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Abstract

Multimodal steganography consists of concealing a signal into another one of a different medium, such
that the latter is only very slightly distorted and the hidden information can be later recovered. A
previous work employed deep learning techniques to this end by hiding an image inside an audio signal’s
spectrogram in a way that the encoding of one is independent of the other.
In this work we explore the way in which images were being encoded previously and present a collection
of improvements that produce a significant increase in the quality of the system. These mainly consist in
encoding the image in a smarter way such that more information is able to be transmitted in a container
of the same size. We also explore the possibility of using the short-time Fourier transform phase as an
alternative to the magnitude and to randomly permute the signal to break the structure of the noise.
Finally, we report results when using a larger container signal and outline possible directions for future
work.
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Chapter 1 - Introduction

Steganography is the practice of hiding a secret message inside another one, which can be sent in

plain sight. As opposed to cryptography, that aims to make a message unintelligible to third parties,

steganography tries to hide the presence of such a communication in the first place. Since the container

signal appears to be well-formatted, it benefits from the fact that potential attackers do not suspect

about the presence of a hidden message inside.

Traditionally, steganography in digital signals has used least significant bit (LSB) approaches [1],

where the last bits of the container signal are used to encode the hidden message, thus producing minimal

distortion in the container. The number of bits used to encode the hidden signal is a hyperparameter that

determines the trade-off between the container signal’s distortion and its capacity to carry information.

Recently, deep learning techniques have been used as an alternative approach to LSB ones, offering

more flexibility in the encoding method, since it is the network that is able to learn which redundancy

to exploit in the container. While steganography is typically used to encode in a uni-modal way (e.g.

hiding images inside images [2] or audio inside audio [3]), multi-modal architectures are also possible.

1.1 State of the art

Deep convolutional neural networks are widely used to process image data. These are usually trained

in an end-to-end fashion and the architecture is often composed of an encoder, that learns to hide the

image in the host signal, and a decoder, that aims to reveal its contents and get the original data back.

[2] and [4] (the latter is shown in Figure 1.1) split the encoding process in two different networks:

one for preprocessing the secret image, independently of the host, and a second one for hiding it.

Figure 1.1: Architecture proposed by Duan et al., to hide images inside images. Note that the encoding
of the secret image is conditioned on the container.

1
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While steganography is usually performed in digital data and it is often assumed that the transmission

will be lossless, other works focus on the transmission of hidden signals through a physical medium.

StegaStamp [5] is a deep learning-based system that is able to encode hyperlinks (encoded as bitstrings)

into an image, which is later printed and scanned by a camera. Such setups need to account for the large

amount of distortion that physical transmission introduces.

A closely related field to steganography is that of steganalysis, which aims to detect the presence of

a hidden message in a signal; many techniques exist to tackle this problem [6, 7], with new approaches

also relying on convolutional neural networks to analyse the data. This naturally leads to an adversarial

framework for steganography, in which a discriminator is trained in parallel to the hiding network.

SteganoGAN [8], depicted in Figure 1.2, relies on this approach to obtain a high capacity steganography

system.

Figure 1.2: Architecture proposed by Zhang et al., that, in addition to an encoder and decoder networks,
uses a critic to perform steganalysis. The blank in the encoder diagram corresponds to the connection
between the preprocessed image and the data, for which they propose multiple possibilities.

Another use for steganography is to perform backdoor attacks on systems such as neural networks.

In these attacks the input (e.g. an image to be classified) is slightly distorted in an imperceptible manner

from a human perspective, but causes the victim model (e.g. a convolutional neural network) to com-

pletely misclassify the data. [9] present two approaches that can trick state-of-the-art backdoor detection

approaches.

Audio signals are also widely used in the steganography field. While some process the audio in the

waveform domain [10], in order to hide an image within it is more common to apply a transform to the

1-dimensional audio signal to convert it into a 2-dimensional one, where previous image-based approaches

can be used. [3] used a short-time Fourier transform for this purpose, while [11, 12] preferred a wavelet

transform. A generic schema for the last one is depicted in Figure 1.3.

2
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Figure 1.3: Architecture proposed by Hmood et al., where a wavelet transform is applied to the audio
waveform to obtain a 2D representation in which the image can be directly embedded.

1.2 PixInWav

PixInWav [13] introduced a novel application of using end-to-end deep steganography to encode im-

age data into an audio signal. It used a short-time discrete cosine transform (STDCT) to get a 2D

representation of the audio which allowed to add the encoded image in a residual manner.

Figure 1.4: Basic schema of the PixInWav system: the hidden image is preprocessed and residually added
onto the spectrogram, producing a distortion in the audio that should be unnoticeable. The decoder is
then able to reveal the original image from the container spectrogram.

3
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Chapter 2 - Technical background

The purpose of this chapter is explaining some of the concepts necessary to fully understand the thesis

and that the reader is assumed to know on later chapters.

2.1 Convolutional neural networks

At the core of the system presented in this thesis is a deep learning architecture composed of convolutional

neural networks (CNNs). These are a type of artificial neural networks that are widely used to process

visual data, such as images or spectrograms.

CNNs are made up of convolutional layers. As opposed to fully-connected layers, where every input

(e.g. a pixel of an image) would be connected to every output and scaled by a trainable weight, convo-

lutional layers rely on a window of relatively small size (a kernel) that is convolved with the input. The

only trainable parameters of a convolutional layer are the values of the kernel, which are much less than

would otherwise be in a fully-connected layer; this makes the model lighter and less prone to overfitting.

It is very common for CNNs to be composed of multiple convolutional layers where the input data is

downsampled in between, allowing the model to process it in a multiresolution manner.

As with other deep learning models, the system reads and processes a sample of data, computes a loss

value and updates its parameters through backpropagation, resulting in a better model that is expected

to obtain a smaller loss value on future attempts. This process is repeated many times (tens of thousands

in our case) until the model eventually converges and stops improving.

2.2 Audio transforms

The system presented in this work relies on audio transforms to switch between the waveform and

frequency domains. An audio signal can be digitally represented as a waveform by storing in a 1-

dimensional vector the intensity values at any point in time, along with a frequency that indicates the

rate at which the samples need to be played.

These 1-dimensional signals, however, can also be represented as a combination of frequencies by

applying a mathematical transform such as the Fourier transform (FT), that results in a complex 1D

vector.

Such representation, however, is not able to perceive changes in frequencies across time, which is the

case in many audios. In order to achieve this, short-time (ST) versions of such transforms need to be

4
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used; these operations compute a frequency transform every certain number of waveform samples and

using only a limited amount of them. This results in a collection of 1D vectors that put together form a

2D structure: the spectrogram.

Such transforms are usually controlled by two hyperparameters: the filter length, that defines how

many waveform samples to use when computing the transform every time; and the hop length, that

defines the displacement of the window between two consecutive transforms. Changing this values will

produce spectrograms of different shapes and characteristics.

Throughout this work the short-time Fourier transform (STFT) is used. It is a complex transform

that produces both a magnitude and a phase, each being 2D signals of the same shape.

Figure 2.1: Example of audio waveform (left) and the magnitude (middle) and phase (right) obtained
after applying the short-time Fourier transform.

An alternative transform which is also mentioned in this work is the short-time discrete cosine trans-

form (STDCT), that works similarly to the STFT, the most relevant difference being that it is a real

transform and thus it only produces a single 2D spectrogram.

Note that both transforms are reversible, i.e., they have associated inverse transforms that convert

the spectrogram back to the waveform.

2.3 Colour spaces

Colours in the real world can be expressed through a combination of three primary colours. For instance,

printers will use different quantities of cyan, magenta and yellow to form any colour required. These

sets of primary colours that are able to represent the whole spectrum define a colour space; any possible

colour will be represented as a point in such a space.

There are many different colour spaces, each with its own advantages and particular traits that make

it more or less suitable for specific applications.

In the digital domain, the RGB colour space is the most widely used. It represents every colour as a

combination of red (R), green (G) and blue (B). It is an additive model, meaning that the addition of all

colours makes white, as opposed to a subtractive one, such as the CMYK that printers use. Throughout

5
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this work, unless indicated otherwise, the images can be assumed to be represented in the RGB colour

space. This means that each pixel will have three associated values, one for each colour channel.

Another very widely used colour space in digital applications is YCbCr, which decomposes each colour

into the luma component (Y) and the blue-difference (Cb) and red-difference (Cr) chroma components.

What is particularly interesting about this model is that the luma component, corresponding to the

greyscale value of the pixel, is perceptually much more important than the other ones, so the luma

channel of the image carries much more information than the other two, and thus more than any of the

individual RGB ones. This key concept is the basis for the architecture proposed in Section 4.7. Figure

2.2 shows the representation of a colour image in both the RGB and YCbCr colour spaces.

Figure 2.2: Example of the different colour channels of an image in RGB (top) and YCbCr (bottom)
colour spaces. Note that every channel is 1-dimensional so it can be represented in a greyscale image,
where lighter pixels indicate higher values and vice versa.

The remaining thing to note is that images represented in one colour space can be transformed to

any other one. In our particular case, the conversion between RGB and YCbCr is done through a linear

combination of the values, defined in the JPEG standard1:

Y = 0.299R+ 0.587G+ 0.114B

Cb = −0.1687R− 0.3313G+ 0.5B + 128

Cr = 0.5R− 0.4187G− 0.0813B + 128

R = Y + 1.402(Cr − 128)

G = Y − 0.34414(Cb− 128)− 0.71414(Cr − 128)

B = Y + 1.772(Cb− 128)

(2.1)

The previous operations are applied individually to each pixel in order to convert the whole image

from the RGB colour space to YCbCr and vice versa.

1https://www.w3.org/Graphics/JPEG/jfif3.pdf

6
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Chapter 3 - Methodology

In this section we describe the details of PixInWav [13] ’s original implementation. It is the model that

will serve as a baseline for the work presented in Section 4.

The model has been coded in Python using the Pytorch framework1. The original code is publicly

accessible at PixInWav’s GitHub repository2, but for this work it has been reimplemented from scratch

with added features and fixes; the new code can also be found on GitHub3. Note that certain fixes from

the original implementation make the results not comparable with the ones from [13].

3.1 Architecture

This section details how the PixInWav [13] model works. It takes an audio waveform and an image as

input and outputs the container audio and revealed image. Figure 3.1 shows a more detailed diagram of

the whole architecture.

The trainable part of the model consists of two neural networks: an encoder (PrepHidingNet), that

preprocesses the original image and outputs the one that will be residually added onto the audio, and a

decoder (RevealNet), that takes the audio container and outputs the revealed image.

Figure 3.1: Detailed PixInWav architecture, showing the multiple operations that are applied to both
the audio and the image, as well as the different losses used for training.

The next subsections will detail specific parts of the model as was presented in [13] and serves as a

1https://pytorch.org/
2https://github.com/margaritageleta/PixInWav
3https://github.com/migamic/PixInWav2
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baseline for this work. The changes proposed for some of these components are detailed in Section 4.

3.1.1 Pixel shuffle

In order to flatten the RGB image into a single channel, a pixel shuffle [14] operation is applied: it

arranges the 3 colour channels of each pixel side by side in a 2 × 2 grid, adding an empty element of

value 0 as a fourth element.

This reversible procedure converts an image of shape 256× 256× 3 into a flattened version of shape

512× 512× 1. It has been shown to improve the quality of the colour of the recovered image.

3.1.2 Image resizing

The shape of the host spectrogram need not match the shape of the image. While images in the data set

are of size 256 × 256 (512 × 512 after applying the pixel shuffle operation), the spectrograms are either

of shape 1024× 512 or 4096× 1024, depending on the audio transform used, as is explained on Section

3.1.4.

This mismatch is overcome by stretching the image with linear interpolation, which is a reversible

operation that allows to easily resize the image to any desired shape.

3.1.3 Encoder & decoder

Both the encoder and decoder are symmetrical U-Net [15, 4] convolutional neural networks. The input

and output are a flattened RGB image of the same size as the container. Figure 3.2 shows an overview

of the structure of the network and the shape of the tensors at every stage.

Figure 3.2: Schema of the encoder and decoder convolutional neural networks, showing the shape of the
tensor at every stage. The first two numbers correspond to the spatial dimensions (height × width) and
the third corresponds to the depth (number of channels).

The downsampling consists of two convolutional layers with a max pool operation. The upsampling

is done through two transposed convolutional layers; after upsampling, the tensor is concatenated with

the corresponding pair and two regular convolutional layers are used to halve the number of channels.

After every convolutional layer there is a Leaky ReLU activation function.

The original architecture from PixInWav [13] also included batch normalization after every regular

convolutional layer, but these have been removed for this work, since the performance has been shown

to decrease when they are in use.
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3.1.4 Audio representation

PixInWav [13] used the short-time discrete cosine transform (STDCT) to obtain the spectrogram of the

host audio.

However, the short-time Fourier transform (STFT) is able to produce better results even when using

a smaller container, as was shown in [16], a consequence of only using the magnitude not distorting the

information in the phase.

In this work the audio is assumed to be of length 67522 (it is preprocessed to be so) and the STFT

of filter length 211 − 1 = 2047 and hop length of 27 +4 = 32 is used to obtain a container of the required

size of 1024× 512.

3.1.5 Audio transmission

In this work we focus on the case of lossless audio transmission (i.e., where the audio signal received

is exactly the same as the one that was sent). This ideal scenario is not unrealistic, since most digital

communication nowadays ensure that no data is lost or corrupted, such as the TCP protocol on Internet

communication.

However, [13] showed that over-the-air transmission is far from lossless and the amount of distortion

that is introduced makes the hidden signal almost unrecognizable at the receiving side. Adding artificial

noise at the audio signal during training did not have much effect in generalizing to a real-life case.

We hope that the improvements suggested in this work apply to the noisy setup as well, but repro-

ducing such experiments is out of the scope of this project and we leave it as future work.

3.2 Loss function

We use a loss function that leverages the distortion in the container audio and the recovered image. The

model should try to minimize both at the same time.

L(s, s′, C, C ′, c, c′) = β∥s− s′∥1 + (1− β)∥C − C ′∥2 + λ∥c− c′∥1 (3.1)

where s and s′ are the original and revealed images, C and C ′ are the audio host and container

spectrograms and c and c′ their corresponding waveform representations.

The β ∈ [0, 1] hyperparameter controls the trade-off between image and audio quality, with higher

values giving more importance to the image and vice versa. λ ∈ R≥0 adds an additional audio loss to

account for the waveform distortion.

9
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Chapter 4 - Experiments and results

This section explains the main developments of this project, that build upon the previously described

model. These mainly consist of analysing the current system and trying to improve its performance

through different changes in the architecture.

4.1 Data sets

There are two separate data sets being used. For images it is a subset of 10.000 images from the

ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) [17] while for audio we use the

FSDnoisy18k [18] data set. The image/audio pairs are chosen randomly to produce more variety in the

training set.

Figure 4.1: Random examples from the data sets: ILSVRC2012 images (top) and spectrograms from
FSDnoisy18k (bottom). Note that they have already been preprocessed to be the required shape.

Note that both data sets have associated labels which are never used in this project, since the model

is entirely trained in a self-supervised fashion.
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4.2 Metrics

Multiple metrics are used to assess the performance of the models: the structural similarity index (SSIM)

and the peak signal-to-noise ratio (PSNR) for image, and signal-to-noise ratio (SNR) and the L1 norm

(referred simply as L1 in the report) for audio. These are used throughout this section in order to

compare the quality of the different architectures and setups.

SSIM [19] is a perceptual metric for similarity between a pair of images (the original and revealed in

our case). It is a value in the range [0, 1], with larger values indicating more similarity.

PSNR [20] is an objective metric often used to quantify the quality of an image after applying lossy

compression. The values are in a logarithmic scale, where high numbers indicate a better quality. It is

defined relative to the peak dynamic range, which makes it more suitable to compare image data rather

than SNR.

SNR [21] is strongly related to PSNR. It also uses a logarithmic scale with high values indicating less

distortion between the original and target signal. It is more commonly used for audio rather than image

data.

The L1 norm is the sum of absolute errors of two signals. We use it to compare the original and

container waveform in order to measure the distortion in that domain. Note that, unlike the previous

metrics, this one is also used in the loss function to optimize the model.

4.2.1 Comparing models

Although the previous metrics are used to determine how good a trained model is, some setups can be

hard to compare, since sometimes they will obtain better images at the cost of audio quality or vice

versa. In such a scenario, determining which model is best would depend on the particular usage.

Also worth noting is that the previous metrics do not always represent human perception — e.g.

distortion in audio signals with SNR values higher than 40 is usually imperceptible, so achieving even

higher SNR values could be irrelevant from a practical perspective.

Throughout this section, a setup will be considered better than another if the metrics are better

overall, even though in some practical cases the ’worse’ setup could be preferred.

4.3 Training details

The models in this work have been trained for two epochs and, unless specified otherwise, with a batch

size of 1, since it has proven to deliver the best results. The optimizer used was Adam with a learning

rate of 0.001.

The values for the β and λ hyperparameters of the loss function used are 0.75 and 1 respectively, which

were found to obtain a good balance between image and audio quality. For the sake of comparability

between different models, these values remained unchanged unless specified otherwise.
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4.4 Look inside PixInWav

We performed a detailed analysis of the trained models in order to interpret the processes that were

being used for embedding the image into the audio.

4.4.1 Encoding

Observing the output of PrepHidingNet, which can be visualized as an image since it is a tensor of size

1024 × 512, we can see a dimmed and stretched version of the original image, but the overall contours

and structure appear intact.

In order to better compare this tensor with the original image, a restoration of the output was

performed, where the following operations were applied in order: (1) rescale to return to the original

512 × 512 shape; (2) pixel unshuffle to recover the three RGB channels from the flattened image; (3)

negate the tensor, in order to visualize the image with the original colours instead of a negated version

(this depends on the random initialization of the training process, which might cause the image to be

encoded in negative and negated again at the decoder, with no difference in computation whatsoever);

and (4) rescaling to the 0-1 range for the individual pixel values, the same as the original image.

Figure 4.2: From left to right: original image, raw output of PrepHidingNet (notice the difference in
dimensions) and restored image from the raw output. The first and last have a corresponding colour
histogram underneath.

The image on the right of Figure 4.2 resembles a washed-out version of the original; while the colours

have been distorted, the overall structure of the image remains. This shows that any preprocessing by

PrepHidingNet is mostly done at a pixel level instead of treating the image as a whole.

The corresponding histograms show that colours tend to get compressed around the middle values,

causing the image to lose contrast.
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4.4.2 Embedding in the audio

For this step we looked at the distribution of values of the image and audio signals before and after being

added.

Figure 4.3: From left to right: original host spectrogram, preprocessed image (output from PrepHid-
ingNet) and container spectrogram, corresponding to the addition of the two. The spectrograms have
been rescaled to a square shape for visualization purposes. A histogram underneath each image shows
its distribution of values (notice the change in scale for the horizontal axis).

What the histograms from Figure 4.3 show is that the range of values that the container and the

preprocessed image use is very different in magnitude: while the spectrogram, although being mostly

values close to zero, has very high values (around 80), the preprocessed image is in the range [−0.5, 0.5].

This behaviour resembles the least significant bit (LSB) approach. Notice that the pattern of the pre-

processed image can still be observed in the empty regions of the container spectrogram but, being so

small in magnitude, the distortion is very low.

4.4.3 Decoded image

The final step of the pipeline is the decoding of the image from the container spectrogram. To analyse

the behaviour of the system as a whole, the revealed image is compared to the original one.

13
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Figure 4.4: From left to right: original image, revealed image and difference of the two. A histogram
underneath each image shows its colour distribution.

The revealed image lacks most of the colour and the top part is slightly distorted following the shape

of the spectrogram in which it was embedded. The model is not powerful enough to be able to transmit

colour images. Note that some hyperparameters, such as β from the loss function, could be tweaked to

improve the quality of the revealed image at the cost of poorer audio quality.

4.5 Using STFT magnitude and phase

The short-time Fourier transform is a complex transform that produces both a magnitude and a phase

from a single waveform. The existing architecture simply ignored the phase, as shown in Figure 4.5; here

we examine its possibilities, first as a standalone container and then in combination with the magnitude.

Figure 4.5: Original PixInWav architecture, that uses only the STFT magnitude as a container while
the phase is left untouched.

4.5.1 STFT phase as a single container

The existing model can be easily adapted to use the STFT phase instead of the magnitude, as depicted

in Figure 4.6, since they are both the same size. However, results show that the phase is less suitable for

this task and the results are significantly worse.
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Figure 4.6: Modified architecture, using only the phase as a container. The adaptation is very straight-
forward.

Table 4.1: Comparison of metrics between using the magnitude or phase as a container.

Audio container SSIM ↑ PSNR ↑ SNR ↑ L1 ↓

Magnitude 0.82 24.01 41.12 2E-4

Phase 0.30 12.67 23.46 1E-5

The results from Table 4.1 show that using the phase as the sole container is clearly inferior to using

the magnitude. There is a very significant drop in both image and audio quality.

Our reasoning for this results are twofold: firstly, the phase is much more noisier signal in nature,

as is shown in Figure 2.1, which makes the task of hiding information more difficult; secondly, small

alterations in the phase produce a very noticeable distortion in the resulting audio, again making it very

hard to add secret information.

4.5.2 STFT magnitude + phase

A more advanced setup was developed in which we used both signals as containers at the same time.

This requires for the architecture to be adapted to handle multiple containers.

The two containers should be treated separately due to their very different structure. The architecture

proposed, shown in Figure 4.7 uses different encoders and decoders for each. The two revealed images

are fed into a third network that processes them to obtain a single image as output; out of the multiple

solutions tried, a simple trained weighted average worked the best.

Figure 4.7: Proposed architecture, where both magnitude and phase are used as container signals.

The loss function also needs to be tweaked to accommodate for the possibility of using multiple

containers. The proposed formula is:

L(s, s′, Cm, C ′
m, Cp, C

′
p, c, c

′) = β∥s−s′∥1+(1−β)((1−θ)∥Cm−C ′
m∥2+θ∥Cp−C ′

p∥2)+λ∥c−c′∥1, (4.1)
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where Cm and Cp now denote the magnitude and phase signals respectively, which are weighted by a

new hyperparameter θ, that controls the trade-off between magnitude and phase distortion. Notice that

the waveform c is still unique.

Since this loss function already explicitly accounts for the phase distortion, the waveform loss can be

deemed redundant. We also explored the possibility of not using it (setting λ = 0).

Table 4.2: Comparison of performance of magnitude + phase models depending on the loss function
hyperparameters.

Loss setup SSIM ↑ PSNR ↑ SNR ↑ L1 ↓

Waveform loss (θ = 0, λ = 1) 0.77 21.3 34.95 2E-4

Container loss (θ = 0.5, λ = 0) 0.82 22.39 35.52 2E-4

Both losses (θ = 0.5, λ = 1) 0.82 23.23 31.95 4E-4

The results from Table 4.2 show that the best setup consists of not including the waveform in the

loss function, relying only in the MSE of the phase.

Finally, a comparison was performed between using the magnitude and phase as containers simulta-

neously or using only the magnitude. The results from Table 4.3 show that, while using both containers

does increase the image quality slightly, there is a significant drop in audio quality, possibly a consequence

of distorting the phase additionally.

Table 4.3: Comparison of metrics between using the magnitude alone or both the magnitude and phase
as containers.

Audio container SSIM ↑ PSNR ↑ SNR ↑ L1 ↓

Magnitude 0.84 24.84 43.51 2E-4

Magnitude + Phase 0.85 25.05 35.65 4E-3

Our conclusion is that it is not worth using the phase as a container, since it does not improve the

metrics obtained with the baseline model that only uses the magnitude and thus there is no justification

for the added overhead in the model.

4.6 New architectures

As is mentioned in Section 3.1.2, the original PixInWav architecture made use of linear interpolation for

upsampling and downsampling the encoded and decoded image in order to make them the exact same

shape as the container and the original shape, respectively. This strategy, named Stretch and depicted

in Figure 4.8, although simple, does not make full use of the encoder and decoder capabilities, since the

same amount of information is being carried in a container twice the necessary size (the encoded image

after pixel shuffle is 512× 512, whereas the container spectrogram is 1024× 512).
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Figure 4.8: Overview of the default architecture (Stretch) used for embedding the audio onto the spec-
trogram.

In this section we propose alternative architectures to address this problem and make full use of the

container size.

4.6.1 Replicate

This approach takes advantage of the encoded image being smaller than the spectrogram by adding

multiple copies of it (instead of stretching a single one). In the default STFT case, the container is twice

the size of the encoded image, so the system in able to fit two copies, thus carrying twice the information.

At the decoder side both concatenated replicas are revealed at once, split and averaged to produce

the final outputted image. This is shown in Figure 4.9.

Figure 4.9: Overview of the Replicate method to embed the audio onto the spectrogram.

4.6.2 Weighted Replicate

As an improvement on the previous idea, Weighted Replicate (W-Replicate) scales each of the replicas

before adding them onto the container spectrogram and also when merging them into a single one

(essentially, a trained weighted average). Four trainable weights are used in total for the default STFT

case where two replicas are used. This is shown in Figure 4.10.
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Figure 4.10: Overview of the Weighted Replicate method to embed the audio onto the spectrogram.

4.6.3 Weighted & Split Replicate

Building on top of the previous approach, Weighted & Split Replicate (WS-Replicate) splits the replicas

before forwarding through the decoder, which takes N (N = 2 in the case of the default STFT container)

input channels instead of 1. This allows processing the multiple replicas in a more intuitive and scalable

manner. This is shown in Figure 4.11.

Figure 4.11: Overview of the Weighted & Split Replicate method to embed the audio onto the spectro-
gram.

4.6.4 Multichannel

Expanding on the previous idea, Multichannel has the encoder output multiple channels that will be

directly used as the different copies of the image (instead of duplicating the exact same output).

While previously PrepHidingNet outputted 1 channel (corresponding to the flattened 3 colour chan-

nels), in this setup it outputs 8 channels, which will be used as 8 different images. This is possible

because the possibility of outputting multiple channels makes the previous pixel shuffle operation no

longer necessary, thus the encoded image is of size 256× 256 instead of the previous 512× 512.

As before, the replicas will be split before being fed to RevealNet, which will have as many input

channels as needed (8 in this case). This is shown in Figure 4.12.

In this scenario, the model needs to learn how to represent the 3 colour values using the eight
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different replicas. While this is initially more challenging, since it has no sense of colour, it also offers

more flexibility in the way they can be encoded.

Figure 4.12: Overview of the Multichannel method to embed the audio onto the spectrogram.

4.6.5 Comparison of embedding methods

Table 4.4: Quantitative results obtained using the different models proposed above.

Embedding method SSIM ↑ PSNR ↑ SNR ↑ L1 ↓

Stretch 0.73 21.82 40.60 2E-4

Replicate 0.77 22.07 45.41 5E-5

W-Replicate 0.77 21.62 41.50 1E-4

WS-Replicate 0.76 24.40 37.54 2E-4

Multichannel 0.92 27.35 14.73 3E-4

Table 4.4 shows that Multichannel has a large increase in image quality, but at the cost of a drop on

audio metrics, making the model less suitable than the others for most practical applications. On the

other hand, all the replicate-based embedding methods outperform the baseline Stretch, with Replicate

being slightly the best of the three, although the difference is very small.

However, the qualitative results shown in Figure 4.13 show that WS-Replicate is able to obtain a

much better reconstruction of the original image, since it is the only one able to preserve the original

colour.
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Figure 4.13: Qualitative results from the different models proposed above: the revealed image (top) and
the audio container spectrogram (bottom).

The results from Figure 4.13 show that the model is learning to encode the image data in the high

audio frequencies, since it is where the distortion is less noticeable. This can be easily observed in the

Multichannel case, where the replicas on the high frequency area are very easy to see compared to the

other ones, which are very dimmed (the fact that they are so clearly visible concurs with the low audio

quality of this model).

WS-Replicate also shows this behaviour, where only the bottom replica is visible in the spectrogram;

in the case of this model, this can be further confirmed by observing the trained scaling weights: 0.0013

and 0.2368 for the top (low frequencies) and bottom (high frequencies) replicas respectively, meaning

that the model has learnt to only use the second replica, since the first one would distort too much the

audio and be corrupted by the audio spectrogram in return.

4.7 Luma

This other approach aims to increase the efficiency of the models that use the pixel shuffle operation (i.e.

all the previous ones but Multichannel). Instead of appending a 0 as the fourth component, it adds the

luma of the pixel to be used as additional information.

When reversing the pixel shuffle at the decoding side, the luma is used as extra information to obtain

a better image.

Figure 4.14: Schema of the pixel shuffle operation using the luma as the fourth component; dashed lines
indicate a colour space conversion of the pixel.
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Figure 4.14 depicts an overview of the process. The pixel shuffle operation, shown on the left, uses

the luma of the pixel as the fourth value, instead of appending a zero. The pixel unshuffle, shown on

the right, uses the three RGB channels to compute the YCbCr components of the pixel, averages the

computed luma value with the fourth value to obtain a more reliable luma value and converts the pixel

back to its RGB representation.

Table 4.5: Comparison of metrics between the baseline and the model using the proposed Luma archi-
tecture.

Model SSIM ↑ PSNR ↑ SNR ↑ L1 ↓

Baseline 0.73 21.82 40.60 2E-4

Luma 0.78 24.67 40.63 2E-4

Table 4.5 shows that this addition does improve the quality of the revealed images while maintaining

the same audio quality as the baseline model. The improvement in image quality is better appreciated

through the qualitative results shown in Figure 4.15, were it can be seen that the model is now able to

reproduce colour, albeit a bit washed out.

Figure 4.15: Qualitative results comparing the baseline model and the one with the luma modification.

4.8 Permutation

[16] considered the possibility of randomly permuting the pixels of the preprocessed hidden image before

being added to the spectrogram and unpermuting them before feeding into RevealNet, as depicted in

Figure 4.16. The expected benefits are both in audio and image quality:

• Any spatial pattern is broken before the image is added into the audio. This means that the

distortion will be uniform among all frequencies. Additionally, from a secrecy perspective, the

image is not visible anymore in the spectrogram.

• Likewise, the spectrogram structure is not visible on the revealed image anymore, which is a

common problem when not using this technique. Instead, any distortion on the image to be

revealed will resemble random Gaussian noise, which is less perceptually relevant.
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The permutation can be fixed or changed at every iteration. In this work we only consider the fixed

case, but there should be little difference since the convolutional model is unlikely to overfit a 1024×512

random permutation.

Figure 4.16: Simplified schema of the architecture, showing where the signal is permutted and unper-
mutted.

Table 4.6: Comparison of metrics for different embedding methods when using the permutation or not.

Embedding Permutation SSIM ↑ PSNR ↑ SNR ↑ L1 ↓

Stretch
No 0.73 21.82 40.60 2E-4

Yes 0.30 12.15 76.38 < 1E-5

Replicate
No 0.77 22.07 45.41 5E-5

Yes 0.34 12.59 79.79 < 1E-5

W-Replicate
No 0.77 21.62 41.50 1E-4

Yes 0.55 18.15 31.21 7E-4

WS-Replicate
No 0.76 24.40 37.54 2E-4

Yes 0.59 20.44 30.95 7E-4

Multichannel
No 0.92 27.35 14.73 3E-4

Yes 0.51 19.58 26.52 7E-4

[16] reported that the inclusion of this operation significantly decreased the performance of the models

when used in another data set with the default architecture; our results, shown in Table 4.6, concur

with those findings. While audio quality is increased very substantially for the Stretch and Replicate

embedding methods, the drop in image quality causes the revealed image to be unrecognizable in the

output, as can be seen in figure 4.17.
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Figure 4.17: Qualitative results comparing the different model when using the permutation. Notice the
decrease in image quality with respect to the results shown in Figure 4.13. Also notice that all the
distortion in both the image and spectrogram is now in the form of unstructured noise (i.e., the image
can no longer be seen in the spectrogram and vice versa).

One of the supposed advantages of this operation is that the trainable part of the model is com-

pletely unaware of it (other than the distortion in the unpermutted container lacking the structure of a

spectrogram), since the permutation happens after the image has been encoded and it is unpermutted

before being decoded. This not only makes it easy to apply to any type of proposed architecture, but

should, in theory, allow models trained without permutation to perform well when using it and vice

versa. However, as is shown in Figure 4.18, this is far from being the case.

Figure 4.18: Qualitative results of models trained with and without permutations when being used in
inference time with and without permutations. As can be seen the model does not generalize to the
other case. It is using the WS-Replicate embedding, but the same conclusions apply to all the others.

4.9 Audio preprocessing

The PixInWav architecture assumes an audio of fixed length, 67522 samples, corresponding to around

1.5 seconds at the frequency of 44.1 kHz. However, the audio signals of the data set used are of variable

length and are unlikely to be that exact same size. Originally this is dealt differently depending on
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whether it is shorter or longer than the threshold:

• If the audio signal is shorter than the limit, it is padded on the right size with random Gaussian

noise of low magnitude until the needed threshold.

• If the audio signal is longer than the limit, a chunk of the desired size is randomly selected from

anywhere in the audio.

Note that all the random components of the audio preprocessing can be disabled during test time in

order to ensure that the exact same audio signal is being used every time.

Figure 4.19: Histogram of the length of the audios in the training partition of the data set. The blue
line corresponds to the audio threshold that is being used: shorter audios will be padded and longer ones
will be cut. The number of audios left of the line correspond to 21.06% of the total.

4.9.1 Padding bias

Padding only the right side of the spectrogram caused the data to be slightly biased, since it was more

likely to have empty (or, rather, noise-filled) regions at the right side.

In order to correct this while causing minimal changes to the original data, we added a random

amount of padding at both the left and right sizes.

4.9.2 Padding noise

We removed the Gaussian noise in the padding area, preferring an all-zero signal which represents

complete silence and is more likely to be found in a real-life scenario. Moreover, adding noise hardens

the task of the model, which needs to encode the image into a less structured signal (as is shown in the

results of encoding the image into the STFT phase from Section 4.5.1); thus, at inference time, it would

be reasonable to pad a short audio with zeros.

4.10 Larger container

All the previous work has been done with a container of size 1024 × 512, which is determined by the

STFT applied on the input audio waveform. However, these values are arbitrary and could be changed
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through the STFT hyperparameters; in this section we explore the possibilities offered by the use of a

larger container.

Increasing the size of the Fourier transform results in a larger size in the frequency dimension, while

reducing the hop size of overlapping windows causes the container to increase in the time dimension. We

applied both modifications to obtain a container of size 2048× 1024.

The previous embedding methods explained in section 4.6 need to be adapted to accommodate for

the larger container size.

• Stretch needs to interpolate to a larger target size, the same as the container.

• Replicate-based methods use 8 replicas instead of 2, which are arranged in the same manner as

Multichannel used to. The number of trainable weights also increases by a factor of four.

• Multichannel can be expanded to use more channels. The architecture remains the same, but the

number of channels (i.e. replicas) increases from 8 to 32.

Table 4.7: Validation metrics obtained for the different embedding types when using a large STFT
container. Note that the Multichannel used a batch size of 2, since the training was very unstable
otherwise.

Embedding STFT container SSIM ↑ PSNR ↑ SNR ↑ L1 ↓

Stretch
Small 0.73 21.82 40.60 2E-4

Large 0.80 22.00 57.65 3E-5

Replicate
Small 0.77 22.07 45.41 5E-5

Large 0.83 26.16 43.28 7E-5

W-Replicate
Small 0.77 21.62 41.50 1E-4

Large 0.84 26.73 46.80 9E-5

WS-Replicate
Small 0.76 24.40 37.54 2E-4

Large 0.85 26.71 34.31 4E-4

Multichannel
Small 0.92 27.35 14.73 3E-4

Large 0.94 29.49 18.93 2E-3

The values from Table 4.7 show a very significant improvement when using a larger container, both

in image and audio quality, as is to be expected from having more capacity for carrying information.

From the qualitative results from Figure 4.20, it can be seen that the models show similar behaviour

than when using a smaller container.
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Figure 4.20: Qualitative results comparing the different models when using a large container. Notice the
big improvement with respect to the results shown in Figure 4.13 from page 20.

This increase in performance comes at the cost of increased memory usage (twice as much) and

longer training times (three times as much). Note that for training purposes the audio transform can

be precomputed for every audio; however, the inverse transform will still be needed to compute the

waveform loss so there will still be an increase in training time.
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Chapter 5 - Ethics

This section is devoted to give a brief overview of the ethics and impact of this work.

5.1 Ethics of steganography

The core of this project is improving a steganography model. While it can be used for multiple different

purposes, such as hiding metadata inside an audio file, the main purpose has always been to carry secret

information in an inconspicuous medium.

This secrecy application is a double-edged sword that put in the right hands can be used for ethical

reasons, such as watermarking songs to avoid piracy, but can also be used by malicious individuals to

avoid detection by unsuspecting surveillance systems.

While we do not endorse or take responsibility for the usage of this tool for unethical reasons, we are

committed to making it open to everyone in an effort to ensure total transparency, believing this is the

way towards better and fairer research.

5.2 Environmental impact

At the core of PixInWav is a deep learning model, composed by two neural networks that need to be

trained for hours for every individual experiment. While the number of parameters is relatively low for

today’s standards (< 1 million) the amount of energy needed for training should be taken into account.

Several improvements have been made from the original PixInWav work, most notably using the

faster STFT transform, training during less epochs and performing less validation steps, driving down

the training time to a fraction of the original (more than 50h to only 2h).

The amount of electrical power needed to train an experiment is very variable and depends on a large

number of factors, but can be roughly approximated to 300W, which during the average of 10 hours for

each experiment to run leaves the energy consumption at around 3kWh.

A total of 44 experiments have been used for the development of work; however, taking into account

erroneous attempts that had to be redone, this number easily surpasses one hundred tries, leaving the

total energy consumption at more than 300kWh. While this is not a high number compared to today’s

state-of-the-art projects, it is still something to keep in mind for future works.

This should also be considered when putting this system into practice. For example, it can be a

deciding factor when choosing the size of the container if peak performance is not the main priority.
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Chapter 6 - Conclusions

In this work we presented in detail the existing PixInWav [13] architecture, analysed the behaviour of

the system from the inside and proposed several modifications in an attempt to improve its performance.

The analysis of the model showed that the encoder and decoder are mostly imitating a least significant

bit approach, where the image is hardly modified before being added into the audio using values of much

smaller magnitude.

From the different proposed modifications to the architecture, some proved to work better than

others:

• Using the STFT phase produced very bad results overall, while using it in combination with the

magnitude did not increase the quality in any significant way.

• Some of the new proposed architectures for embedding the image onto the spectrogram did improve

the metrics obtained with the baseline Stretch method. The replicate-based methods were shown

to be the best, with little difference between them.

• Including the luma as the fourth value of the pixel shuffle operation allowed the model to make

full use of the container space and was shown to produce a slight improvement in performance.

• Adding the random permutation of pixels did not work as expected and caused a significant decrease

in image quality to all models tried, albeit for some the audio quality did improve.

• Using a larger container, resulting from changing the STFT hyperparameters, caused the metrics

to improve significantly in all models tried. The increase in capacity of the container allows for

more information to be transmitted, at the cost of computational resources.

6.1 Future work

This last section is devoted to outline directions of research for the future, that were considered during

the development of the thesis but were out of the scope of this project.

6.1.1 Luma for Replicate-based embedding methods

Explicitly transmitting the luma channel has been shown to improve the image quality of the baseline

model and so has the use of Replicate-based embedding methods. Since the latter use the same pixel
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shuffle operation as the baseline Stretch embedding, the luma model could also be applied to these

embedding methods to hopefully achieve even better performance.

6.1.2 Flipped replicas

One of the main advantages of the architectures above that are based on replicating the encoded image

throughout the container space is that the same information is being transmitted more than once, making

it easier to recover the original image from the noisy audio.

However, due to the strongly non-random nature of most spectrograms, it is sometimes the case that

the same part of the image is polluted with noise in all the replicas, cancelling the benefit of replicating

in the first place.

Our suggested fix for this scenario consists in randomly rotating and flipping the multiple copies of

the image in a way that can be reversed at the receiving side. This way it is more unlikely that the exact

same part of the image will be corrupted.

Figure 6.1: Example of a scenario where flipping the replicas could improve the quality of the recovered
image. The two copies have been added one on top of the other, as would be the case for any of the
Replicate embedding methods. On the left, none of the copies have been altered and the left side of
the recovered image will most likely be distorted; on the right, the bottom replica has been flipped and
rotated, ensuring that there is little overlap between the polluted areas in the two copies.
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6.1.3 Attention for multichannel

Figure 6.2: Behaviour of repilca-based models when using very different audio spectrograms. The image
quality is substantially degraded when very high frequencies are present.

It has been observed, as shown in Figure 6.2 that the models that use many replicas, such as Multi-

channel or Replicate, learn to encode most of the information in the high frequencies, since that area

of the spectrogram is usually empty. However, when that is not the case, the resulting image quality is

significantly worsened. A model that is not aware of the audio when encoding has no way of countering

this effect.

The original PixInWav [13] architecture was shown not to benefit from conditioning the image pre-

processing on the audio, making a residual setup preferable due to its simplicity. However, for some of

the proposed new architectures this could no longer be the case, since the redundancy of the multiple

replicas allows for a very natural attention setup [22] where they can be scaled depending on the partic-

ular shape of the spectrogram (i.e., placing the image information where it less disturbs the audio). A

schema of such an architecture is shown in Figure 6.3.
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Figure 6.3: Proposed architecture that uses an attention network to scale the multiple replicas. In such
a setup the image preprocessing is no longer independent from the audio.

A more advanced setup could condition PrepHidingNet on the attention weights. If the multiple

encoded images are not exact copies of each other, as is the case for the Multichannel embedding,

the type of information contained in each could vary depending on the expected distortion from that

particular audio.

6.1.4 Generalize for lossy transmission

As is mentioned in Section 3.1.5, the current setup only considers lossless audio transmission. If this

were to be used over a noisy channel such as over-the-air transmission the conclusions obtained in this

work could not apply since, for example, the best architectures proposed need not be the most resilient

to noise.

Also worth investigating in the case of real-life digital implementations is the problem of lossy com-

pression, which is strongly related to noise. Again, the obtained conclusions should be reexamined

because, for instance, the STFT cannot be made indefinetely large to obtain more container capacity,

since only low frequencies will be preserved.

A thorough exploration should be carried out to corroborate that the previous conclusions apply in

these new scenarios.

6.1.5 Perceptual loss

One of the problems that current architectures face is that of a distortion that is perceptually very

noticeable to a human, such as the shape of the spectrogram appearing in the revealed image. The

current loss function, build from L1 and L2 losses for individual components, fails short for this kind of

task.

We suggest trying other losses that take into account human perception, such as the ones proposed

in [23] , in order to minimize the perceived amount of distortion in the resulting signals.
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Alternatively, a multi-modal adversarial loss could be considered, where a separate discriminator

network is trained to discern between the original and modified signals (the audio container and the

revealed image), such as the one presented in [8]. The encoder and decoder networks thus need to learn

how to fool the discriminator by producing less polluted signals.

6.1.6 Allow for audios and images of variable size

The current architecture assumes predefined audio and image sizes. This is the case for the image data

set, and the audio signals are cut or padded to make them the right size. However, this constraint limits

the usability of the whole system in the real world.

To overcome this limitation, the STFT transform’s hyperparameters could be changed depending on

the image resolution in order to produce a host spectrogram of the required shape.

Alternatively, the process of embedding of the image into the audio could be made dependant on the

respective original and target sizes. For example, the stretch operation can be easily modified to obtain

any desired size while the methods that are based on replicating the image can use a varying number of

copies.

6.1.7 Embedding in the waveform

PixInWav [13] has always used the spectrogram of the audio as a container for the image; this is very

convenient because both signals are 2-dimensional and thus can easily be added. However, another

possibility is adding the hidden image into the waveform directly, avoiding having to compute frequency

transforms altogether.

Such a system would need to find a way to flatten the image into a 1-dimensional signal. A näıve

flattening of the image with the original resolution (possibly having been previously preprocessed by

PrepHidingNet) would produce a 1D vector of length 256× 256× 3 = 196608, so an audio of this length

at least would be required (at the frequency of 44.1 kHz this would roughly correspond to 4.5 seconds),

which is more than most of the audio samples in the data set used.

More advanced setups could rely on convolutional layers to reduce the size of the image before or

after flattening and upscaling it afterwards, making the system able to work for shorter audio signals.
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Appendix

The code for the original PixInWav implementation, along with the instructions on setting up the envi-

ronment and running it, can be found on GitHub: https://github.com/margaritageleta/PixInWav.

As is mentioned before, the code used in this project is a complete reimplementation of the original,

with more features and fixes. It is also hosted on GitHub: https://github.com/migamic/PixInWav2.
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