estimated value; the resulting accuracy is considered appropriate, for instance,
for lithium-ion batteries. However, given the high non-linearity observed in the LiS
battery behavior and the low observability of its discharge profile, this method yields large
estimation errors [14].

Research on LiS state estimation applying single Kalman filters in different variants
(Sigma-point, Unscented, Extended). It is found that the high self-discharge within the
high plateau hinders the determination of a precise initial SoC and that in the low plateau,
the flat OCV curve and relative constant battery parameters hinder a precise estimation.
The flat area is where current-related effects on usable capacity are prominent, which is the
reason why the proposed estimation methods work best within a certain discharge current
range, as described in [15,16]. These studies conjectured that improvements to the model to
represent self-discharge are likely to benefit the robustness of the estimators. Furthermore,
the introduction of elements to deal with current-related effects on parameter change is
very likely to improve accuracy. These studies also highlighted that it would be positive to
consider whether adaptive noise covariance values can be used to improve the model fit
whilst accommodating regions of greater uncertainty. A limitation of the tests performed in
those studies is the constant temperature scenario.

The application of data-based structures such as Artificial Neural Networks (ANN)
and Fuzzy Logic strategies showed that LiS batteries have much more complexities
compared to Li-ion and three main sources of error in LiS SoC estimation are as deter-
mined [17,18]: (1) Shift in the break-point between high-plateau and low plateau due to
temperature change, high discharge rate, aging, etc., which leads to an error in SoC estima-
tion, (2) Flat shape of OCV curve can cause a challenge in LiS cell SoC estimation due to
poor observability of the system, (3) Uncertainty and deviations in cell model identification
lead to an error in SoC estimation. Moreover, the SoC estimation performance under real
driving conditions presented up to 20% error, which clearly needs to be improved.

To overcome these issues, this work proposes to enhance the state estimation algorithm
by adding the temperature, the cycle number, and the time for calendar self-discharge
computation. To provide an accurate estimation, a dual Extended Kalman Filter (EKF) is
applied to estimate the parameters of the developed model in the low observability region.
It is found that a low estimation error can be achieved compared to structures such as
coulomb counting.

This article is organized as follows; in Section 2, the battery model and its behavior
are described, in Section 3 the methodology used for state estimation is developed, and
in Section 4 the resulting functions and surfaces are provided. Section 5 summarizes the
conclusion of this work.

2. Methodology

The well-known ECM structure is proposed to capture the dynamics of LiS cells
and feed the estimation algorithm that computes the internal states. However, as it will
be shown, the dynamics of LiS technology yield a region of low observability where
internal states cannot be accurately estimated. To circumvent this issue, a dual-state
estimation structure is proposed where additional parameters are included to enhance State-
of-Charge (SoC) estimation capabilities. Laboratory experiments are performed to analyze
the influence of the C-rate, the temperature, the degradation, and the self-discharge on cell
performance. The results obtained from the experimental setup generate a set of surfaces
that are generated where the evolution of the internal parameters can be interpolated
depending on their operating point, i.e., temperature, cycle number, and degradation level
(SoH). The experimental procedure is described and the final dual estimation structure is
then proposed.
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2.1. Cell Model Description

Since it is necessary to select the best trade-off between model accuracy and com-
putational effort, the model complexity has to be taken into consideration. Additional
RC branches, Constant Phase Elements (CPEs), or Warburg impedances can provide a
better model accuracy; however, the computational effort will be greatly increased [19] to
the detriment of time response or reactivity and an increase in implementation costs to
compute them. For this reason, an ECM model with 2 RC branches (Figure 1) is chosen; it
provides a trade-off solution between a good fitting and low/fast computational effort.

Figure 1. ECM with 2 RC branches.

The representation of the cell model can be expressed as (1)–(4):

VOCV(SoC) = Vt(t)− G(s)Ib(t) (1)

G(s) = R0 +
R1

1 + sR1C1
+

R2

1 + sR2C2
(2)

V̇1 =
−V1

R1C1
+

1
C1

Ib (3)

V̇2 =
−V2

R2C2
+

1
C2

Ib (4)

To represent the nonlinear relationship between the OCV and SoC there are different
approaches, the most common are the lookup table, the polynomial approximation, and the
piecewise linear function. Piecewise linear functions have less computational requirements
than high order polynomial approaches and less memory footprint than the lookup table
method [20]. Considering a linearized piecewise structure, the OCV-SoC function can be
expressed as VOCV = aiSoCi + bi where the subindex i refers to the i-th interval of SoC and
OCV is the Open Circuit Voltage. Then the space-state representation becomes (5) and (6): V̇1

V̇2
˙SoC

 =

 −1
R1C1

0 0
0 −1

R2C2
0

0 0 0


 V1

V2
SoC

+


1

C1
1

C2µ
QT

Ib (5)

Vt − bi =
[
−1 −1 ai

] V1
V2

SoC

− R0 Ib (6)

where µ is the battery coulombic efficiency and QT is the total cell capacity.
The model parametrization is obtained using a current pulse-based method (Galvano-

static Intermittent Titration Technique (GITT)) where the SoC is shifted based on pulses of
equal length followed by a relaxation time where the measurements are made. The method
is applied to an ECM with two RC branches and five voltage points are identified during
the voltage response under the applied current; they are the open-circuit voltage (OCV).
The instantaneous voltage drop after applying the current represents the fast dynamics and
the last step of voltage variation shows the slow dynamics. From the measured voltage
values, the parameters are estimated using:

Ri =
∆Vi

I
, Ci =

Ri
∆ti

, τi = RiCi (7)
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where V and I are the corresponding electrical measurements, ∆ti is the time span for each
measurement, and τi is the time constant related to the cell’s fast and slow dynamics. Then,
the battery voltage can be simulated and compared with the measurements:

V(t) = OCV + I(t)R0 + I(t)R1(1 − e−
t

τ1 ) + I(t)R2(1 − e−
t

τ2 ) (8)

where V(t) is the simulated voltage, I(t) is the applied current, t is the time and Ri, Ci, τi are
the model parameters.

2.2. LiS Cell State Estimation

In the space-state form, the observability matrix [14] is computed as (9):

O =


−1 −1 ai

1
R1C1

1
R2C2

0(
1

R1C1

)2 (
1

R2C2

)2
0

 (9)

The observability matrix will not have full rank when ai is zero and this situation
happens in a LiS-based cell approximately in the SoC range of 25–75% (Figure 2a). This
issue leads to a system with low observability of the internal parameters meaning that the
estimation process will have to be reinforced with a secondary estimation technique to
overcome the problem and provide an accurate output.

Among the estimation methods available, EKF is recommended for BMS purposes [21–23]
since it provides the best trade-off between an acceptable accuracy, fast convergence,
robustness, and small computational efforts. A dual estimator structure (Figure 2b) is
proposed to update the internal states and the model parameters while the battery is in
operation [24,25].

(a) Non-observable region of LiS battery voltage profile
(b) Dual Extended Kalman Filter scheme

Figure 2. (a) LiS battery discharge voltage profile and (b) structure of Dual EKF.

To be able to calculate the State-of-Health (SoH), the previous procedure is repeated
several times. The SoH estimation is computed separately based on the data obtained from
intensive testing in controlled laboratory conditions. The online update of this information
takes into consideration the age, cycling conditions, and the database containing the amount
of energy and power managed by the battery during its lifetime.

The GITT procedure is repeated for a large number of cycles to capture the evolution
of the RC parameters and their uncertainty level. The experimental results of the parameter
evolution are displayed in Figure 4 for every 25 cycles. The parametric evolution is then
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used for the parameter identification function that will update the model for the estimation
algorithm in run-time.

The GITT parametric analysis is repeated at three temperatures (low temperature
(−10 ◦C), Room Temperature (RT), and high temperature (45 ◦C) and at three C-rates
(low (C/10), medium (C/2), and high (2C)) to capture the variation of the parameter
evolution in each situation. In total, nine tests have been performed (for 3 temperatures
and 3 C-rates) to form a matrix where intermediate situations can be interpolated to obtain
the parameter values and update the model. The model is not only updated with the
temperature and C-rate of the battery in operation but also with the cycle number, which
influences the battery behavior and is linked to the SoH. Therefore, it can be used to
estimate the degradation level and modify the safe operation area, safety measures, and
power control strategy. The experiments performed are summarized in Table 1.

Table 1. GITT experimental conditions.

Cell No 1 2 3 4 5 6 7 8 9

C-rate C/10 C/10 C/10 C/2 C/2 C/2 2C 2C 2C
Temperature −10 ◦C RT 45 ◦C −10 ◦C RT 45 ◦C −10 ◦C RT 45 ◦C

Following the procedure described previously, a set of functions to compute the
parameters for the cell model are obtained. The full model computes the RC parameters
(R0, R1, R2, C1, C2) based on the cycle number (n), temperature (T◦) and the C-rate,
expressed as RC = f (n, T◦, Crate). Given the high order of the resulting function, the
complexity of the model is reduced by breaking the parameter estimation into smaller
surfaces, which are sequentially interpolated to reach the desired parameters. The resulting
functions are expressed as follows:

Step 1: The initial set of RC parameters is computed based on the cycle number and the
enveloped temperatures and C-rates that bound the region where the system is in operation.
Equation (10) expresses the polynomial function that approximates the parameters with a
small Root Mean Square Error (RMSE) for all cases.

RC(x, y) =
k

∑
i,j=0

pijxiyj (10)

where x is the SoC (%), y is the cycle number, and the polynomial function is limited to the
third order.

Step 2: The set of RC parameters are then interpolated between the bounding temper-
atures for each C-rate using (10) (with y being the temperature in ◦C) , which expresses the
estimation surface for all temperatures in the range from −10 ◦C up to 45 ◦C. An example
of the resulting surface is shown in Figure 7b.

Step 3: The final step consists of the interpolation of the RC parameter over the C-rate
surface to extract the cell model to be able to use the Extended Kalman Filter efficiently.
The surface expressed by (10) (with y being the C-rate) is provided in Figure 7c as a visual
representation.

After the previous sequence is applied, the internal parameter estimator is combined
with two different state estimators that greatly influence the performance of the LiS cell.
These are the SoH and the self-discharge ratio.

The evolution of the SoH is extracted from the experimental results and linearized
to extract the functions that conform to the operational region. The SoH is updated
periodically, it starts from 100% when the battery is fresh and a percentage of degradation
(D) is computed based on the operational conditions (Temperature and C-rate) since the
last update. The update expression is Equation (11):

SoH = SoH − D (11)
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The degradation rate D is interpolated between the surfaces that follow the SoH (%)
of cells cycled at different temperatures and C-rates as in Equation (12). An example of
generated surfaces is shown in Figure 7d,e, and the expression is

SoH(x, y) =
k

∑
i,j=0

qijxiyj (12)

where x is the cycle number, y is the temperature (◦C), and the polynomial function is
limited to the third order.

Similarly, the self-discharge ratio is computed based on time, temperature, and SoC, for
instance, the surface that relates temperature and cycle number to the SD ratio is expressed
as (13):

SD(x, y) =
k

∑
i,j=0

rijxiyj (13)

where SD is the Self-Discharge ratio, x is the time in days, y is the temperature (◦C), and the
polynomial function is limited to the second order. The resulting surface is displayed in
Figure 7f.

3. Experimental Results

Applying the GITT procedure, the ECM parameters are derived and the experimental
results are displayed in Figure 3. In Figure 4, the evolution over the cycling of R0 and C2
are shown, these results show the trends that the battery parameters follow as the aging
effects become predominant.

(a)
(b)

Figure 3. Cont.
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(c) (d)

Figure 3. Pulse-based GITT methodology applied to the LiS battery for model parametrization during
charge and discharge cycles. (a) GITT method applied to LiS battery. (b) GITT-based parametrization
analysis. (c) GITT method applied during charge. (d) GITT method applied during discharge .

The ECM parameters show evolution as the battery degrades, it can be clearly seen
how the internal resistance increases more than two times in 250 cycles. The parameter R0
has a constant rate increase over cycling, not showing any sign of exponential increment,
unlike lithium-ion batteries. For C2, the decrease also progresses at an almost constant pace;
however, above 70% of SoC, a radical change in behavior is observed and its value seems
to be quite stable during the first 250 cycles.

To determine the self-discharge ratio, the methodology consisted of charging in a low
C-rate (C/10) cell and after a rest period of days at different temperatures, the same C-rate
is used to discharge the cell. The available charge after the rest period is obtained and the
evolution of the self-discharge capacity can be computed. This test is repeated charging the
cell at 100% SoC and 50% SoC.

(a)
Figure 4. Cont.



Energies 2022, 15, 6989 8 of 14

(b)
Figure 4. Parametric evolution of (a) R0 during discharge and (b) C2 during charge. Each colored
line show results after every 25 cycles.

Capacity Fade and Self-Discharge

Low-maturity LiS technology suffers from two main issues that increase the difficulty
of a correct SoC estimation, these are a fast capacity fade rate and the high (non-linear)
self-discharge ratio. For this reason, two more parameters are necessary to develop a full
model: in the first place, the SoH requires a degradation rate or capacity fade parameter
and secondly, a self-discharge rate must be computed since self-degradation has a large
impact on the efficiency of LiS cells.

The experimental result of the capacity fade is shown in Figure 5a, where the cell
has been cycled at 2C for 2500 cycles at Room Temperature (RT). Every 100 cycles, an
asymmetric cycle with fast charging (2C) and slow discharging (C/10) is performed. This
cycle is followed by a symmetrical cycle at a low C-rate (C/10). Note how, after around
700 cycles of erratic behavior, the cell shows a rather slow degradation rate. This particular-
ity is caused by the fact that the voltage limit is reached before entering the second plateau
(as shown in Figure 5) in some cycles, which is mainly due to its internal resistance and
the high C-rate forcing a large voltage drop. As the cell degrades, the internal resistance
increases to the point where in every cycle, the cut-off voltage is reached before the cell
enters the second plateau, and the capacity is reduced by almost half from then on. This
phenomenon can be observed in Figure 5a beyond the 700th cycle. Note that this should not
occur in all LiS cells and that it was a particularity of this configuration and voltage limits.
Nonetheless, it is important to take it into account when preparing them, as this fact entails
high inaccuracies and severely increases the difficulty of capacity and SoC estimations.

Self-discharge experiments were repeated at different temperatures and SoC to parametrize
its influence. The experimental result of the temperature influence on self-discharge rate is
shown in Figure 6. See how the self-discharge ratio at low temperature (−10 ◦C) is almost
constant and presents a close to linear trend between the time passed and the amount of
capacity lost. However, at higher temperatures (RT and 45 ◦C), the self-discharge behavior
is non-linear, presenting a higher self-discharge for the first 3 days, but then it tends to
soften, reducing its effect notably. It is also interesting to mention that this different behav-
ior (linear/non-linear) occurs equally at SoC 50% and 100%; however, the self-discharge
ratio is more intense at higher SoC and high temperatures, mainly due to diffusion effects.

Consequently, the changes in the self-discharge ratio represent a direct impact on the
state estimator efficiency and have to be included in the cell model. To model the effect of the
self-discharge rate, this effect is measured periodically during an aging experiment. The self-
discharge is measured every 50 cycles (at C/2 C-rate) and up to 250 cycles are performed.
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(a) Capacity fade test at room temperature

(b) Voltage with 2nd plateau (c) Voltage without 2nd plateau

Figure 5. (a) Capacity fade. Detail of the voltage profile (b) with 2nd plateau and (c) without
2nd plateau.

(a) Self-discharge rate at 50% of SoC (b) Self-discharge rate at 100% of SoC

Figure 6. Self-discharge evolution at (a) 50% SoC and (b) 100% SoC.

4. Resulting SoC Estimation

The application of the methodology described in Section 2 yields a set of surfaces
that represent the evolution of each parameter under a set of conditions such as the cycle
number, the temperature, and the C-rate (Figure 7). These surfaces can be combined and
interpolated to compute intermediate states, and the ECM parameters obtained are then
used by the state estimator to calculate the SoC.

The time-based Equation (13) is included in the EKF model as part of the initial
estimation of the remaining SoC. The final schematics of the full parameter estimation and
the Extended Kalman Filter that computes the SoC and SoH are shown in Figure 8a.
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(a) R0 as a function of SoC and cycle number (b) R0 as a function of SoC and temperature

(c) R0 as a function of SoC and C-rate
(d) SoH as a function of cycle number and

temperature at a low C-rate

(e) SoH as a function of cycle number and
temperature at high C-rate

(f) Self-discharged capacity as a function of time
and temperature

Figure 7. Surface representing the R0-parameter as a function of (a) SoC and cycle number, (b) SoC
and temperature, (c) SoC and C-rate, the blue dots are the real values and the surface the estimation
obtained. SoH as a function of cycle number and temperature at (d) low C-rate and (e) high C-rate,
the blue dots correspond to the linearized values, (f) percentage of self discharged capacity as a
function of time and temperature.

The proposed state estimation structure is validated using experimental data and
comparing the resulting SoC estimation to the SoC computed with a coulomb counting
algorithm. According to the SoC definition, the Ampere-hour integral method [26,27]
integrates the battery charge and discharges current and adds it to the initial SoC value
to obtain the SoC value. Typically, this method becomes less reliable over time since the
current measured by the sensor may be inaccurate, and the initial SoC cannot be obtained
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accurately, so there is a cumulative error as the method is used. However, this algorithm
does not need to establish a model of the battery, and it is simple and easy to implement. At
the cut-off voltages (maximum and minimum), the SoC is known since it is established to be
0% and 100%, respectively, these values are used as a reference to set the coulomb counting
approach as a baseline value to perform a comparison with the proposed approach.

The cell used for testing is at 85% SoH and is cycled using a set of current pulses at
C/10 with different amplitudes and resting time between charge and discharge cycles, the
experimental data is obtained at room temperature. The results obtained are shown in
Figure 8 where it is shown that the estimation computed with coulomb counting drifts from
the dual EKF estimation due to its simplicity. The experiment is performed fully charging
the battery from 0% to 100% and then back to full discharge at 0%, the cut-off voltages are
reached when the EKF algorithm is correctly estimating that the operational SoC limits
are being approached. A pure coulomb counting strategy does not consider non-linear
conditions such as the cell self-discharge ratio, the variability of the internal resistance
(that affects the coulombic efficiency), the influence of the temperature, or the degradation
level of the cell. Figure 8 shows the results of adding this non-linear behavior to the cell
model in combination with the Kalman filter. The maximum error found is located at the
phase-change regions between the two plateaux. In this transient region, the behavior of
the model differs from the real one and up to 5% error is observed in the SoC estimation
until the filter leads to convergence again.

(a) Structure of the SoC estimator (b) Current pulse test applied

(c) Coulomb counting reference SoC value compared to Dual EKF SoC
estimation

Figure 8. (a) Schematic of the SoC estimation structure. SoC estimation test with (b) current pulse
profile applied (C/10) in a full cycle from minimum to maximum cell voltage (0% to 100% SoC) and
(c) Coulomb counting reference SoC value compared to Dual EKF SoC estimation.
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5. Discussion

This study provides a functional state estimation for lithium–sulfur cells where a
Dual-Extended Kalman Filter approach is used to compute the battery SoC. The proposed
algorithm is able to overcome the highly non-linear behavior of the system and shows a
good tracking of the SoC, estimating correctly when the cutoff voltages are reached. A
direct model, which contains a function with all the elements that influence the battery
behavior (Temperature, C-rate, age, and cycle number), would require a model with
excessive complexity to be solved in a reasonable amount of time by the BMS processor.
The method would require an excessive bit resolution and a large amount of memory which
are undesirable features for a cost-driven industrial computer.

A practical solution is proposed in this study based on breaking the parameter estima-
tion into a piecewise problem where a small part of the calculation is performed each time.
This way, the order of the functions is reduced and the solutions are found in a reasonable
amount of time. The proposed structure does not require a high performance processor
to compute the SoX of the model; however, the computational burden is increased with
respect to the basic estimators.

The application of the proposed approach requires an extensive study of the cell to
generate all the necessary data to parametrize the effects of temperature, C-rate, aging, and
self-discharge, which leads to an expensive and long procedure for BMS development. This
is mainly due to the discharge reaction of LiS technology being divided into four stages
where different polysulfide reactions are predominant [28]; moreover, the solid/liquid state
is different, leading to a strong change in the behavior of the cell model [29]. That problem
is especially stressed when the model tries to capture the parameter behavior for a large
number of cycles (different degradation levels) and temperatures, as is the case in this study.
Nevertheless, the EKF structure is shown to be valid for the LiS cells under study, which
are research prototypes. It should be noted that LiS technology is under development and
more research is required to reach higher levels of performance and overcome some of the
main drawbacks identified and addressed in this work.

6. Conclusions

A complete model of a LiS battery model is proposed with special emphasis on the
non-observability issue that affects a large region of the battery operational range. To
circumvent this situation, a Dual EKF structure is proposed to compute the SoC estimation
in combination with an estimation of the internal cell parameters. The proposed algorithm
correctly tracks the SoC of an experimental aged LiS cell from minimum to maximum cutoff
voltages, providing an estimation with less than 1% of the error to predict when 0% and
100% SoC are reached.

The methodology described in this work requires a large number of experiments and
data to incorporate the effects of capacity fade and self-discharge, which are predominant
in current LiS technology. However, the high complexity of the procedure necessary to
derive the algorithms increases the cost and development time for BMS devices, which
is a drawback for market applications. The addition of the degradation effects on cell
performance, the self-discharge ratio, and the influence of C-rate and temperature in the
overall dynamics are the main contributors to the model complexity. The resulting dual-
EKF is able to predict the SoC without any drift and shows robust behavior during strong
transients such as current pulses.
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The following abbreviations are used in this manuscript:

BMS Battery Management System
EV Electric Vehicle
ECM Equivalent Circuit Model
SoC State of Charge
SoH State of Health
SoX State of X
RUL Remaining Useful Life
DoD Depth of Discharge
GITT Galvanostatic Intermittent Titration Technique
EKF Extended Kalman Filter
CPE Constant Phase Element
LiS Lithium Sulfur
SD Self Discharge
CPE Constant Phase Element
RMSE Root Mean Square Error
RT Room Temperature
OCV Open Circuit Voltage
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