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Abstract 

Type 2 diabetes mellitus has become an emerging health concern worldwide, affecting 

both adults and children. This disease can co-exist with other chronic conditions. In the 

ageing population, the co-existence of diabetes with arthritis is very frequent, 

exacerbating the health difficulties of these patients. At the same time, omics data 

applications are growing exponentially intending to determine biomolecular 

characteristics of specific diseases. Particularly, databases and repositories, including 

microarray data, are important sources of information that can be exploited to understand 

biological processes that in some cases could be initially identified as unrelated, such 

are diabetes and arthritis. The high-throughput data analysis is complex, but it is 

especially complex when data come from different experiments and objectives. In these 

cases, the use of Machine Learning approaches is essential to extract patterns that could 

help to identify biological reasons to link phenotypes unrelated. During this project, a set 

of diabetes samples obtained from the GEO database were analysed to compare 

patients with and without arthritis. The analysis was developed to identify 

common/uncommon patterns to help us determine biological factors associated to suffer 

arthritis by diabetic patients. A set of algorithms associated with feature reduction and 

others used as base classifiers to reach our objectives were employed during these 

analyses, which resulted in 5 proteins as potential classifiers for arthritis biomarkers. The 

classifiers obtained in a 10-fold cross-validation optimized for balanced accuracy > 80% 

were interleukin-18 (IL-18), tumour necrosis factor receptor superfamily member 1A 

(TNFRSF1A), osteopontin (SPP1), interleukin-8 (CXCL8) and interleukin-10 (IL-10); 

which the novel potential of the SPP1 protein as a new biomarker was highlighted due 

to its lack of previous reports in the scientific literature. Further studies are needed 

regarding the usage of these proteins as biomarkers of arthritis in diabetic patients due 

to their competent classification potential. 

 

Keywords: Type 2 diabetes mellitus; Rheumatoid Arthritis; Biomarkers; Artificial 

intelligence; Data mining; GEO database; Real World Data. 
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1. Introduction 

Open-access medical research databases have necessarily emerged during the last few 

decades due to the big volume of omics data that is being collected in thousands of real-

patient studies worldwide. Gene Expression Omnibus (GEO) is an example of a 

database repository of high-throughput gene expression data which gathers 

immeasurable rich information self-submitted by researchers. Each sample uploaded is 

classified with a tag related to the pathological condition under study: ill, treated, healthy 

control... The pathology labels are useful for studying that specific disease; however, 

they are not easy to tabulate since the patient description entry must be read in order to 

know the label, a laborious fact that might often require text-mining. In addition, gene 

expression data from one sample store an enormous amount of information that is not 

being fully utilized and could be properly exploited for other purposes, such as 

investigating other diseases that were not previously labelled and eventually optimize 

medical processes and management strategies. Data mining is used to extract 

knowledge from big datasets with inherited patterns which might seem hidden, at first 

sight, making them more potentially useful and profitable. The excellent performance of 

new patterns discovery has introduced new opportunities and prospects to clinical big-

data research such as the identification of new biomarkers for early diagnosis [1]. 

The problem here is that, since the clinical data is self-submitted by each researcher with 

different classification standards, there is a high heterogeneity between samples that do 

not allow the integration of multiple studies. Although several cross-(multi)platform 

normalization algorithms (ComBat [2], UPC [3], YuGene [4], DBNorm [5], Shambhala [5]) 

have been recently developed for scaling gene expression data of multiple platforms 

together, they show generally poor performance. Anaxomics Biotech generated its own 

normalization method, called CuBlock [6], and is currently programming a new one 

pending of publication, which will be the algorithm used in this study. 

The analyses for the discovery of new biomarkers through large volumes of data are 

time-consuming and highly costly. The detection and diagnosis of several diseases 

nowadays remain complicated, slow and sometimes unobjective; leading to adverse 

health and socioeconomic impacts. The discovery of novel biomarkers or techniques 

which allow moderately fast recognition of a certain disease has grown exponentially 

over the last few decades. However, many chronic conditions can occasionally be 

misdiagnosed or tardily detected in late stages even now, especially if these coexist with 

diverse comorbidities. A rapid and accurate diagnosis could prevent a wide range of 

disease-associated complications and optimally manage early-onset diseases, but also 

could help identify patients with a high risk of acquiring one or more diseases which have 

not yet started, perhaps avoiding the whole development.  

Type 2 diabetes mellitus (T2DM or diabetes) is the most common type of diabetes, 

affecting 8% of adults around the world [7]. T2DM has spread almost epidemically 

worldwide with a prevalence constantly increasing; the number of diabetic patients is 

expected to reach 422 million according to the World Health Organization (WHO) in 2025 

[8, 9]. This multi-factorial chronic disease is characterized by hyperglycaemia, insulin 

resistance and relative insulin deficiency in the liver, skeletal muscles and adipose 

tissues, among others. It is triggered by several genetic and/or environmental factors 
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[10, 11] and prevails in the elderly population, representing a major health concern due 

to the high number of comorbidities this subpopulation suffers from [12]. 

In the ageing population, T2DM often cooccurs with other chronic diseases, such as 

arthritis [13]. Rheumatoid arthritis (RA) is an autoimmune and inflammatory disorder 

that affects the small joints of the human body through persistent synovial inflammation, 

leading to cartilage damage and bone erosion [14]. Systemic inflammation and physical 

inactivity due to chronic pain caused by RA have resulted as triggering factors of diabetes 

according to accumulating evidence [15-17], a fact that enforces the connection between 

both conditions. The co-existence of these two conditions can conduct to very unstable 

and problematic lifestyle situations [18], a reason why early diagnosis of one/both of 

these diseases should be of great importance. 

The use of diabetes biomarkers obtained in the blood is well-established. The current 

diagnosis for T2DM considers two types of biomarkers: traditional (e.i., the haemoglobin 

A1C test) and novel (miRNA and proteomic markers). Some of the molecular biomarkers 

that are being used at the present for T2DM classification are creatinine, interleukin-6 

(IL-6), C-reactive protein (CRP), sOB-R, adipokines, ferritin… [19]. The diagnosis of RA 

consists of a scoring system developed by the American College of Rheumatology and 

European League Against Rheumatism (ACR/EULAR) called the 2010 RA Classification 

Criteria. The score takes into account the results of a physical exam, elements of the 

patient’s history and, certainly, biomarkers [20]. The biomarkers currently used for RA 

diagnosis are rheumatoid factor (RF), autoantibodies against citrullinated proteins 

(ACPA), erythrocyte sedimentation rate (ESR), and CRP. These criteria of classification 

as RA have a sensitivity of 84% and specificity of 60% [21]. Indeed, in a patient with 

recent onset of symptoms, sensitivity is much lower (ranging from 35% to 50%) even if 

specificity remains high. Hence, RA would benefit from novel biomarker development for 

diagnosis where new biomarkers are still needed [22].  

Considering the clinical necessities of rapid diagnosis, data mining techniques and a new 

normalization method have been used for the identification of diagnostic biomarkers of 

arthritis in diabetic patients, to demonstrate that integration of multiple GEO datasets can 

rapidly extract biological information, leading to optimization of disease management in 

clinical practices. 

2. Objective 

The aim of this work consists of reaching two main objectives: 

• To provide a standard protocol which will allow us to characterize the clinic profile 

of patients using GEO database high-throughput data that have not been 

previously labelled or detailed by the researchers when submitting the 

microarrays to the public repository, and try to identify if these patients are 

suffering from other diseases. 

• To check the plausibility of this protocol by applying the technique to diabetic 

patients from the GEO database with the aim to classify them into arthritis or not. 



 
7 

3. Methods 

3.1. Generation of disease characterizations 

Molecular characterization of a pathological condition consists of the definition of the 

main pathophysiological processes (or motives) which lead to the development of the 

condition, according to the general definitions used by the scientists studying the 

disease. These motives are formed by a set of proteins, called effector proteins, whose 

gain or loss of activity has been reported in the scientific literature to be involved in the 

pathophysiology of the condition. For instance, adiponectin, a protein contributing to 

peripheral insulin sensitivity, is inhibited (or downregulated) in type 2 diabetic patients 

[23]. A set of effector proteins working in the same biological process constitute a motive 

and a set of motives build the molecular characterization.  

All the information gathered in a molecular characterization is archived in the Biological 

Effectors Database (BED) [1], which describes more than 300 clinical conditions or 

phenotypes as sets of genes and effectors proteins that can be active, inactive or neutral. 

In a genetic network, genes are active when they are expressed (experimentally 

detected as over-expressed) and inactive when they are repressed (experimentally 

detected as under-expressed). On the other hand, neutral proteins are neither active nor 

inactive for a particular phenotype. 

The protocol followed to generate a characterization involves a curated review of the 

scientific literature regarding the pathogenesis of the disease. A specific search for 

reviews of the condition of interest is performed in the PubMed database. The results of 

this search are evaluated at the abstract level, and if molecular information describing 

the condition pathophysiology is found, it is thoroughly reviewed to identify protein/gene 

candidates to be condition effectors, i.e. proteins whose activity (or lack thereof) is 

functionally associated to the development of the condition. 

If the evidence of the implication of a candidate in the condition is judged not consistent 

enough to be assigned as an effector, an additional PubMed search has to be performed 

specifically for the candidate, including all the protein names according to UniProtKB. If 

novel candidates are identified in this phase, they are included as effectors following the 

same criteria and protocol. 

The specific searches used for the characterizations of diabetes and arthritis: 

- ("Type 2 Diabetes" [Title] AND ("Molecular" [Title] OR "Pathogenesis" [Title] Or 

"Pathophysiology" [Title])) AND (English [Language] OR Spanish [Language]) 

AND Review[ptyp] 

- ("Severe rheumatoid Arthritis" [Title] OR “Rheumatoid Arthritis" [Title]) AND 

("Molecular" [Title] OR "Pathogenesis" [Title] OR "Pathophysiology" [Title])) AND 

(English [Language] OR Spanish [Language]) AND Review [Ptyp] 
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3.2. Description of the data science methods applied to the data 

mining process 

Applications of big data as classification problems in health science imply the 

identification of biological elements to reach the classification objective. The gene-

expression-based classification of unlabeled patients from the GEO database repository 

can be solved through the concept of data mining. Data mining refers to the process of 

extracting potentially useful knowledge hidden in a large amount of incomplete, noisy 

and random practical application data; by means of database technology, statistics, 

machine learning (ML) and pattern recognition. Data-mining technology is not used to 

replace traditional statistical analysis techniques, but to expand statistical analysis 

methodologies. The main analytical method used by data mining to train models and 

then predict outcomes is ML [24]. 

Data mining has two types of objectives: description and prediction. The goal of 

descriptive models is to find inherited patterns of associations in the data in order to 

generalize them; while predictive models aim to estimate unknown or future values of 

other variables of interest based on other variable values [24]. 

The mathematical expression of a classifier or feature is the discriminant function that 

allows to correctly classify the types of samples of the databases by using one or more 

independent variables. The available tool including all ML processes in Anaxomics 

encapsulates algorithms published and referenced for all the steps in Figure 1. The 

implementation of this algorithm has been developed in Matlab and R softwares and has 

been used in multiple scientific publications (Jorba et al., 2020 [25]; Bertran et al., 2022 

[26]; Farres et al., 2021 [27]; Carcereny et al., 2021 [28]). 

 

Figure 1. Scheme of the Anaxomics Data Science Strategy for classifiers with more than one element.  
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The data science analytical process has been divided into the following processes and 

subprocesses: database and patients’ selection (3.3.1), data cleaning (3.3.2), 

delimitation of the dimensionality (3.3.3), data normalization (3.3.4), feature selection 

(3.3.5), data mining algorithms (3.3.6), model evaluation parameters (3.3.7) and cross-

validation (3.3.8). The methodology used to follow these steps is thoroughly described 

in Jorba et al. 2020 [25]. 

3.2.1. Database and patients selection  

Publicly available datasets containing high-throughput gene expression data can be 

found in several medical databases. Due to its numerous advantages and an immense 

amount of collected genomics data, the GEO database was selected as the source for 

finding samples for the data mining process. GEO functions with the self-submission of 

the researchers who performed the data collection in a determined study. It is structured 

in three levels: platforms record (sequencer or array used, GPLxxx), sample record 

(condition of individual samples, GSMxxx), and series record (gathers samples of the 

same study, GSExxx) [29].  

Samples of patients labelled as T2DM or RA (accompanied by healthy control samples) 

were downloaded from this public repository, with the following criteria: the organism was 

“Homo Sapiens” and the study type was “expression profiling by array”. The keywords 

used to detect datasets of the conditions of interest were “TYPE 2 DIABETES 

MELLITUS” AND “RHEUMATOID ARTHRITIS”. Regarding diabetes, 246 samples were 

extracted from experiments datasets published by researchers, from which 123 samples 

were diabetic patients and 123 were healthy controls. In the case of arthritis, a total of 

600 samples were obtained, from which 300 were samples of patients with arthritis and 

300 were from control subjects. 

3.2.2. Data cleaning 

The main objective of the data cleaning process is to treat the original data and prepare 

it for the application of the data mining process with a better chance of success. This 

process includes some sub-analyse, such as outlier detection, uninformative variables 

detection, missing values treatment and duplicate information management. The data 

cleaning process produces a new dataset without missing values, which will be used to 

train the data mining models. 

Different data mining processes, including different data cleaning treatments, were 

conducted for both conditions in order to find the best option in which the classifier would 

obtain the highest accuracy. Nevertheless, each model was treated with different 

methodologies in each treatment: 

- Outliers detection. Some models used the Univariate Media Deviation (UMD) 

method, which was applied to variables with more than 10 samples and departing 

more than 3.00 times the variation of the median deviation. Other samples were 

not treated. 

- Uninformative variables treatment was not applied thanks to the reduction of 

dimensionality problem that was afterwards conducted. It is explained in section 

3.2.3. 
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- Missing values treatment. The following methods were tested in order to select 

the one providing higher accuracy: Remove all samples/variables with missing 

values and Greedy optimization of Samples and Variables (Sample Cost Remove 

weight 10, 2 and 1). 

- Duplicate values treatment. Remove error clusters method acts via removing all 

samples with same in and different out. 

3.2.3. Dimensionality reduction 

A high number of variables accompanied by a limited number of patients is very frequent 

in clinical research, which leads to a dimensionality problem. Dimensionality reduction of 

the problem is a common procedure since a high number of features and a limited 

sample size can lead to the obtention of excessive false positives. It is known that most 

of the genes presented in microarray data sets are not relevant for a specific 

classification problem, and their presence often causes a loss in classification accuracy, 

which is known as a manifestation of the “curse of dimensionality” [30, 31]. In order to 

diminish the problems associated with the data dimensionality, a reduction of the number 

of variables from the dataset was achieved by removing all the genes from the microarray 

whose role in the disease was not previously reported in the scientific literature (effector 

protein included in the molecular characterization). Thus, the number of features 

considered in the data mining process was limited to effector proteins from the molecular 

characterization, decreasing the probability of obtaining false positives. The remarkable 

advantage of this procedure is that the probability of obtaining a good classifier will 

increase since this classifier will be beforehand associated with the pathophysiological 

process of the condition. 

3.2.4. Feature selection procedure 

Besides the reduction of the number of variables from the original dataset to the selection 

of only effector proteins, other feature selection techniques were developed to identify 

and remove irrelevant genes from data sets before training classification models. The 

feature selection methods that were employed are: Ridge regression Feature Weights 

[32], LASSO [33], Elastic Net [34], SF linear regression classifier, ReliefF [35], Entropy 

and uncorrelation of selected features [36 Michel V, Thirion B, Grisel O, et al. Scikit-

learn: Machine learning in Python. J Mach Learn Res. 2011] T-Student test and 

uncorrelation of features, Entropy [36], T-Student test [37], Wilcoxon rank sum test [38], 

Wilcoxon rank sum test plus features uncorrelation [38], Bhattacharyya [39], Random 

Forests [40] and GLM random sets [41].  

3.2.5. Data normalization 

Different processing and normalization procedures previously applied to public 

databases often impede data integration from multiple datasets in Big Data experiments. 

To overcome these challenges, Anaxomics’ method for microarray data processing and 

normalization that allows the integration of previously-processed datasets has been used 

in this data mining study (in publication process). This method is intended to be published 

so the exact steps cannot be described in this thesis due to confidentiality concerns. 

Briefly, there is first a prediction and reversion of mathematical transformations to 

uniformize the orders of magnitude; and second, an application of a normalization 
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technique that considers the expression of House Keeping genes across the whole GEO 

database is utilized, to reduce the impact of sample-specific background corrections and 

then, readjust the different normalization techniques. This was performed by using 

regression algorithms from a 40 HK genes background dataset, which was built using 

the median value of expression of the 40 genes with the least cross-tissue variability as 

found in the literature. By applying this technique, we were able to combine microarray 

profiles from multiple sources independently of the initial processing.  

3.2.6. Data mining methods 

Data mining based on clinical big data can produce effective and valuable knowledge, 

which is essential for accurate clinical decision-making and risk assessment. Data-

mining algorithms enable the realization of these goals. The data-mining method 

depends on whether or not dependent variables (labels) are present in the analysis. 

Predictions with dependent variables (labels) are generated through supervised learning, 

which can be performed by the use of linear regression, generalized linear regression, a 

proportional hazards model (the Cox regression model), a competitive risk model, 

decision trees, the random forest (RF) algorithm, support vector machines (SVMs) [24] 

and others. 

3.2.7. Data mining classification algorithms 

The Data Mining process uses the cleaned database created in the data cleaning 

process to identify the desired classification patterns. This process is the most 

computationally expensive in the data science pipeline since it is in charge of evaluating 

sets of mathematical models to identify the best classifier. There is a set of methods 

used to divide the dataset into the classes included in the analysis. Each method uses 

its own strategy and some of them are derived from others. These sets of methods cover 

quite well all possibilities for all types of data and data distribution. 

The base classifiers most used in this study are support vector machines (SVM) [41 

20(3):273-297, September 1995. [Vladimir,Vapnik] Vladimir N. Vapnik. The Nature of 

Statistical Learning Theory. Springer, New York, 1995.], Multilayer Perceptron (MLP) 

[42], linear regression + threshold and optimal quadratic threshold [43]. 

3.2.8. Model evaluation parameters 

In order to assess model performance, commonly used metrics in machine learning such 

as accuracy, error rate, sensitivity, specificity, and predictive values were computed. 

Accuracy and error rate. Classification accuracy is defined as the ratio between the 

total number of correctly classified samples and the total number of samples (Equation 

1). From the accuracy, one can compute the error rate, which represents the number of 

misclassified samples (Error Rate = 1 – accuracy). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

 

Sensitivity and specificity. Sensitivity and specificity are statistical measures of the 

performance of biomarkers using a binary classification test. This represents the number 
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of correctly classified samples in the positive and negative classes respectively. This 

provides a more informative metric when working with imbalanced data sets than 

accuracy [22]. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
;    𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Precision and Negative Predictive Value. Precision, also known as positive predictive 

value (PPV), and negative (NPV) predictive values reflect on the number of correctly 

predicted samples for each class over all the predicted samples for that class [22]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
;       𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

An optimal biomarker would aim to achieve 100% sensitivity (i.e., predict all people with 

the condition) and 100% specificity (i.e., not predict anyone from the control group). For 

any biomarker, there is usually a trade-off between the measures and their impact, 

setting acceptable limits and allowing detection of false positives (lowering specificity), 

but limiting false negatives (increasing sensitivity) [22]. 

3.2.9. Validation of the model  

The Validation process is designed to ensure that the biological conclusions reached 

with the available data will be generalized to new samples. Validation is used for 

estimating the performance of a predictive model. This process is performed against the 

original database, after the mathematical models are produced. 

The final strategy selected for this DM was 10 K-FOLD cross-validation. This validation 

consists of the estimation of the threshold value for 10 random subsets of all available 

samples, and the final threshold is determined as the average of the all thresholds 

determined. In more detail, the model is given a dataset of known data on which training 

is run (training dataset), and a dataset of unknown data (or first seen data) against which 

the model is tested (testing dataset). The goal of cross-validation is to define a dataset 

to test the model in the training phase (i.e., the validation dataset) in order to limit 

problems like overfitting. In K-Fold Cross-Validation, the data are split into K roughly 

equal-sized parts. For the kth part, the model is trained on the other K- 1 parts of the 

data, and the prediction error of the fitted model is computed when using it to predict the 

kth part of the data [44]. 

By this, those candidates with higher generalization capability are selected. Cross-

validated accuracy was used as classifier optimization and quality measure, together 

with cross-validated p-value. 
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4. Results 

4.1. Characterization results 

4.1.1. Type 2 Diabetes Mellitus characterization 

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder which has become of the most 

common diseases worldwide. Its pathophysiology is mainly defined by a combination of 

defective insulin secretion by pancreatic β-cells and the non-response of insulin-sensitive 

tissues. Here, the molecular mechanisms working in the synthesis and release of insulin 

are dysregulated, leading to defects in the metabolic balance of our bodies [45]. 

T2DM usually occurs in adulthood, but young people can also suffer from this disease. 

Although T2DM patients are generally independent of exogenous insulin, they may need 

it when blood glucose levels are not well controlled with diet alone or with oral 

hypoglycaemic drugs. In addition, people with T2DM are often accompanied by 

complications, such as cardiovascular diseases, diabetic neuropathy, nephropathy, and 

rheumatoid arthritis. The reason why these comorbidities co-exist is due to high 

prevalence and shared risk factors [46]. 

Risk factors for the development and/or progression of T2DM include genetics/family 

history (DNA damage and alterations). It can also be both pre-and post-natal 

environmental factors, such as suboptimal intrauterine environment, low birth weight, 

obesity, inactivity, gestational diabetes and advancing age [47]. 

T2DM molecular characterization has been generated and it consists of 5 motives, 

comprising a total of 136 unique effector proteins (Table 2). 

Table 1. Summary of T2DM defined motives and the effector proteins associated with each of them. 

Motive ID Motive name # Proteins 

1 B-cell dysfunction 61 

2 B-cell destruction 18 

3 Insulin resistance 54 

4 A-cell dysfunction 21 

5 Increased adiposity 8 

 

Two major defects are associated with T2DM: insulin resistance and β-cells failure 

[48]. In the early stages of the disease, pancreatic β-cells adapt to insulin resistance by 

increasing mass and function. As nutrient excess persists, hyperglycaemia and elevated 

free fatty acids negatively impact β-cells function [49]. 

Table 2. Example of T2DM molecular characterization. Only 3 proteins of each motive are shown as 
representation. Causative effect: “+1” if the protein is activated/overexpressed in diabetic patients; “-1” if 
the protein is inactivated/underexpressed in diabetic patients. 

Motive 
ID 

Effector Protein Name Gene name 
Uniprot 

code 
Causative 

Effect 
Reference 

1 Glucagon-like peptide 1 receptor GLP1R P43220 -1 [50] 

1 Hemoglobin subunit alpha HBA1 P69905 1 [51] 

1 Hepatocyte nuclear factor 1-alpha HNF1A P20823 -1 [52, 53] 

1 Other proteins identified as effectors of the motive 1. 

2 Insulin-like growth factor 1 receptor IGF1R P08069 -1 [54] 
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Motive 
ID 

Effector Protein Name Gene name 
Uniprot 

code 
Causative 

Effect 
Reference 

2 Interferon gamma IFNG P01579 1 [54] 

2 Interleukin-1 beta IL-1B P01584 1 [54] [55, 56] 

2 Other proteins identified as effectors of the motive 2. 

3 Insulin receptor substrate 2 IRS2 Q9Y4H2 -1 [57, 58] 

3 Insulin-like growth factor I IGF1 P05019 -1 [59] 

3 Interferon gamma, IFN-gamma IFNG P01579 1 [60] 

3 Other proteins identified as effectors of the motive 3. 

4 Glucagon receptor, GL-R GCGR P47871 1 {24736842;19749172 

4 Growth hormone receptor, GH receptor GHR P10912 9 {24736842;19749172 

4 Hematopoietically-expressed homeobox protein  HHEX Q03014 -1 [23, 61] 

4 Other proteins identified as effectors of the motive 4. 

5 Interleukin-6 IL-6 P05231 1 [62] 

5 Interleukin-8 IL-8 P10145 1 [62] 

5 Transmembrane protein 18 TMEM18 Q96B42 9 [23] 

5 Other proteins identified as effectors of the motive 5. 

 

4.1.2. Rheumatoid arthritis characterization 

Rheumatoid arthritis (RA) is a chronic autoimmune disease that involves the joints. It 

is characterized by synovial inflammation and hyperplasia, cartilage and bone 

destruction and systemic complications such as pulmonary, cardiovascular, 

psychological and skeletal disorders. RA is influenced by both genetic and environmental 

factors [63, 64]. 

RA affects approximately 0.5–1% of the population worldwide, occurring in females more 

frequently than males; it is diagnosed mainly in individuals aged 40–60 years [65]. The 

exact aetiology of rheumatoid arthritis is unknown, different factors are related: genetic 

predisposition, environmental factors and hormonal factors [66]. 

4 different motives were described for RA pathophysiology with a total of 158 non-

duplicated effectors identified (Table 3). 

Table 3. Summary of RA defined motives and the effector proteins associated to each of them. 

Motive ID Motive name # Proteins 

1 Autoimmune response 20 

2 Synovial inflammation 97 

3 Articular destruction 38 

4 Bone erosion 37 

RA is characterized by an autoimmune response and the inflammation of the 

synovium, followed by the destruction of the joints and bone erosion. The 

inflammatory process of RA is first initiated in peripheral lymphoid organs where dendritic 

cells present self-antigens to autoreactive T cells, which in turn activate autoreactive B 

cells via cytokines and co-stimulatory molecules [67]. This leads to the secretion of 

autoantibodies that can be detected in the serum of RA patients, of which rheumatoid 

factor (RF) and anticitrullinated protein antibodies (ACPA) are the most prominent. The 

inflammation drives bone resorption by promoting the differentiation of osteoclasts, 

resulting in a change in the delicate balance between bone resorption and bone 

formation [68].  
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Table 4. List of effector proteins included in RA characterization. Not all protein are listed here due to 
confidentiality concerns. Causative effect: “+1” if the protein is activated/overexpressed in RA patients; “-1” 
if the protein is inactivated/underexpressed in RA patients. 

Motive 
ID 

Effector Protein Name 
Gene 
name 

Uniprot 
code 

Causative 
Effect 

Reference 

1 Antithrombin-III ANT3 P01008 -1 [69] 

1 C-C motif chemokine 20 CCL20 P78556 1 [70] 

1 Apoptosis inhibitor expressed by macrophages CD5L O43866 1 [71] 

1 Other proteins identified as effectors of the motive 1. 

2 Inhibitor of nuclear factor kappa-B kinase subunit epsilon IKKε Q14164 1 [72] 

2 FAS-associated death domain protein FADD Q13158 -1 [73] 

2 Allograft inflammatory factor 1 AIF-1 P55008 1 [74] 

2 Other proteins identified as effectors of the motive 2. 

3 A disintegrin with thrombospondin motifs 18 ADAMTS18 Q8TE60 1 [75] 

3 Cathepsin S CATS P25774 1 [76, 77] 

3 Cathepsin K CTSK P43235 1 [68, 78] 

3 Other proteins identified as effectors of the motive 3. 

4 Transforming growth factor beta-1 proprotein TGF-β P01137 1 [68, 74] 

4 Tumour necrosis factor TNF-α P01375 1 [74] 

4 Granulocyte-macrophage colony-stimulating factor CSF2 P04141 -1 [79] 

4 Other proteins identified as effectors of the motive 4. 

  

4.2. Data mining classification results for diabetes and arthritis 

According to data mining results, a total of 246 and 292 different raw classification 

models were obtained, respectively for diabetes and arthritis. Statistically non-significant 

classifiers were discarded using a threshold of Cross-Validated Accuracy p-value < 0.05 

[80 1995.]. Finally, after k-fold cross-validation (k=10) [44] was applied, the proteins were 

sorted by the balanced accuracy [81] of the classification, which resulted in 21 and 93 

models for diabetes and arthritis.  

Table 5 shows the models obtained for diabetes. Table 6 presents the models obtained 

for arthritis which will be used for the prediction (a complete list of arthritis classifiers can 

be found in Annex 1). For this study, only the 16 proteins (or pairs of proteins) with the 

highest balanced accuracy that were included in both characterizations were selected 

as best-classifier proteins. 

Table 5. Models of diabetes classification statistically significant using a threshold of Cross-
Validated Balanced Accuracy > 0.80.  TP: True Positive; TN: True Negatives; FP: False Positives; FN: 
False Negatives; Balanced ACC: Cross-Validated Balanced Accuracy; p-value: Cross-validation p-value. 
PRE: Precision; SNS: Sensibility; SPC: Specificity; Outliers: Outliers detection method (NA or UMD). SVM: 
Support Vector Machines; MLP: Multi-Layer Perceptron.   

Model Feature TP TN FP FN 
Balanced 

ACC 
p-value PRE SNS SPC Outliers 

Features 
removed 

Samples 
removed 

Base 
classifier 

MD1  CBL, GIP 60 112 11 2 0.94 1.53E-34 85 97 91 NA 0 98 SVM 

MD2  CASP3, HSF1 55 112 11 7 0.90 5.64E-28 83 89 91 NA 0 98 SVM 

MD3  ERN1, PLAGL1 94 105 18 7 0.89 2.12E-35 84 93 85 UMD 88 153 SVM 

MD4  PRKCI, CBL 88 113 10 18 0.87 3.49E-33 90 83 92 UMD 105 119 SVM 

MD5  CBL, IL-10 87 113 10 19 0.87 2.17E-32 90 82 92 UMD 105 119 SVM 

MD6  CBL, CASP3 91 108 15 15 0.87 1.91E-31 86 86 88 NA 21 66 SVM 

MD7  ATP2A3, HSF1 50 112 11 12 0.86 6.31E-23 82 81 91 NA 0 98 SVM 

MD8  IL-10, IGF1R 82 97 26 7 0.85 6.35E-27 76 92 79 UMD 88 153 SVM 

MD9  IL-10, HHEX 86 110 13 20 0.85 4.39E-29 87 81 89 UMD 105 119 SVM 
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Model Feature TP TN FP FN 
Balanced 

ACC 
p-value PRE SNS SPC Outliers 

Features 
removed 

Samples 
removed 

Base 
classifier 

MD10  IL-10, JUN 94 100 23 12 0.85 2.65E-28 80 89 81 UMD 88 153 SVM 

MD11  CASP3, TCF7L2 87 98 25 10 0.85 1.23E-26 78 90 80 NA 21 66 SVM 

MD12  GHR, PRKCZ 55 97 26 7 0.84 2.30E-19 68 89 79 NA 0 98 SVM 

MD13  CBL, P2RX4 85 87 36 4 0.83 8.91E-25 70 96 71 NA 21 66 SVM 

MD14  ATP2A3, IL-18 79 95 28 10 0.83 5.70E-23 74 89 77 NA 21 66 SVM 

MD15  P2RX5, TXNDC5 80 87 36 4 0.83 1.20E-23 69 95 71 UMD 88 15 SVM 

MD16 TNFRSF1A,PLAGL1 89 100 23 17 0.83 2.38E-24 79 84 81 UMD 88 15 SVM 

MD17  IL-10, TXNDC5 94 87 36 7 0.82 3.45E-24 72 93 71 UMD 105 119 SVM 

MD18  CAP1, PPP1R3A 54 116 7 25 0.81 5.48E-22 89 68 94 NA 0 98 MLP 

MD19  ATP2A3, P2RX7 77 93 30 12 0.81 2.76E-20 72 87 76 NA 21 66 SVM 

MD20  FOXO1, HSF1 52 95 28 10 0.81 8.23E-16 65 84 77 NA 21 66 SVM 

MD21  JUN, PLAGL1 94 89 34 12 0.81 6.20E-22 73 89 72 UMD 88 153 SVM 

 

Table 6. Models of arthritis classification statistically significant using a threshold of Cross-Validated 
Balanced Accuracy > 0.80. Only the models which will be used in the next steps of prediction are 
shown. The complete list can be found in Annex 1.  TP: True Positive; TN: True Negatives; FP: False 
Positives; FN: False Negatives; Balanced ACC: Cross-Validated Balanced Accuracy; p-value: Cross-
validation p-value. PRE: Precision; SNS: Sensibility; SPC: Specificity; Outliers: Outliers detection method 
(NA or UMD). SVM: Support Vector Machines; LR+THR: Linear Regression + Threshold; O-THR: Optimal 
threshold; OQ-THR: Optimal Quadratic Threshold. 

Model Feature TP TN FP FN 
Balanced 

ACC 
p-value PRE SNS SPC Outliers 

Features 
removed 

Samples 
removed 

Base 
classifier 

MA1  IL-18, TNFRSF1A 273 299 1 27 0.95 4.42E-138 100 91 100 NA 1 0 SVM 

MA2  IL-18, IL-10 217 297 3 83 0.86 2.71E-88 99 72 99 NA 1 0 SVM 

MA3  IL-18 203 300 0 97 0.84 2.53E-85 100 68 100 NA 0 203 LR+THR 

MA4  IL-18 203 300 0 97 0.84 2.53E-85 100 68 100 NA 1 0 LR+THR 

MA5  IL-18 203 300 0 97 0.84 2.53E-85 100 68 100 UMD 148 0 LR+THR 

MA6  IL-18 203 300 0 97 0.84 2.53E-85 100 68 100 UMD 120 63 O-THR 

MA7  IL-18 203 300 0 97 0.84 2.53E-85 100 68 100 NA 1 0 LR+THR 

MA8  IL-18 203 300 0 97 0.84 2.53E-85 100 68 100 UMD 69 201 LR+THR 

MA9  IL-10 203 299 1 97 0.84 3.91E-83 100 68 100 NA 1 0 O-THR 

MA10  IL-10 203 299 1 97 0.84 3.91E-83 100 68 100 UMD 69 201 O-THR 

MA11  CXCL8 259 229 71 41 0.81 1.03E-57 78 86 76 NA 0 203 OQ-THR 

MA12  CXCL8 259 229 71 41 0.81 1.03E-57 78 86 76 NA 1 0 OQ-THR 

MA13  CXCL8 259 229 71 41 0.81 1.03E-57 78 86 76 UMD 148 0 OQ-THR 

MA14  CXCL8 259 229 71 41 0.81 1.03E-57 78 86 76 UMD 69 201 OQ-THR 

MA15  SPP1 277 206 94 23 0.81 1.34E-58 75 92 69 NA 1 0 O-THR 

MA16  SPP1 277 206 94 23 0.81 1.34E-58 75 92 69 NA 1 0 OQ-THR 

MA… … 

We observed that diabetes models presented a lower accuracy than arthritis’, probably 

due to the inferior sample size of original data and the deletion of some samples 

compared to the arthritis models in the data cleaning process. It could also be caused 

by higher difficulty in classifying diabetic patients through gene expression profiles due 

to the multidiverse factors that cause diabetes compared to arthritis. On the other hand, 

arthritis classification models seemed to identify better classifiers which can correctly 

categorize the patients in healthy vs arthritis with superior sensitivity and specificity. 
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Anyway, the objective of the project is to classify diabetic patients with/without arthritis. 

Then, the interest here is to obtain good arthritis classifiers to later apply them to diabetic 

patients. 

Regarding the base classifiers used, the classifier which could better model the data is 

apparently SVM: 95% of diabetes models and 25% of arthritis models used SVM. 

In order to facilitate the interpretation of the models, graphical representations 

accompanied by the main quality parameters are presented here for the best classifiers 

obtained in diabetes and arthritis, chosen as examples.  

Diabetes classifier 1 (MD1) is composed of two features: E3 ubiquitin-protein ligase CBL 

(CBL) and gastric inhibitory poly (GIP). The feature selection method used was random 

forest. Also, SVM was used as a base classifier and the cost function was balanced 

accuracy. A 10 K-FOLD cross-validation was used as the validation process. 

Figure 2 displays (A) the sample distribution graph and (B) the ROC curve. Figure 1A 

represents the distribution of the samples in a 2D plot. The line that separates the 

background colours is the decision boundary defined by the mathematical function of the 

classifier and by the best discrimination threshold. Each dimension of the graph stands 

for a variable/feature of the classifier (in this case, CBL on the x-axis and GIP on the y-

axis). The Receiver Operating Characteristic (ROC) is a graphical representation that 

illustrates the performance of a binary classifier system as its discrimination threshold 

varies. The ROC curve plots the True Positive Rate (TPR or sensitivity) against the False 

Positive Rate (FPR or false detections). Balanced Accuracy (ACC) is measured by the 

area under the ROC curve. An area of 1 represents a perfect classifier; an area of 0.5 

(straight line between 0-0 and 1-1) represents a useless classifier.  

 

Figure 2. (A) sample distribution graph and (B) the ROC curve of the classifier MD1, composed of 
CBL and GIP. 

Arthritis classifier 1 (MA1) also comprises two features (Figure 3): interleukin-18 (IL-18) 

and tumour necrosis factor receptor superfamily member 1A (TNFRSF1A). The feature 

selection method used was random forest. Also, SVM was used as a base classifier and 
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the cost function was balanced accuracy. A 10 K-FOLD cross-validation was used as 

the validation process. 

 

Figure 3. (A) sample distribution graph and (B) the ROC curve of the classifier MA1, composed of IL-
18 and TNFRSF1A. 

In the case of a one-feature classifier, as in MA9 (Figure 4), the graphical representations 

are modified according to their dimensions. The boxplot represents the descriptive 

statistical parameters of each cohort, which allows observing whether their means are 

separated or whether their value distributions overlap. The samples distribution graph 

based on one variable presents the distribution of the samples concerning the protein 

used by the classifier. The dotted red line shows the threshold that gives the best 

accuracy. The likelihood graph shows the likelihood function (as a synonym of probability 

function) for a prediction, displaying the value obtained for the prediction for each 

sample. It represents the proportion of samples of each cohort that correspond to a 

specific classification value. This representation allows the identification of the range of 

predictive values with better accuracy (range with a clear separation of or no overlap 

between the cohorts).  
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Figure 4. (A) boxplot representation of the means of normalized gene expression for both cohorts 
(B) sample distribution graph and (C) the ROC curve and (D) the likelihood graph of the classifier 
MA9, composed of IL-10. 

4.3. Application of data mining algorithms to predict diseases in 

unlabelled patients 

After the calculation of the classification models, the classifiers with accuracy > 80% 

were selected to predict these patterns in new patients. In this case, diabetic patients 

were predicted to suffer from or to be at risk of suffering from arthritis. In addition, patients 

with arthritis were also predicted to be diabetic. 

As the features were limited to BED effector proteins, only models with classifiers that 

were effector proteins of the pathology suffered by the patients to be predicted could be 

used. In other words, a certain classifier can be used to predict only if its gene expression 

is recorded in the dataset of the patients that will be classified.  

For the prediction, the algorithms calculated for arthritis were applied to classify the 

diabetic patients that were used for training the diabetes classifiers.  

Under those circumstances, 16 models were able to classify diabetic patients as 

arthritis/no arthritis whereas only 1 model was able to classify patients with arthritis as 

diabetic or not. From the 16 models, 5 unique proteins could be used to classify: 
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osteopontin (SPP1), interleukin-8 (CXCL8), interleukin-10 (IL-10), interleukin-18 (IL-18), 

and tumour necrosis factor receptor superfamily member 1A (TNFRSF1A).  

A novel candidate for the classification of diabetic patients into arthritis or no arthritis 

should accomplish some requirements. First, the genes that compose an arthritis 

classifier should not coincide with a diabetes classifier. In this case, the use of this marker 

would result in false positive results due to the intersection of both conditions. Second, 

we want to make sure that this protein is not being used already as a biomarker. 

Otherwise, the biomarker resulting from this study would not provide any new 

information.   

The best classifier was IL-18 accompanied by TNFRSF1A, according to its high cross-

validation balanced accuracy (95%). This model classified 106 diabetic patients in 22 

with arthritis (21%) and 84 without arthritis (79%). The biological context based on 

scientific literature about this protein as an arthritis biomarker and its role in both 

diseases is explained in the next section, accompanied by the contextualization of the 

rest of the proteins.  

On the other hand, the best classifiers to identify whether patients with arthritis could 

present T2DM are IL-10 and the transcription factor JUN showing a balanced accuracy 

of 85% and a significant p-value. From 300 checked patients, this classifier categorized 

222 arthritis patients with diabetes (74%) and 77 without diabetes (25%). 

4.4. Biological interpretation of the DM results 

To discover the biological role of these proteins identified as classifiers and determine if 

they are novel biomarkers, we searched in the scientific literature for evidence linking 

them with both conditions' history. 

Then, we propose 5 proteins that could potentially help to identify diabetic patients at risk 

of developing RA. The biological interpretation of obtaining one gene as a classifier by 

means of data mining procedures is that this resulting gene must be differentially 

expressed in most of the patients with arthritis compared to healthy patients, e.i., if the 

interleukin-18 expression is statistical-significantly higher in one patient compared to the 

others, it could indicate that this patient is more prone to suffer from arthritis than the 

rest. 

4.4.1. Biomarkers for arthritis in diabetic patients 

The proteins interleukin-8 (CXCL8), tumour necrosis factor receptor superfamily member 

1A (TNFRSF1A), osteopontin (SPP1), interleukin-10 (IL-10), interleukin-18 (IL-18), and 

have resulted to be potential biomolecular identifiers (alone or in combinations of 2) of 

diabetic patients suffering from arthritis. 

Interleukin-18 (IL-18): 

The interleukin-18 (IL-18) is a proinflammatory cytokine highly common in inflammatory 

diseases. It is produced by mononuclear cells in RA and high levels of this interleukin 

have been associated with disease severity. Along with IL-1β, IL-12, and IL-15; IL-18 

stimulate the production of IFN-γ by activated synovial T cells and promote the 

development of helper T cells (Th)1 response. IL-18 also acts as a direct proinflammatory 

cytokine in RA by promoting macrophage-driven TNF and IL-1 production. Also, it is 
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exacerbated via the NF-kB pathway which further supports its pivotal role in rheumatoid 

joint pathology. Moreover, IL-18 is also produced by FLS cells, which are the resident 

cells of the synovium and are responsible for the promotion of synovial hyperplasia and 

joint tissue destruction [74]. 

Autoantibodies against pro-inflammatory cytokines have been documented for TNF, IL-

1 (alpha and beta), IL-2, IL-6, IL-8, IL-10, and IL-18, suggesting a potential role of these 

cytokines as being good biomarkers due to their easy detection in peripheral blood and 

its association with disease severity [82]. In addition, IL-18 is secreted by monocytes, 

whose peripheral blood elevates have also been suggested of acting as biomarkers of 

RA disease activity [74]. 

IL-18 is also overexpressed in diabetic patients. Its function has been reported to mediate 

insulin resistance [62]. 

Tumour necrosis factor receptor superfamily member 1A (TNFRSF1A): 

Synovial fibroblastic cells in RA secrete large amounts of IL-6 when stimulated by 

inflammatory cytokines such as IL-1, TNF-α and IL-17. Fibroblast hyperplasia occurs due 

to high levels of soluble FasLigand (FasL) and TNF in the synovium; and members of 

the TNF receptor family, specifically TNF receptor 1 (TNFR1, or TNFRSF1A), TNF-

related apoptosis-inducing ligand (TRAIL) receptors 1 and 2, and Fas have been seen 

to induce fibroblast apoptosis [83]. 

Recently, some studies revealed that expression of serum TNF-α may intensify the 

inflammatory activity in early RA, which indicates a strong correlation between cytokine 

expression and disease severity; suggesting that serum TNF-α could act as a competent 

biomarker for evaluation of disease activity in early RA [84, 85]. Nevertheless, no study 

has ever studied or obtained significant results regarding the expression of TNF-α 

receptors as a good biomarker. 

Interleukin-10 (IL-10): 

IL-10 expression in patients with arthritis has been shown to regulate endogenous 

proinflammatory cytokine production in synovial tissue and has been found in reduced 

levels, being unable to block T-cell responses to specific antigens [79]. IL-10 was 

analysed to be a potential biomarker of RA in Dissanayake et al. 2021, along with IL-1, 

TNF-α and IL-17α. Secretion of IL-10 by PBMCs negatively correlated with radiological 

progression of RA and swollen joint count, indicating a potential protective role of IL-10 

secretion against joint swelling in RA. This could point towards a potential role of IL-10 

as a biomarker but contradictory evidences might underrate the potential of this anti-

inflammatory cytokine [85]. 

On the same line, accumulating evidence has shown that reduced serum levels of IL-10 

are associated with a greater incidence of insulin resistance, which is a prominent 

pathophysiological process in diabetic patients. The anti-inflammatory cytokine works 

through the inhibition of NFκB activation mediated by TNF-α, which reduces IKK activity. 

Particularly, IL-10 might present insulin-sensitizing effects and, when used as treatment, 

it prevented insulin resistance by stopping the autophosphorylation of insulin receptors 

and downstream signalling mediators in the liver [86, 87]. Moreover, circulating IL-10 

levels negatively correlated with the development of metabolic risk factors, indicating that 

IL-10 could act as a biomarker of metabolic disorders, such as diabetes [88]. 
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Interleukin-8 (CXCL8): 

The chemokine interleukin-8 (IL-8 or CXCL8) is frequently associated with inflammatory 

diseases, and autoantibodies against IL-8 are present in the periphery at elevated levels 

in RA. Indeed, high expression levels of IL-8 have been found in these patients.  

During the synovial inflammation in RA, IL-8 shows an important role. This TNF-activated 

cytokine is produced after the activation of mesenchymal cells, recruitment of innate and 

adaptive immune system cells and activation of synoviocytes; leading to inflamed 

synovium, an increase in angiogenesis and a decrease in lymphangiogenesis. 

Higher levels of cytokines that are involved in the pathogenesis of RA have been 

reported in patients with RA than in healthy controls and their serum levels were 

positively associated with disease severity [89]. Autoantibodies against pro-inflammatory 

cytokines have been documented for TNF, IL-1 (alpha and beta), IL-2, IL-6, IL-8, IL-10, 

and IL-18 [82], suggesting a potential role of these cytokines in being good biomarkers. 

Moreover, the levels of IL-8 have not only been significantly associated with disease 

severity but also with the presence of anti-citrullinated protein antibodies (ACPA), a 

common biomarker for RA. These findings suggest that relatively “downstream” 

signalling mediators such as chemokines when measured in the peripheral blood, may 

assist with predicting clinical outcomes for patients with RA [90]. 

In the diabetes context, adipose tissue produces a variety of proinflammatory cytokines, 

including IL-1, IL-6, IL-8 and IL-18. The first two have been extensively studied in many 

experiments in comparison with IL-8 and IL-18. However, the levels of these two 

cytokines have been suggested to be involved in metabolic disorders associated with 

T2DM [62].  

Osteopontin (SPP1):  

SPP1 is a pro-inflammatory cytokine secreted by macrophages with a critical role in 

immune cell recruitment, adhesion, and migration. In the pathophysiology of RA, it acts 

as an important mediator in the amplification and perpetuation of the disease, not only 

by mediating the attachment of synovial fibroblasts to cartilage, but also contributing to 

matrix degradation by stimulating the secretion of collagenase 1 in articular 

chondrocytes. In addition, SPP1 selectively induces the expression of pro-inflammatory 

cytokines and chemokines like IL-1 and IL-8 (another biomarker), maybe through the 

activation of the transcription factor NF-κB, leading to migration and the recruitment of 

inflammatory cells [91]. SPP1 has not been reported to be a capable biomarker of 

arthritis yet; however, it does have been used as a biomarker for the prediction of the 

remission of certain drugs [92]. 

In diabetes, the expression of SPP1 is elevated in obese adipose tissue and induces 

insulin resistance [93]. 
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5. Discussion 

Although apparently, biomarkers for diagnosis of RA are yet well-established, they do 

not fulfil the necessities of sufficient accuracy, leading to the detection of false positive 

and negative results. The most common autoantibodies (RF and ACPA) used as 

biomarkers were included in the new diagnostic EULAR 2010 criteria. ACPA specificity 

is notably high but they both lack sensitivity (<50%), especially in the early stages. In 

addition, since clinical distinctions between healthy and early disease states are more 

subtle and difficult to detect than in advanced stages; arthritis diagnosis becomes tardy, 

unsatisfactory and subjective based on the heterogeneous physicians’ criteria of 

classification. In order to battle these obstacles, patients need a competent biomarker 

which accomplishes an accurate, objective and fast diagnosis of the early stages of the 

disease, characterised by both high specificity and sensitivity [82]. 

Here is where the results of the data mining process performed in this study take place. 

Most of the data mining-obtained arthritis classifiers that present a pronounced accuracy 

(>80%) are cytokines. Much is known regarding the involvement of cytokines in the 

pathophysiology of RA (particularly, in synovial inflammation); however; surprisingly few 

studies have investigated the reliability and validity of cytokines as predictive biomarkers 

in the autoinflammatory condition.  

This study shows that cytokines are, in fact, promising candidate biomarkers of arthritis, 

presenting high sensitivity and specificity. Besides this, other meaningful advantages of 

using cytokines as biomarkers exist. One is the simple and accessible obtention of these 

predictive molecules from patients. The synovial inflammation occurs locally in the 

synovium but releases large amounts of cytokines into the peripheral blood circulation. 

Peripheral blood is the best tissue sample to detect biomarkers particularly for its good 

accessibility and for the lack of invasive procedures to obtain the biomarkers. The second 

one is that the current biomarkers commonly used, such as rheumatoid factor, can lead 

to non-specific binding in enzyme immunoassays; whereas the manufacturers of 

cytokines assays help block the interference of heterophilic antibodies, improving the 

accuracy of the results and permitting an effortless detection. Moreover, the clinical utility 

of most of the cytokines is already established in other diseases [22]. 

The sum of pieces of evidence such as the results from this gene expression analysis 

and promising studies on the availability of cytokines as biomarkers will complement the 

hypothesis that cytokines-based biomarkers are likely to emerge in the following years 

as potent predictors of disease activity and response to treatments [22, 82]. 

However, it is worth mentioning that, given the complexity and heterogeneous nature of 

RA pathogenesis, a single cytokine might not dispense sufficient discrimination to predict 

the outcome of interest. A more profitable approach would be to consider a combination 

of biomarkers, such as the combination of IL-8 and TNF receptors, to reach the most 

accurate prediction [22]. 

A notable variety of good classifiers were obtained according to the classification results, 

from which 5 different proteins resulted. Taking into account that a novel candidate for 

the classification of diabetic patients into arthritis or no arthritis should not coincide with 

a diabetes classifier and should not be previously reported as an arthritis biomarker, 

classifiers were contextualised and analysed in order to identify if they are novel 
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candidates. After a thorough review of the scientific literature, the cytokines were 

analysed if they would be potential biomarkers. TNF-alpha was recently reported as a 

good biomarker for RA [84]; however, no studies of its receptor have been developed 

yet. IL-8 and IL-18 were suggested in some studies to act as possible biomarkers 

although further investigation is needed to implement them in clinical usage [90]. On the 

other hand, IL-10 was also proposed but contradictory evidences diminished its reliability 

to act as a biomarker [88]. Finally, SPP1 was the only protein that was not previously 

reported in the literature in terms of biomarker discovery, indicating this protein could be 

a novel candidate biomarker for arthritis in diabetic patients.  

Although SPP1 could be the most innovative biomarker, further investigations of the rest 

of the candidates should be conducted due to its excellent classification values and poor 

usage in clinical diagnosis. 

6. Conclusions 

Thanks to the application of artificial intelligence classification techniques to multiple-

integrated datasets from the GEO database, a time-saving procedure was performed to 

identify useful and valid biomarkers for the classification of patients suffering from 

arthritis or not. Nevertheless, this was not the only objective. Besides the discovery of 

new arthritis biomarkers itself, this study was also useful to provide evidence that big 

data stored in public databases can be completely exploited for different and numerous 

purposes. Consequently, further considerations on the under usage of gene expression 

data stored in public repositories should be concluded in order to better exploit the 

sources of biological information that are currently available. 

The main conclusion obtained is that HT data usage permits the study of other 

pathological conditions besides the disease labelled by the researchers in the GEO 

database. In the case of this work, several genes/proteins have been identified as 

potential biomarkers of arthritis in diabetic patients. The fact that some of the classifiers 

have been previously reported in the literature as good arthritis biomarkers validates and 

supports our findings regarding the resulting candidates that have not been examined 

yet, such as SPP1. We encourage clinical investigators to test the proposed cytokines 

in clinical practice. Additionally, these classifiers do not only own the capability of acting 

as biomarkers but also allow to predict diabetes and arthritis in all platforms submitted in 

the GEO database, even though the platform is labelled with other condition. Therefore, 

these classifiers could be applied to all samples and experiments in GEO, making 

possible the classification of all patients into arthritis and diabetes.   

Another advantage of the resulting classifiers is that they permit knowing the complete 

biological profile of a patient based on gene expression data. The labels imposed by a 

physician, on the contrary, sometimes lead to biased or even false results due to a lack 

poor information level. For instance, the physician is missing valuable information if they 

cannot detect that the patient suffers from certain comorbidity, which could be causing 

the disease under study. Hence, the strategy here proposed can help researchers and 

physicians with a more accurate classification in this sense. 

Inevitably, the employment of labelled data will always be better compared with the 

usage of classification predictors. Still, sample size can become a dominant limitation 

which will impede the potential growth of these methods.  
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In addition, the predicted labelling is based on a prediction and, thereby, is subjected to 

an error. The use of predicted labels to make biological conclusions must be carried out 

with a bigger sample size than the one used in an analysis with labels made by the 

investigators. 

The inclusion of patients classified through these prediction-based classification 

techniques in the analysis of a researcher should consider a prediction of the complete 

clinical profile of the patient. Therefore, the researcher could include the samples that 

really fit the profile under study. 

Finally, the cross-normalization used to scale multiple datasets is a determinant process 

that affects the results and therefore, could cause bias. The investigator must be 

extremely confident that the normalization step reaches the demanded sturdiness, 

independently of the employed normalization algorithm. 
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7. Annexes 

Annexe 1. Complete list of arthritis classifiers. 

Feature TP TN FP FN 
Balanced 

ACC 
p-value PRE SNS SPC 

Base 
classifier 

IL18 203 300 0 97 0.84 2.53438E-85 100 68 100 LR+THR 

IL18 203 300 0 97 0.84 2.53438E-85 100 68 100 LR+THR 

IL18 203 300 0 97 0.84 2.53438E-85 100 68 100 LR+THR 

IL18 203 300 0 97 0.84 2.53438E-85 100 68 100 LR+THR 

IL18 203 300 0 97 0.84 2.53438E-85 100 68 100 LR+THR 

TLR2 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

TLR2 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

TLR2 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

TLR2 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

DKK1 198 286 14 102 0.81 1.12031E-62 93 66 95 LR+THR 

ENO1 202 298 2 98 0.83 1.2138E-80 99 67 99 LR+THR 

MMP3 200 282 18 100 0.80 7.94696E-60 92 67 94 LR+THR 

FGF2 201 280 20 99 0.80 1.59263E-58 91 67 93 LR+THR 

VCAM1 201 284 16 99 0.81 2.63343E-62 93 67 95 LR+THR 

F2RL1 294 194 106 6 0.81 7.80386E-70 74 98 65 LR+THR 

GRB2 195 288 12 105 0.81 3.74164E-63 94 65 96 LR+THR 

PTPN11 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

PTPN11 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

PTPN11 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

PTPN11 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

PTPN11 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

PTPN11 201 295 5 99 0.83 2.93431E-75 98 67 98 LR+THR 

ENPP2 248 240 60 52 0.81 6.38152E-57 81 83 80 LR+THR 

TNFRSF1A, FADD 264 272 28 36 0.89 8.58955E-94 90 88 91 MLP 

F2RL1, GRB2 269 292 8 31 0.94 9.662E-122 97 90 97 MLP 

IL17RA, GRB2 269 289 11 31 0.93 1.5663E-117 96 90 96 MLP 

PTGES2, GRB2 262 279 21 38 0.90 4.3761E-99 93 87 93 MLP 

CXCL8 259 229 71 41 0.81 1.03523E-57 78 86 76 OQ-THR 

CXCL8 259 229 71 41 0.81 1.03523E-57 78 86 76 OQ-THR 

CXCL8 259 229 71 41 0.81 1.03523E-57 78 86 76 OQ-THR 

SPP1 277 206 94 23 0.81 1.34112E-58 75 92 69 OQ-THR 

CXCL8 259 229 71 41 0.81 1.03523E-57 78 86 76 OQ-THR 

TNFRSF10A 271 246 54 29 0.86 1.82279E-78 83 90 82 OQ-THR 

TNFRSF10A 271 246 54 29 0.86 1.82279E-78 83 90 82 OQ-THR 

TNFRSF10A 271 246 54 29 0.86 1.82279E-78 83 90 82 OQ-THR 

TNFRSF10A 271 246 54 29 0.86 1.82279E-78 83 90 82 OQ-THR 

TNFRSF10A 271 246 54 29 0.86 1.82279E-78 83 90 82 OQ-THR 
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Balanced 

ACC 
p-value PRE SNS SPC 

Base 
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RPSA 203 297 3 97 0.83 1.5739E-79 99 68 99 OQ-THR 

PADI4 259 240 60 41 0.83 1.43927E-64 81 86 80 OQ-THR 

PADI4 259 240 60 41 0.83 1.43927E-64 81 86 80 OQ-THR 

SPP1 277 206 94 23 0.81 1.34112E-58 75 92 69 O-THR 

IL10 203 299 1 97 0.84 3.9131E-83 100 68 100 O-THR 

IL18 203 300 0 97 0.84 2.53438E-85 100 68 100 O-THR 

IL10 203 299 1 97 0.84 3.9131E-83 100 68 100 O-THR 

TLR2 201 295 5 99 0.83 2.93431E-75 98 67 98 O-THR 

TLR2 201 295 5 99 0.83 2.93431E-75 98 67 98 O-THR 

TLR2 201 295 5 99 0.83 2.93431E-75 98 67 98 O-THR 

RPSA 203 297 3 97 0.83 1.5739E-79 99 68 99 O-THR 

RPSA 203 297 3 97 0.83 1.5739E-79 99 68 99 O-THR 

RPSA 203 297 3 97 0.83 1.5739E-79 99 68 99 O-THR 

IL12A 202 279 21 98 0.80 3.60129E-58 91 67 93 O-THR 

AIF1 204 289 11 96 0.82 2.49067E-69 95 68 96 O-THR 

AIF1 204 289 11 96 0.82 2.49067E-69 95 68 96 O-THR 

AIF1 204 289 11 96 0.82 2.49067E-69 95 68 96 O-THR 

AIF1 204 289 11 96 0.82 2.49067E-69 95 68 96 O-THR 

AIF1 204 289 11 96 0.82 2.49067E-69 95 68 96 O-THR 

AIF1 204 289 11 96 0.82 2.49067E-69 95 68 96 O-THR 

ANGPT1 201 289 11 99 0.82 1.31046E-67 95 67 96 O-THR 

ANGPT1 201 289 11 99 0.82 1.31046E-67 95 67 96 O-THR 

ANGPT1 201 289 11 99 0.82 1.31046E-67 95 67 96 O-THR 

ANGPT1 201 289 11 99 0.82 1.31046E-67 95 67 96 O-THR 

ANGPT1 201 289 11 99 0.82 1.31046E-67 95 67 96 O-THR 

IL18, IL10 217 297 3 83 0.86 2.71768E-88 99 72 99 SVM 

IL18, TNFRSF1A 273 299 1 27 0.95 4.4289E-138 100 91 100 SVM 

TNFRSF10A, NFKB1 286 274 26 14 0.93 1.0003E-118 92 95 91 SVM 

TNFRSF10A, RELB 266 258 42 34 0.87 2.89628E-83 86 89 86 SVM 

TP53, GRB2 256 264 36 44 0.87 5.69358E-80 88 85 88 SVM 

ENO1, IL32 282 292 8 18 0.96 5.5095E-136 97 94 97 SVM 

ENO1, GRB2 271 252 48 29 0.87 5.81003E-83 85 90 84 SVM 

ENO1, RELA 265 263 37 35 0.88 1.51609E-86 88 88 88 SVM 

CTSL, TNFRSF1A 287 262 38 13 0.92 2.6265E-108 88 96 87 SVM 

VIM, ENO1 271 270 30 29 0.90 2.49534E-98 90 90 90 SVM 

RPSA, ENO1 271 283 17 29 0.92 5.2766E-112 94 90 94 SVM 

TNFRSF1A, IL32 271 298 2 29 0.95 7.2289E-134 99 90 99 SVM 

TNFRSF1A, AIF1 279 283 17 21 0.94 1.794E-120 94 93 94 SVM 

TNFRSF1A, GRB2 268 281 19 32 0.92 8.865E-107 93 89 94 SVM 

CTSS, F2RL1 271 283 17 29 0.92 5.2766E-112 94 90 94 SVM 
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CTSS, RIPK1 267 284 16 33 0.92 2.7511E-109 94 89 95 SVM 

PTGS2, GRB2 266 292 8 34 0.93 8.4605E-119 97 89 97 SVM 

JAK3, F2RL1 288 226 74 12 0.86 8.53394E-82 80 96 75 SVM 

AIF1, MMP9 205 294 6 95 0.83 3.27791E-76 97 68 98 SVM 

AIF1, IRF3 206 297 3 94 0.84 2.39555E-81 99 69 99 SVM 

F2RL1, FADD 268 260 40 32 0.88 1.15845E-86 87 89 87 SVM 

GRB2, FADD 267 280 20 33 0.91 1.0123E-104 93 89 93 SVM 

NFKB2, TNFRSF10A 261 254 46 39 0.86 5.68749E-76 85 87 85 SVM 

RIPK1, FADD 260 248 52 40 0.85 8.8356E-71 83 87 83 SVM 

IL18, ENO1 264 263 37 36 0.88 1.10559E-85 88 88 88 SVM 

ANGPT1, ENO1 278 289 11 22 0.95 5.1922E-127 96 93 96 SVM 

ANGPT1, CTSS 272 283 17 28 0.93 5.2098E-113 94 91 94 SVM 

IL17A, MMP3 220 289 11 80 0.85 4.53824E-79 95 73 96 SVM 

HIF1A, AIF1 248 265 35 52 0.86 8.94556E-75 88 83 88 SVM 

IL17RB, FLG 222 275 25 78 0.83 4.33911E-66 90 74 92 SVM 
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