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Abstract

Steganography is the practice of concealing a signal inside another signal. In this work, we

use a modification of the original PixInWav, a deep steganography multimodal system that

hides images inside of audio, to approach a more complex over-the-air transmission

problem, where the audio with a hidden image concealed is reproduced through a speaker,

recorded by a microphone, and sent as input to the decoder network. To tackle this problem,

we use Curriculum Learning and Data Augmentation progressively adding reverberation to

the training, gradually increasing the difficulty of the entries fed to the network. This new

approach obtained very promising results both in terms of image and audio quality, although

it remains pending to assess this performance in a real over-the-air transmission scenario.
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Chapter 1 - Introduction

Steganography often is described as the field of concealing a signal within another signal,

where the first signal, often referred to as the host signal, is usually publicly available,

whereas the second signal, referred to as the hidden signal, is secretly embedded in the host

signal. Throughout history, many different techniques have been used to hide signals inside

of others and we can distinguish two main types of techniques: physical and digital. On the

one hand, the physical steganography techniques have been used for centuries and are based

on concealing the hidden signal into a physical host signal. Some examples of physical

steganography are writing messages on paper using secret inks, the usage of

photographically-produced microdots, or messages written in morse code in yarn and then

knitted into a clothing piece. On the other hand, the digital steganography techniques relied

on concealing a digital signal inside of another. Specifically, in the field of image, digital

steganography often relied on the least significant bit approaches [1], where the least

significant bits are used to conceal the hidden image.

The recent uptrend and advances in deep learning, have caused great improvements in the

state of the art of the field of digital steganography, similar to many other fields such as

image compression or audio denoising. These steganography systems are based on

encoder-decoder setups, where an encoder network conceals a signal inside of another and a

decoder network retrieves the original hidden from the output of the encoder network

(referred to as the container signal). In the image field, deep learning systems like

StegaStamp [2], which concealed hyperlinks inside of images, or HiDDen [3] - see Fig. 1,

which concealed images inside of images, showed the state of the art results not only in

terms of the quality of recovered hidden signals but also in the imperceptibility of these

when hidden in the host signal. The same trend occurred in the field of audio, where

systems like "Hide and Speak" [4], which hid speech signals within speech signals, showed

again state of the art results both in recovered hidden audio quality, but also in the

imperceptibility of the hidden audio when concealed inside the host audio.
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Figure 1: HiDDen steganography architecture proposed in Zhu et. al [3]

These deep-learning-based systems focused either on unimodal steganography, that is,

hiding a signal within a signal of the same type, or on hiding a fairly simple signal, such as

the plain text of a link, within another more complex signal, such as audio, image or video.

PixInWav [5] (Fig. 2) was proposed to hide image signals inside of audio signals, focusing

on the not explored field of multimodal steganography based on deep learning systems. This

system, based on the usage of two UNet-like [6] networks as the encoder and decoder, relied

on the transformation of the audio into the Short-Time Discrete Cosine Transform domain

before concealing independently encoded images into this host audio representation.

Figure 2: Original PixInWav architecture proposed in Geleta et. al [5]

One of the main problems that this system encountered was its usage of it in a real case

scenario, the over-the-air transmission problem (Fig. 3), where audio that conceals a signal

(previously encoded by the encoder part of the network) is reproduced on a speaker and

someone wants to recover the hidden image by recording this audio and passing it through

the decoder part of the network. The experiments performed showed that the network wasn’t
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robust enough to decode the image from this reproduced audio, returning an almost

completely grey image with no correlation to the original hidden image.

Figure 3: Over-the-air transmission. The container audio is reproduced by a speaker that a

microphone records and sends to the decoder network, that reveals the hidden image

To tackle this over-the-air transmission problem, we decided to model the effect of the

reproduction by a speaker in a room as the convolution of our container signal with the

impulse response of the environment. It is important to mention that using this

simplification of the problem, we were not modelling the effects that the speaker and

recorder produce on the audio. We chose this strategy since it can be considerably complex

to simulate the effect of all the possible speakers and the recorders, given that the effect of

these devices on the audio varies drastically when changing them. Instead of that, we used a

Data Augmentation/Curriculum Learning approach, where during the training we

progressively reverberated the container signal with environmental impulse responses,

increasing progressively the "difficulty" of the reverbs fed to the network

9
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Chapter 2 - Technical Background

In this section, we will introduce in detail some of the important concepts necessary to

understand the main contributions of this project, considering also related works that

validate our approach to the over-the-air transmission problem. To this end, in the following

subsections, we will explain audio transforms (and which ones are being used),

Environmental Impulse Responses (EIRs), Data Augmentation, Curriculum Learning, and

lastly, the original PixInWav [5] system.

2.1. Audio transforms:
The PixInWav original system is based on the transformation of the audio waveform into a

two-dimensional signal using the Short-Time Discrete Cosine Transform (STDCT), which

later was replaced by the Short-Time Fourier Transform (STFT) because of the increase in

terms of quality in the container audio. In this section, we will briefly introduce both

transforms.

 2.1.1 Short-Time Discrete Cosine Transform (STDCT)
 

 The STDCT of a signal is a transform that computes the DCT transform (specifically the

DCT-II, commonly referred as the DCT) for L-sized windows of the original signal. The

mentioned DCT expresses a finite signal using a sum of cosine signals of different

frequencies and it is widely used in the field of audio processing and compression. The

formula to compute the STDCT is:

 

Where is our original audio signal and is an L-point window function. The𝑥[𝑘] 𝑔[𝑘] 

resulting signal after the transformation is a 2-D signal that belongs to the real domain.

Lastly, there is an inverse transformation that allows the recovery of the original signal from

its STDCT representation.

10



PixInWav: Using Curriculum Learning to send images over the air – Pau Bernat i Rodríguez

 2.1.2 Short-Time Fourier Transform (STFT)

The STFT transformation is a natural extension of the Fourier Transform, providing Fourier

Transforms of a windowed signal. It is widely used in the audio field to extract the

time-localised frequency information of the audio and it is computed using the following

formula:

Where again, is our original audio signal and is an L-point window function. The𝑥[𝑘] 𝑔[𝑘] 

resulting signal after the transformation is a 2-D signal that belongs to the complex domain,

which means that we can split this signal in two parts: its module and its phase. Similar to

the STDCT, there is also an inverse transformation that allows the recovery of the original

signal from its STFT representation.

2.2. Environmental impulse responses:
In order to simulate the effect of a speaker reproducing the container audio, we decided to

use the MIT Acoustical Reverberation Scene Statistics Survey [6] dataset of environmental

impulse responses. An impulse response is the output of a system when presented with an

impulse signal. In the acoustics field, room impulse responses are widely used as they

describe the characteristics of a specific enclosed location. Environmental impulse

responses (EIRs) are a generalisation of the room impulse response concept since it also

considers other spaces apart from rooms (like open spaces). In our practical case, we used

these impulsional responses to simulate the effect of the environment on our container

signal by simply performing a discrete convolution of this signal and with environmental

impulse responses (or reverbs).

The usage of reverberations (or impulse responses) in the speech enhancement field is a

usual practice since it serves a way to approach the very complex problem of removing the

effects of the room on speech. In studies like [7] where they use perceptual metrics to

perform speech recognition or in [8] where they perform speech recognition from

whispering speech, they approach these problems by adding reverberation to the training

data (simultaneously with other kinds of noises and artefacts). In the state-of-the-art
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approach to the speech enhancement task [9] (fig.4), where they estimate the lip movement

(without video clues) from an audio signal, the usage of reverberations is still used.

Figure 4: State-of-the-art architecture in the speech

enhancement task proposed in Hedge et. al [10]

We also considered some interesting literature from the impulsional response estimation

field like FiNS [10] (Fig. 5), where a more domain-inspired architecture uses noise filtering

to estimate impulse responses, or systems like the ones presented in [11] and [12],which

estimate the room impulse responses by using images of the places where the audio was

recorded. We left as possible future work the option of estimating the impulse response of

the room to eliminate the effects of it in the transmitted container audio.

Figure 5: FiNS, a domain-inspired architecture for room impulse response

estimation proposed in Steinmetz et. al [10]
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2.3. Data augmentation:
Data augmentation is a widely used technique in the machine learning field that is based on

increasing the size of your dataset by artificially generating extra data, often using

transformations on the original data. However, transformations are not the only option to

generate artificial data since other approaches like using GANs to generate these images

[13] have been also used in the recent literature.

The aim of data augmentation in our specific practical case is not to obtain more data of the

same original distribution, but to modify the distribution of our data in a way that each of

the training entries is affected to some degree by the reverberation effect caused by the

acoustical environment. As mentioned before, this approach has been used previously in the

literature, specifically in the speech enhancement field [7,8,9] where models learn how to

clean the audio signals from all kinds of undesired effects like noise, reverberation or

quantization effects by training with these applied to the data. Therefore, we will use data

augmentation to make our network robust to the effect of reverberation caused by the

environment.

 

 2.4. Curriculum learning:
Curriculum learning is a concept firstly introduced by Bengio et al. (2009) [14] which

suggests that machine learning models, similar to humans or animals, learn better when

examples are presented in a meaningful order, that is, increasing progressively the difficulty

of the entries. Specifically, the curricular learning method introduced in this paper was the

following: First, they trained the model by giving a set of weights that favoured sampling

the “easier” cases of a dataset. Next, they progressively modified these weights so more

“hard” cases were sampled. At the end of this process, the weights didn't favour any kind of

entry, and sampling any case was equally probable despite its difficulty.

This far from new concept has been used and adapted in a wide variety of cases. The paper

“Curriculum Learning: A Survey” [15], summarises the extensive list of cases and

variations of Curriculum Learning in literature, where the progressive increase of difficulty

of the training is generalised into a wider frame, where the difficulty of the samples can be

self-learned or where other factors like diversity can also influence the sampling probability

of an entry.
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There is some work in the audio field where the use of Curriculum Learning improves the

performance of the models. Specifically, in the paper [16] from the speech denoising field,

they use a Curriculum Learning method called ACAM where, during the training, the

entries sampled have progressively a higher signal to noise ratio (SNR). In [17], from the

speech recognition framework, they fed progressively harder sentences to the network.

In our specific case, we want to train progressively increasing the difficulty of the reverbs

fed to the network. To this end, in the following subsection, we will introduce the dry-wet

parameter concept, which will be used as the main source to define how “difficult” is an

entry.

 2.5. Dry-Wet ratio:
The dry-wet ratio is a parameter used by most of the reverberation software available in the

market that determines how much of the original audio is heard after a reverberation. Thus,

the audio after the μ dry-wet parameter reverberation is computed as:

 

Where x[n] is our original signal, r[n] is the reverb signal and x[n] * r[n] is the fully

reverberated signal. Thus, when the μ dry-wet parameter is close to 1 the returned signal is

more similar to the fully reverberated signal and when the μ dry-wet parameter is close to 0

the returned audio is more similar to the original audio.

As we observed in the previous PixInWav experiments, the system was incapable of

decoding the hidden image when the container was reverberated (or reproduced-recorded).

Then, it is not bold to assume that, if we use a dry-wet parameter reverberation approach to

train our network, the entries of the database with a lower dry-wet parameter on their

reverberated container are going to be easier to decode for the network. Combining this

knowledge with the Curriculum Learning framework mentioned above, we can schedule a

training method where first, we sample examples with lower dry-wet parameters (easier

examples) and we increasingly add samples to the pool with higher dry-wet parameters

(harder examples) until all samples are chosen with the same probability.

14
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 2.6. PixInWav:
The PixInWav [5] system is a multimodal steganography system that encodes images inside

of audio. It is based on an encoder-decoder setup, where a UNet-like [18] residual

architecture encodes the image (hidden image) independently from the audio and this

encoded signal is added to the Short-Time Fourier Transform (STFT) module (of the host

audio. Then, the resulting audio, also called container audio, is decoded by another

UNet-like (Fig. 6) network that retrieves the hidden image from this container audio. In this

section, we will introduce in more detail how this deep neural network system works, the

previous results of this system and the improvements added since the original PixInWav

paper that are not related to the reproduction-recording problem.

Figure 6: U-Net architecture, proposed in Ronneberger et. al [14]

2.6.1. Architecture

The PixInWav system follows an end-to-end encoder-decoder residual architecture based on

two UNet-like [18] networks. Differently from other mentioned deep stenography systems,

in PixInWav the hidden signal (image) is encoded independently of the host signal (audio).

This is why the encoder uses as input only a 3-channel RGB 256x256 image, that after a

series of reversible transformations that flatten and stretch the image, is used as the only

input of the encoder network. This architecture contains both a contracting and expansive

part with residual connections.

15
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The contracting part of the encoder network is composed of two downsampling sections,

with two 3×3 convolutions with stride 2 on the first module, and two 3×3 convolutions with

stride 4 on the second one. Each of these layers was followed by a batch normalisation layer

and a Leaky ReLU activation function. The expansive part of the encoder is composed of

two upsampling modules, with two 3x3 transposed convolutional layers (upsampling) and

two 3x3 convolutional layers each one followed by a batch normalisation layer. As in the

contracting part, both of these layers are followed by a Leaky ReLU activation function in

between. The output of this network returns the encoded hidden image, computed

independently from the host audio. The decoder part of the network uses the same

architecture as the encoder, only that this network receives as input the container host signal

and retrieves the original hidden image

Lastly, it is important to mention the connection between both networks, that is, how the

encoded hidden image is hidden inside the host audio. To do this, first, the Short-Time

Discrete Cosine transform of the audio is computed to transform the 1-dimensional signal

into a 2-dimensional representation of the audio, where the stride and dimensions of the

window are adjusted so that this 2x2 dimensional representation matches the dimensions of

the encoded hidden image. After this, we perform a simple addition of both signals

obtaining the container audio representation, which then is passed through the decoder to

retrieve the original hidden image.

2.6.2. Loss function

The loss function of the PixInWav system was:

Where is the hidden image, is the revealed image, is the host audio representation,𝑠 𝑠' 𝐶 𝐶'

is the container audio representation, is the host waveform and is the container𝑐 𝑐'

waveform.

From this loss function, it is important to mention the trade-off between (i) low distortion of

container audio and (ii) low distortion of the revealed image, which is controlled by the β

hyperparameter. When this value is close to 1, we prioritise the low distortion of theβ

16
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recovered image whereas when the value is close to 0, we prioritise the low distortion ofβ

the container audio.

2.6.3. Audio transforms

The Short-Time Discrete Cosine Transform (STDCT) (Fig. 7) was replaced by the

Short-Time Discrete Fourier Transform (STFT) (Fig. 8) in the PixInWav system. The main

reason for this change was that it produced a large increase in terms of container audio

quality, at the expense of a slight loss in terms of revealed image quality. It is worth

mentioning that, since the STFT transformation of an audio signal is a 2-dimensional

complex signal, in this new system we added the encoded image into the module of the

signal (leaving the phase untouched).

Fig 7: PixInWav original architecture using the STDCT, proposed in Geleta et. al

Fig 8: PixInWav modification using the STFT module as the host signal
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2.6.4. Results of the original system:

In this last subsection, we will introduce some of the previous results obtained by the

original PixInWav architecture, as well as the results in the STDCT vs STFT study, and

lastly the baseline results in the Over-the-air transmission problem.

Main results:

In the original PixInWav paper where they used the STDCT they obtained considerably

good results, obtaining structural similarity index measure (SSIM) values around 0.94 for

the revealed images and Signal-to-Noise Ratio (SNR) values around 19dB for the audios,

with 8 epochs of training. As seen in Fig. 9, the network was capable of recovering the

hidden image from the container audios, with a quality that would be almost perfect if it

were not for the marks that the spectrogram leaves in the upper part of the image.

Figure 9: PixInWav original results using the STDCT, presented Geleta et. al [2]

In terms of perceptual audio quality, this method using STDCT introduced a noise

frequency stationary noise to the container audio signals, which greatly deteriorated the

quality of the container signal.

18
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Short-Time Fourier Transform vs Short-Time Discrete Cosine Transform :

To obtain a better performance in terms of audio quality, the usage of the Short-Time

Discrete Fourier Transform was proposed. This transform was chosen because of two main

reasons: (i) the fact that we could hide on one of the two parts of the complex signal

(module and phase) and use the less sensible part to noise to add the encoded image, and (ii)

the fact that  the usage of the STFT was the most common transform used in the audio field.

Using the module of the STFT as the container signal, we obtained an increase in terms of

audio quality of over 20dBs on the SNR audio metric, obtaining a cleaner container audio

without the previously mentioned artefacts at the expense of a slight degradation of the

quality of the revealed image, dropping .05 in terms of the SSIM image metric for most β

values (Fig. 10). In perceptual terms (Fig. 11), the degradation of the revealed image quality

was specially remarkable in the experiments using the STFT with the lower beta values, but

as the beta value increased this method obtained a similar revealed image perceptual quality

to the STDCT method. Due to this increase in terms of performance, further PixInWav

experiments were performed using the STFT transform with values higher than 0.25.β

Figure 10: Visualisation of the quantitative analysis of the STFT vs STDCT
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Figure 11: Perceptual results comparison of the PixInWav systems using STFT or STDCT

Over-the-air problem:

The original over-the-air experiments were conducted in the following way: a previously

trained PixInWav network encoded an image inside of an audio, which was reproduced

through a speaker and recorded with a microphone. The STFT module of this recording was

fed to the decoder network where the hidden image was meant to be retrieved.

Figure 12: Results obtained in the over-the-air transmission case

using the original PixInWav system presented in et. al Geleta

As shown in Fig. 12, the results obtained were considerably poor, but some contours of the

original images were preserved (like some of the peppers contours or the parts of the nose of

the mandrill). In this thesis, we will focus on improving these results.

20
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Chapter 3 - Design of the System

In this section, we will mainly focus on the design decisions used to approach the

Over-the-air problem, as well as some other modifications (previously mentioned) that

improve the performance of the system independently of the over-the-air case.

 3.1 Over-the-air modifications:
In this section, we will introduce the modifications made to the PixInWav [5] original

architecture (Fig. 10) to address the over-the-air problem. As mentioned above, we used a

Data Augmentation approach to add reverberation progressively to the training dataset,

using a Curriculum Learning schedule. In this new system, we added reverberations (or

environmental impulse responses) to the container signal (computed as the addition of the

encoded hidden image and the host audio) using the architecture shown in Fig. 13.

Figure 13: PixInWav architecture with reverberation in the container waveform

In this architecture, after the hidden image is encoded by the encoder network and added to

the audio representation (the module of the STFT), we transform this container signal into

the audio domain and compute the dry-wet parameter reverberation of this container. It isµ

important to mention that we crop and standardise the fully reverberated audio so it matches

the dimensions and the intensity levels of the original audio. After that, this -reverberatedµ

container audio is passed through the decoder network to retrieve the original hidden image.
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Lastly, during training, this parameter is determined by the Curriculum Learning schedule,µ

which will be explained in detail in 4.1.4, and in testing is 0 for the non-reverberated

validation dataset and a random number between 0 and 1 in the reverberated validation

dataset.

 3.2 Audio representation:
As mentioned in the previous sections, the audio representation used in the network is the

Short-Time Fourier Transform. This means that the host audio is transformed into the STFT

domain before concealing the hidden image inside of it. Thus, we used this transform based

on results obtained that showed a considerable improvement in the container audio quality

when using the STFT transform as the transformation.

It is important to mention that since the STFT transform returns a 2-dimensional complex

signal, we used the module of the signal only to hide the image. This hiding was performed

by a simple linear addition operation (as mentioned before, parameters like the stride were

adjusted to have matching dimensions) where the hidden image was added to the module of

the audio transformation.

 3.3 Increasing the network size:
The original PixInWav network had roughly 960.000 parameters. Despite being a

considerably small network, the usage of a larger STDCT transform was the reason why

they couldn’t increase the size of this network, since it would surpass our computational

limits.

However, for the over-the-air transmission task, we considered a viable option to increase

the size of this network, given that the STFT transform used a smaller window. Thus, for an

experiment we increased the number of the encoder and the decoder, increasing the size of

the network to roughly 3.6 million parameters.
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Chapter 4 - Implementing and testing

In this section, we will discuss the implementation of the design architecture, explaining

also the new validation dataset, how we applied the curricular learning in the code and other

modifications added to the source code. Also, we will explain the setup and design of the

experiments performed and how we scheduled the Curriculum learning in those. Lastly, we

will briefly discuss some other modifications performed to the original code that improved

the performance, independently of the over-the-air transmission problem. The source code

and our modifications were implemented in python 3.6, mainly based on the PyTorch

library, but using other external libraries like NumPy, Wandb, and SciPy.

 4.1. Implementation:
 In the following section, we will introduce the main additions and modifications that were

made to the PixInWav baseline code in order to approach the over-the-air problem. To do

this, we added a reverb dataset to the code, created a second validation dataset, and added

the reverberation to the architecture. We also performed some modifications to the code like

changing the ratio between validation and training steps, modifying the way the training and

testing databases are computed, or correcting bugs from the original code.

 

4.1.1. Addition of the environmental impulse responses dataset:

Since the main approach to the over-the-air problem was to add reverberation during

training and validation, we added to the data loader the MIT environmental impulse

responses database [6] that contains 271 reverbs sampled at 33000 Hz, where we used 230

for training and 40 for testing. We applied resampling to these reverbs to match the

sampling frequency of the host audios (44100) and we extended the length of all the reverbs

(with 0’s) to be able to execute batch operations (which we did not use since they did not

provide improvements in terms of performance of the system). We also combined these

reverbs with the previous audio and image databases, where for every audio-image

combination in the training or testing databases, a random reverb was matched with those

(selected from its corresponding training or testing pool).
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4.1.2. Creation of the reverbered validation dataset

In this subsection, I will introduce the creation of a second validation dataset where the

container audios were -reverberated. This dataset was created to jointly validate the modelµ

with the original non-reverberated dataset since we wanted to analyse the performance of

the model in the original PixInWav task and the Over-The-Air transmission task

simultaneously. The reason for this addition was that we were interested in not giving up the

performance in the original task to achieve better results on the Over-The-Air one.

The implementation of this dataset was fairly simple since it was based on the

implementation of the original validation dataset, where the main modification was the

addition of -reverberation (where the was randomly sampled from a uniform [0,1]µ µ

distribution) on the container audio of each entry of the dataset. The reasoning behind this

was to have all kinds of reverbs without any kind of bias based on difficulty during the

validation steps.

Both validation datasets had 500 entries, and we performed a double validation step (one for

each dataset) every 1000 training iterations (Fig. 10). This was a modification from the

source code, where validation steps were performed every 50 training iterations. This

change increased the speed of training over 10 times, which was especially useful to launch

experiments with a larger number of epochs.

4.1.3. Addition of the reverberation to the model:

The addition of the reverberation in model architecture was the main change from the

baseline implementation, which was added to the model script. The implementation of this

addition was the following:

First, we transformed the container audio representation into the waveform domain. Then,

we computed a fully reverberated signal convolving the container waveform with a random

reverb. Then we cropped and standardised this fully convolved signal so it had the same

dimensions and intensity as the original container audio. Then, we performed a linear

combination of both signals given a randomly sampled dry-wet parameter. Regarding this
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sampling, we sampled from the mu a uniform distribution (0,dry-wet limit) where this

dry-wet limit was increased progressively during the training epochs until it reached its

maximum value which is 1.

4.1.4. Curriculum Learning:

In this section, we will discuss how we implemented the Curriculum Learning schedule in

the code, to increase the difficulty of the training progressively. As mentioned before, our

mechanism to implement the progressive increase in difficulty was using the dry-wet

parameter sampling range. Since entries with a lower dry-wet parameter were “easier” cases

as more of the original audio was present in the reverberated signal, we implemented this

Curriculum Learning by progressive increasing the sampling range values that this dry-wet

parameter could take. In other words, we sampled the dry-wet parameter from a uniform

distribution [0,dry-wet limit], where this limit progressively increased during training until it

reached 1, which would that all possible dry-wet parameters are sampled with the sameµ

probability.

To implement the curriculum learning, we started with a dry-wet limit equal to 0 and from

epoch 4 of training, we increased this parameter every half epoch until it reached 1. Then,

we trained for a few more epochs with this maximum dry-wet limit, that is, equiprobable

random sampling of dry-wet parameters, or in other words, all kinds of reverbs were

sampled with the same probability.

4.1.5. Other modifications:

In this subsection, we will explain some extra modifications added to the code that improve

the performance of the system, independently of the Over-The-Air transmission problem.

The first one was the reimplementation of the checkpoint system, which was supposed to

save the models after we reached the limit of 24 hours in a single run established in our

computation servers. This system was especially useful before changing the

training-validation iterations ratio, where the experiments would often take more than 24

hours to run. The main differences from the original implementation were that in the new
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implementation we also saved the optimizer parameters (apart from the model parameters)

and we deleted the batch norm layers that caused problems during the saving stage.

The second one, was the modification of the DataLoader script, to avoid an overlap between

the train and test audio datasets. This was a major contribution to the project, since having

this overlap between both datasets meant that the validation was not independent of the

training, which was an important methodology error. We also fixed another methodology

error in the code, as the mode of the model was not properly changed after the first

validation step. Note that after these changes, the system behaviour worsened in some

aspects from the first PixInWav paper, since we are no longer training with validation

entries.

The last implementation change proposed, only in some experiments, was to increase the

size of the network. To do this, we simply increased the number of channels in some of the

encoder and decoder layers for one specific experiment.

 4.2. Setup:
In this section, we will explain with detail the metrics, datasets and hyperparameters used on

the experiments performed:

4.2.1. Data sets:

We used the following datasets to conduct our experiments:

● The audio signals are the same as the ones used in the original PixInWav paper,

retrieved from the FSDnoisy18K [19] dataset, an open dataset containing 42.5 hours

of audio in 18,532 audio clips across 20 sound event classes, depicting a large

variety of sounds, such as voice, music, or noise.

● For the images we also used the same dataset as in the original paper: we used the

same sample of 10,000 256×256×3 cropped images (in the RGB space) from the

ImageNet (ILSVRC2012 [20] ) dataset (Fig. 10).
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Fig 14: Dog Images from the ImageNet Database [20]

● For the environmental impulse responses (reverbs) we used the open database used

in the MIT Acoustical Reverberation Scene Statistics Survey [6], containing 271

Impulse Responses measured in real-world scenarios over 301 different locations.

4.2.2. Metrics:

To measure the distortion of the container audio in relation to the host audio, we used the

signal-to-noise-ratio (SNR) metric over the waveforms — where we measure the difference

between the host and container audios. For the image distortion, we used the Structural

Similarity Index [21](SSIM), a similarity metric for images that takes into account the

human visual system, and the Peak Signal-to-Noise Ratio (PSNR) which is the ratio

between the maximum power of a signal and the power of corrupting noise.
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4.2.3. Training details:

For each experiment, the model was trained with the Adam optimizer at a learning rate (lr)

of 0.01 and a batch size of 1 during 14 epochs. The beta parameter for the experiments was

fixed at 0.9. Also, the ratio between training iterations and validation steps was changed so

that for every 1000 iterations we perform a validation step of 500+500 iterations (500 per

each of the two validation datasets).

4.2.4. Experiments design:

We conducted four main experiments of 14 epochs.

● An experiment where we train without any kind of reverberation in the container

audio, trained to have a baseline model to perform an ablation study.

● A model where we train with reverberation but the dry-wet parameter sampled range

uniformly from 0 to 1 from the beginning, that is, with no Curriculum Learning.

● A model where we train with reverberation and Curriculum Learning. In this

experiment, we start training with the dry-wet parameter limit equal to 0, that is, no

reverberation for the first three epochs. Then, from epoch 4 to 8 we progressively

increase the dry-wet parameter limit every half epoch by 0.1, and in the last 4 epochs

we train with the maximum dry-wet parameter limit, meaning that we sample all

reverbs with the same probability.

● An experiment using the same setup as the previous one, but increasing the number

of channels of the network.
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Figure 15: In this visualisation shows the evolution of the dry-wet parameter sampling range

in the first three experiments over the epochs
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Chapter 5 - Results and Discussion:

The results obtained in the four previous experiments are shown in Table 1 and in Fig. 16.

Reverberated Validation Dataset Non-Reverberated Validation Dataset

Audio Image Audio Image

SNR ↑ SSIM  ↑ PSNR  ↑ SNR ↑ SSIM ↑ PSNR ↑

Standard PixInWav 34.2 0.58 14.1 34.7 0.86 25.3

PixInWav + Reverb 33.7 0.67 22.0 33.9 0.69 22.7

PixInWav + Reverb
+ Curriculum Learning 32.1 0.75 22.8 32.5 0.77 23.9

Larger PixInWav
+ Reverb
+ Curriculum Learning

34.1 0.64 20.4 33.5 0.69 21.2

Table 1: Quantitative results of the Curriculum Learning approach to the over-the-air

transmission problem.

We structured the results in 4 different sections, where we analyse the performance of the

Standard PixInWav model, the effectiveness of Curriculum Learning, the effects of adding

reverberation to the network and the effect of increasing the size of the network. This

analysis will be performed based on the previous metrics, as well as in the perceptual results

in Fig. 16 and in quality of the container audios, located in the directory ‘audios’.

 5.1. Standard PixInWav results:
The standard PixInWav model obtains the best results with the Non-reverberated Validation

Dataset, both in container audio and revealed image quality (Table 1). Despite that, we

observe in Fig. 16 that we obtain worse results than in the original paper (because of the

previously mentioned methodological errors). With dry-wet parameter = 0, the system only

recovers the grayscale images that also have the red colour. For the higher Dry-Wet

parameters (more reverberation), the returned image loses luminancy being almost black for

the dry-wet parameter = 0.9.
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Fig. 16: Qualitative Results of the Curriculum Learning approach to the over-the-air

transmission problem.
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 5.2. Curriculum Learning:
To assess the performance of the Curriculum Learning schedule, we are going perform an

ablation study comparing the results the experiment “PixInWav + Reverberation”, which

uses reverberation in the training without Curriculum Learning and “PixInWav +

Reverberation + Curriculum Learning”, which uses reverberation and a Curriculum

Learning Schedule. We obtained the following results:

● The system trained using Curriculum Learning obtains better results in terms of

revealed image quality. This system obtains an increase of 0.09 in the SSIM metric

and an increase of 0.8 in the PSNR in the reverberated validation data set and an

increase of 0.08 in the SSIM metric and an increase 1.2 in the PSNR in the

non-reverberated validation database. Perceptually, when there is no reverberation

(dry-wet parameter = 0), we observe that the revealed images from the system using

Curriculum Learning tend to be more similar to the original signal and when the

dry-wet parameter increases the colours are betterly preserved than in the standard

learning approach.

● The non-Curriculum Learning system obtained better qualitative results in terms of

container audio quality for both datasets in the SNR metric. However, this difference

was not perceptually noticeable as the quality of both audios was almost perfect.

Thus, using a Curriculum Learning schedule improved the performance of the model, given

that we improved the image quality at the cost of a non perceptually noticeable loss in

image quality.

5.3. Training with reverberation:
In this section, we will compare the results obtained by the system trained with

reverberation without Curriculum Learning and the results of the original system, in both

the reverebered and the non-reverberated validation datasets. We want to analyse if training

with a set of reverbs convolved with the container audio improves the performance when

testing with a different non-overlapping set of reverbs, as well as analysing the performance

of this system in the original task, comparing with a non-reverberated training experiment of

PixInWav. We obtained the following results:
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● As mentioned before, the standard PixInWav model trained obtains the best results

with the original validation Dataset. However, the usage Curriculum Learning is

considerably useful to maintain acceptable levels of revealed image quality in the

original PixInWav task, while obtaining the best results in the reverberated container

task.

● The method that uses reverberation during training without a Curriculum Learning

schedule, obtains better results than the original model in the reverberated validation

dataset. These results are especially promising, since it means that the network has

learnt how to decode container audios with reverbs that it has never seen before,

which is the kind of generalisation that we needed to use these models in a real case

scenario.

 5.4. Increasing the size of the network:
In the last experiment that we performed we increased the size of the network by increasing

the number of channels of the encoder and decoder. To assess the performance of this

change, we ran an experiment with this new architecture using reverbs and a Curriculum

Learning schedule, and we compared these results with the ones obtained with the smaller

architecture. This larger network obtained:

● Worse quantitative and qualitative results in terms of image quality than the same

experiment with the smaller network.

● An slight increase in terms of audio quality that was not perceptually noticeable.

Thus, increasing the size of the network by adding more channels didn’t improve the

performance of the smaller model.

 5.5. Maximum reverberation case:
 For the maximum reverberation case (with dry-wet parameter = 1), neither of the networks

was capable of decoding the original image. It seems to be the consequence of almost never

having trained with the specific case of dry-wet = 1, as we trained using continuous uniform

distribution of dry-wet parameters between [0,1]. All the tested models retrieve black/grey

images in this case without any trace of the original image (Fig. 17).
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 Fig 17: Perceptual results of the maximum reverberation case for the different models
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Chapter 6 – Ethics

In the PixInWav project, our main goal is to transmit images inside of audio, and

specifically, in this thesis, we focused on the over-the-air transmission case. Although the

utilisation of this system is strictly limited to this simple problem, we believe that the

Steganography is a very promising field that could be very useful in the near future to assure

individual privacy in a lot of areas and that the investigation of fields like multimodal

steganography is stepping in the right direction. We consider that we could complement

future works, such as hiding sensible data in signals in which an attacker would not think

they could be and that if he knew where they were hidden, he could not retrieve them.

In our PixInWav system, we use deep neural networks, which are known to have a high

energy expenditure. In our specific case, this is not far from different, the PixInWav network

consists of over 950.000 learnable parameters, which used to take days of CPU and GPU

consumption to train. Despite that in Catalonia, which is the location of the servers where

train and execute the models, only 25% of the energy produced is from non-renewable

sources (according to the Institut Català d’Energia), given the context of the global energy

crisis we do not want to use more energy than what is strictly necessary for our

investigations.

To address this, we performed modifications to the code that reduce the energy consumption

like reducing the number of validation steps, we optimised the code as much as possible and

we always launched test experiments before launching long experiments, to avoid spending

double the necessary energy. About the change in validation steps, by reducing the

frequency of validation, we reduced 90% of the time of execution of our experiments.

Lastly, the fact that Steganography has been widely used to hide messages in wars

(especially in World War II) is something to care about. Our investigation is fully focused

on being a technological advance in the Steganography field, and we completely reject the

use of this technology in the Belic field.
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Chapter 7 - Conclusions and Further Research

In this thesis, we extended the PixInWav architecture to approach the over-the-air

transmission problem, where the container audio was reproduced by a speaker and recorded

with a microphone before passing through the decoder network. To do so, we decided to add

reverberation during the training using a Curriculum Learning schedule, progressively

increasing the difficulty of the reverbs fed to the network.

We performed a series of experiments, where we found that:

● Using reverberation during training improves the performance of the system both in

the original PixInWav task, but also in an artificially reverberated PixInWav dataset

(using reverbs that the network has never seen before).

● Using Curriculum Learning improved the performance of the network, obtaining

substantially better results in terms of the revealed image in both the original and the

reverberated validation tasks at the expense of a slight degradation of the container

audio quality (an unnoticeable difference when hearing the container audios).

● Extending the size of the network by increasing the number of channels didn’t

improve the performance of the system.

Given the results, we conclude that the use of Curriculum Learning to train PixInWav using

reverberation improved significantly the performance of the system in a reverb-based

modelization of Over-The-Air transmission task, but as I state in the following subsection,

the models proposed in this thesis should be tested in a real scenario with a speaker and

recorder to assess their performances.

7.1. Further Research:
The first and main point that proceeds my investigation on the Over-The-Air transmission

problem, would be to test the systems implemented and trained in this thesis in real

environments, to assess the performance of these models. We expect them to obtain a better
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performance than the PixInWav models trained without reverberation, but we want to make

sure that we don’t face a generalisation problem when facing a real case scenario.

Furthermore, regarding some of the approaches to the problem, we considered two clear

lines of research:

● One pathway would be to continue in the end-to-end approach but add more kinds of

reverberation, noises, and artefacts to the signals. Also, it could be interesting to find

strategies to model the effect of the speaker and the microphone on the signal.

● The other pathway would be to estimate the environmental impulse response of the

signal to then use it to de-reverb the container signal. In this approach, we could

estimate this impulsional response by sending pilot signals, using an image of the

environment, or even with the container audio itself.

Lastly, it could be interesting to increase the size of the network by adding more layers,

since adding more channels did not improve the performance of the system.
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Appendix 1: Complementary Files

This document is located in the directory PixInWav. Note that inside of this directory, there

is also:

● The ‘audios’ directory, with container audios obtained by the models as well as the

original audio.

● The ‘src’ directory, containing the source code used for this project.
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