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• A photo-Fenton treatment model is
proposed including variable H2O2 dosage.

• Model parameters are checked and
reduced according to sensitivity analysis.

• Parameters are fit to experimental data
sets with diverse H2O2 dosage profiles.

• Successful model validation is finally
obtained using out-of-sample testing.
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 The supply of hydrogen peroxide (H2O2) controlling the amount of highly oxidant hydroxyl radicals is themost critical
operational issue for the photo-Fenton process. Accordingly, this study addresses the development of a model for
photo-Fenton processes including a flexible H2O2 supply given as a function of time. The model is aimed at its future
exploitation in treatment optimization and the determination of the optimal profile for H2O2 supply. The work has
adopted a photo Fenton model previously reported that includes the inlet flow (fed-batch) and describes the system
dynamics under a flexible dosage. Thus, model global sensitivity analysis (GSA) and parameter estimation were per-
formed using Simulink® to examine the behavior of the model under flexible H2O2 dosage. GSA was carried out
using partial rank correlation methods and the Latin hypercube sampling to assess to which extent variations of the
model parameters affect eachmeasured response (H2O2, total organic carbon, TOC, and dissolved oxygen, O2 –the ex-
perimentally available information). Hence, themodel is discussed in regard of its hypothesis and chances for reducing
its complexity. This resulted in the rejection of two reactions of the initial model. Next, a set of 12 kinetic, stoichiomet-
ric and operative parameters was estimated through the fitting of H2O2, TOC, and O2 profiles. Discussion on model
fitting includes computational issues, the role of initial values for the estimation process, the goodness of fit criteria,
and the sampling method. The model was fit to experimental data with assorted H2O2 supply profiles and validated,
and Root Mean Square Error (RMSE) below 0.009 mM, 0.42 mM, and 0.127 mM were obtained for TOC, H2O2 and
O2, respectively. Therefore, this work contributes a practical model aimed at providing model-based optimization
for the H2O2 dosage profile of the photo-Fenton process.
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1. Introduction

The presence of many non-biodegradable organic pollutants in waste-
waters or surface waters (including industrial compounds, pharmaceuti-
cals, personal-care products, biocides, and plant protection substances)
may result in important environmental issues even in very low
2
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concentrations. Ineffective treatment of the organic pollutants in wastewa-
ters, as well as the direct release of them into the environment, may lead to
the infiltration of profoundly poisonous and low biodegradable species into
the natural aquatic ecosystems.

Several treatment techniques including both physicochemical and bio-
logical methods could be applied to contaminated wastewaters. In any
case, few strategies are adequately broad-based and helpful for real-time
applications (Lu et al., 2011; Oller et al., 2011).

Advanced oxidation processes (AOPs) have been broadly acknowledged
as promising strategies either individually or in combination for the reme-
diation of contaminated wastewaters containing non-biodegradable or-
ganic pollutants (Tufail et al., 2020).

Among these processes, the photo Fenton treatment is a well-known so-
lution for treating non-biodegradable contaminants in wastewaters that
cannot be treated with conventional bio-processes (Oller et al., 2011). It
has gotten a lot of interest because of its broad range of target chemicals, ro-
bust oxidation capabilities, and rapid response pace (Lu et al., 2010).

The photo-Fenton process is a photocatalytic process that generates
highly oxidizing hydroxyl radicals (•OH) by interacting chemical reagents
(Fe (II) salt and H2O2) with a UV irradiation light source, which causes a
synergic effect by creating a higher rate of •OH production.

However, the major limitations of this method are the need for H2O2,
Fe+2 salts and pH adjustment (mostly acidic)(Lu et al., 2010; Pignatello
et al., 2006). Furthermore, the hydroxyl radical is exceedingly unstable
and non-selective, so it is frequently scavenged by unwanted secondary re-
actions, some of them involvingH2O2 consumption, which cut down the ef-
ficiency of the process (Gulkaya et al., 2006).

Hence, it is critical to control the reaction conditions through the dosage
of H2O2 for achieving the complete mineralization of the target compound,
i.e. The reaction rate and process efficiency are both affected by H2O2,
which is the most expensive reagent (Lu et al., 2011). This represents a
compromise between decontamination efficiency of the process due to
H2O2 deficiency and excess concentration of H2O2 that forces extra cost.
In this regard, researchers have studied the photo-Fenton process with the
dosage of Hydrogen peroxide to enhance process performance (Santos-
Juanes et al., 2011)

As a straightforward approach for the supply of hydrogen peroxide, con-
stant concentration ratios of H2O2 to contaminant and iron were studied to
minimize the scavenging effect (Gulkaya et al., 2006; Mahmoudi et al.,
2021; Sinnaraprasat and Fongsatitkul, 2011). While such ratios may suit
steady operation, time-varying batch operations may require constantly
adapted H2O2 supply to optimize the operation performance (Yu et al.,
2020). As a result, the key research issue is the optimization of a time-
dependent H2O2 dose profile tomaximize process performance by reducing
the scavenging effects through the supply of the required amount of hydro-
gen peroxide supply at all times.

Towards this end, Ortega-Gómez et al. (2012) investigated a control
strategy for the automatic addition of hydrogen peroxide and the linking
behavior of dissolved oxygen to hydrogen peroxide consumption. It was
demonstrated that, through the application of this control strategy, the hy-
drogen peroxide consumed can be reduced by 50% compared to the more
traditional addition strategies employed in the photo-Fenton process
(Ortega-Gómez et al., 2012). More recently, Yu et al. (2020) presented a
conceptual basis and an experimental approach to address the problem of
hydrogen peroxide dosage for Fenton and photo-Fenton processes. The
mineralization was further improved in a specific H2O2 dosage (by
4.75%) rather than the same amount of hydrogen peroxide without dosage
(Yu et al., 2020).

Whereas most of the previous experimental works verified an increase
in the photo Fenton process efficiency using flexible dosage strategies
(Hamad et al., 2016; Yamal-Turbay et al., 2014; Yu et al., 2020), they are
useful in particular situations and cannot provide the optimal solution.

On the other hand, despite some attempts proposing different models
for hydrogen peroxide dosage in the Fenton based processes (Audino
et al., 2019a; Bacardit et al., 2007), solutions reported in the literature
are still incomplete and fall short of offering a dynamic model of batch
2

and fed-batch operations of the photo Fenton process using systematic
approaches.

Furthermore, the computational costs associated with developing a
comprehensive model can be a limiting factor in terms of model parameter
estimation and sensitivity analysis. Several studies with sensitivity analysis
have been performed for the Fenton-based processes and it has been con-
firmed the usefulness of the different kinetic reactions, especially the scav-
enging reactions to be considered (Căilean et al., 2015; Mousset et al.,
2016). Still, based on the different range of parameter values found in the
literature (Shinozawa et al., 2020), it is necessary to study kinetic parame-
ter estimations and sensitivity analysis for each specific model in order to
better fit the experimental results.

In other words, the lack of suitable dynamic models for Fenton and
photo-Fenton processes makes model-based optimization challenging,
and determining the optimum hydrogen peroxide supply profile has been
hardly addressed (Audino et al., 2019a). In fact, scarce attention has been
paid to the development of systematic procedures and optimization strate-
gies to efficiently operate the photo Fenton process including flexible
dosage.

The rigorous model-based optimization of the dosage profile is beyond
the scope of the present work. The target is determining a continuous func-
tion for the dosage level to be applied at each differential time step so that
any given cost function (economic, environmental, etc.) is minimized at the
end of the dosage. However, in order to address such a dynamic optimiza-
tion problem, a dynamic model is first required allowing the estimation of
the evolution of the outcome of the process (i.e. TOC) from a time-
controlled input (i.e. the H2O2 dosage profile). The objective and scope of
this work are shedding new light on the dosage problem and the develop-
ment and fitting to experimental data of a practical photo-Fenton model in-
cluding flexible H2O2 dosage. This work is a necessary step towards solving
the model-based optimization problem, which is not immediate and would
require further research.

The work follows and extends the approach by Cabrera Reina et al.
(2012) and Audino et al. (2019a) to model a time-dependent supply of hy-
drogen peroxide to a batch reactor, and uses the experimental data ob-
tained by Yu et al. (2020) using different dosage schemes for the
mineralization of paracetamol solutions at a pilot plant scale.

Thus, sensitivity analysis is the first step allowing balancing the com-
plexity and the accuracy of the model. Next, the model is fit to different
sets of experimental data and validated using new data (cross-validation).
Finally, the precision and accuracy of the model are discussed in regard
to its potential for addressing the optimization of a continuous time-
dependent H2O2 dosage profile that would in turn support informed
decision-making on the H2O2 supply problem in photo-Fenton treatments.

2. Methodology

The proposedmethodology consists of the simulation of the model for a
variable operation of the reactor with different H2O2 supply, sensitivity
analysis, parameter estimation using experimental data, and final valida-
tion with the evaluation of the results for the practical applications. The
flow diagram of the methodological framework followed is illustrated in
Fig. 1.

Accordingly, this section describes and discusses themodel adopted and
its implementation in Simulink® (Section 2.1); the data used to calibrate
and validate the model (Section 2.2) the methods employed for the quanti-
tative assessment of the fidelity of the model, and the sensitivity of its out-
put to model parameters (Section 2.3); and the procedure to use this
information to assess and discuss its consistency and complexity through
sensitivity analysis (Section 2.4). Finally, Section 3 presents and discusses
the results obtained.

Simulations and analysis of the model are proposed with the ultimate
goal of verifying the model implementation and learning from the different
computational experiments that can be produced. Next, global sensitivity
analysis is intended for assessing to which extent variations of the model
parameters affect each measured response (TOC, H2O2, and O2) with a



Fig. 1.Methodological framework.
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quantified correlation coefficient for each parameter. Thresholds are estab-
lished and discussed. Results in Section 3.2 reveal non-significant parame-
ters that are eliminated as their absolute correlation coefficients below
0.10 for TOC, H2O2, and O2 (the experimentally available information).

Parameter estimation is proposed through the minimization of the sum
of the squared differences between the model values and the training data
(88% of the experimental assays). Finally, validation is proposed by
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flexible dosage via fed-batch operation. The reaction scheme is given in
Fig. 2.

The formation of hydroxyl radicals is described through efficient reac-
tions (Eqs. (1) and (2)) between Iron (II) and hydrogen peroxide (H2O2),
as well as efficient reactions between the resulting Iron (III) and UV irradi-
ation. The low pH requirement (between 3 and 6) is assumed, as usual, as
an important condition for iron-induced reduction of hydrogen peroxide.
In the same way, a convenient light source with a proper constant wave-
length (nm) is assumed and not included in the model; thus, the model is
limited to the specific wavelength used. Contrariwise, the model does con-
template light intensity [I] and it can be fitted to the experimental data, but
again the model will be limited, this time because all the experimental data
used are obtained under constant irradiation.

r1 ¼ k1: Fe2þ
� �

H2O2½ � (1)

r2 ¼ k2: Fe3þ
� �

I½ � (2)

Radicals R decompose H2O2 (Reaction (3)) and combine (Reaction (4))
producing oxygen in both cases. Thus, an excess of H2O2 and radicals can go
through these inefficient paths instead of being used in the oxidation of the
organic matter M.

The existence and propagation of any of these reactions highly depend
on the amount of H2O2 as well as the rate constant. It's also worth noting
that increasing the hydrogen peroxide concentration lowers the process ef-
ficiency because it raises the concentration of radicals [R].

r3 ¼ k3: R½ � H2O2½ � (3)

r4 ¼ k4: R½ � R½ � (4)

The model also assumes the consumption of radicals R in a series of ox-
idations leading the parent compound M to the partially oxidized interme-
diates MX1 and MX2, and finally to CO2 (Reactions (5)–(9)). The
concentrations of three species determine the measurement of Total Or-
ganic Carbon (TOC=M+MX1 +MX2) and allow modelling the delayed
response of such a lumped parameter.

Reactions (5) and (6) are associated with the degradation of the main
organic matter to produce MX1 and then MX2 by means of Reaction (7). Fi-
nally, the degradation of the intermediates is modelled through Reactions
(7) to (9).

r5 ¼ k5: M½ � R½ � O2½ � (5)

r6 ¼ k6: M½ � R½ � (6)

r7 ¼ k7: MX1½ � R½ � (7)

r8 ¼ k8: MX1½ � R½ � (8)

r9 ¼ k9: MX2½ � R½ � (9)

Themass balance equations, including the overall gas-liquidmass trans-
fer coefficient for O2 (KLa) and the stoichiometric coefficients related to the
oxygen balance (c1, g1, and g2), are shown below (Eqs. (10)–(18)):

d H2O2½ �
dt

¼ F
V

� �
∙ H2O2½ �in � H2O2½ �� � � r1 � r3 (10)

d M½ �
dt

¼ F
V

� �
∙ M½ �in � M½ �� � � r5 � r6 (11)

d MX1½ �
dt

¼ F
V

� �
∙ MX1½ �in � MX1½ �� �þ r5 þ r6 � r7 � r8 (12)

d MX2½ �
dt

¼ F
V

� �
∙ MX2½ �in � MX2½ �� �þ r7 � r9 (13)
4

d TOC½ �
dt

¼ d M½ �
dt

þ d MX1½ �
dt

þ d MX2½ �
dt

(14)

d O2½ �
dt

¼ F
V

� �
∙ O2½ �in � O2½ �� �þ g1r3 þ g2r4 � c1r5

þ KLa O2½ �∗ � O2½ �ð Þð Þ (15)

d Fe2þ
� �
dt

¼ F
V

� �
∙ Fe2þ
� �

in � Fe2þ
� �� 	

� r1 þ r2 (16)

d Fe3þ
� �
dt

¼ F
V

� �
∙ Fe3þ
� �

in � Fe3þ
� �� 	

þ r1 � r2 (17)

d R½ �
dt

¼ F
V

� �
∙ R½ �in � R½ �� �þ r1

þ r2 � r3 � 2r4 � r5 � r6 � r7 � r8 � r9 (18)

where F, represents the inletflow rate (L. h−1);V (L), the total volumeof the
reactor and [Ci]in as well as [Ci] refer to the concentrations (mmol. L−1) for
each component in the inlet flow rate and inside the reactor, respectively.
In this particular study, all inlet concentrations are considered null except
[H2O2]in.

Hence, the model parameters of the photo Fenton process model to be
considered are k1 to k9, KLa, and the stoichiometric coefficients c1, g1, and
g2.

The model is based on the main following assumptions (Audino et al.,
2019a):

I. The different radical species that may exist are represented by their ag-
gregated concentration [R] and common behavior.

II. The reaction between Fe3+ and H2O2 is neglected so that the model is
only applicable to the photo Fenton process (UV light is necessary);

III. H2O2 hydrolysis is neglected;
IV. An intermediate partially oxidized compound is assumed to be present

before any CO2 is released from the process.
The main features of the model include the focus on parameters easy to

monitor such as dissolved oxygen, hydrogen peroxide, and TOC; the use of
unspecified intermediates (MX1, MX2, as artificial, dummy variables) to
model the delay in the response of this practical lumped measurement;
and the easy modelling of the scavenging of H2O2 by means the non-
linear consumption of radicals (Eqs. (3) and (4)).

Themodel given by the set of Ordinary Differential Equations (Eqs. (10)
to (18)) is implemented inMATLAB/Simulink®version R2021b and solved
numerically using ode15s solver as a variable order solver based on the nu-
merical differentiation formulas with a time variable-step.

Fig. 3 illustrates the capability of describing the evolution of the concen-
tration of all the components included in the simulation of the kinetic
model. The normalized values are calculated according to unity-based nor-
malization as shown in Eq. (19):

Normalized Ci ¼ Ci � Cmin

Cmax � Cmin
(19)

Table 1 provides the data given by Cabrera Reina et al. (2012) used for
the simulations shown in Fig. 4 (as mentioned, only [H2O2]in is different
from zero, while the rest of inlet concentrations are null).

The simulation example corresponds to a variable of H2O2 dosage pro-
file stemming from a flow rate of 0.143 (mL · min−1) that is switched on
from0 to 15min and from30 to 75min (Fig. 3a). These operational settings
will produce an experimentally monitored response (TOC, H2O2 and O2)
displayed in Fig. 3b. Furthermore, simulation provides deeper insight into
the process by revealing the concentration of intermediates and other unob-
servable species: the profiles of M, MX1, MX2show the successive transfor-
mation of M to MX1and to MX2, with both intermediates peaking at early
reaction times and gradually declining as the mineralization progresses
(Fig. 3c). As a result, TOC remains unaltered for a short time and then as-
ymptotically decreases, exhibiting a delayed response. The simulated



Fig. 3. Simulation of concentration profiles: (a) Variable H2O2 input profile: a constant flow rate (0.14318 mL · min−1) is kept from 0 to 15 min and from 30 to 75 min;
totaling (8.5909 mL, 271.29 mmol) at the end of the 3 h reaction time simulated; (b) Concentration profiles of the measured output: TOC, H2O2, O2; (c) Concentration
profiles (absolute values) for organic species (M,MX1,MX2), radicals (R), and iron species (Fe2+,Fe3+); (d) Concentration profiles for all species (normalized values).

Table 1
Model parameters and initial concentrations (Cabrera Reina et al., 2012).

Kinetic constants Value Initial concentrations Value

KLa(h−1) 2.7 [H2O2]0 (mM) 0
c1 0.1 [TOC]0 (mM) 0.26
g1 0.75 [O2]0 (mM) 0.64
g2 0.47 [Fe2+]0 (mM) 0.179
k1(mM−1.h−1) 8.81 [Fe3+]0 (mM) 0
k2((W. m−2)−1. h−1) 5.63 [M]0 (mM) 0.26
k3(mM−1.h−1) 75.8 [MX1]0 (mM) 0
k4(mM−1.h−1) 42,798 [MX2]0 (mM) 0
k5(mM−2.h−1) 2643 [R]0 (mM) 0
k6(mM−1.h−1) 257 [O2]∗ (mM) 0.21
k7(mM−1.h−1) 2865 I (W. m−2) 36
k8(mM−1.h−1) 271 F(ml. min−1) 0.143
k9(mM−1.h−1) 107 Total volume, V (L) 15
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profile of dissolved oxygen concentration shows a correspondence with the
levels of both H2O2 and R and also supports the idea that dissolved oxygen
may indicate an unproductive decomposition of hydrogen peroxide that
should be avoided. Finally, Fig. 3d presents the concentrations of all species
using normalized values for comparative purposes. Fig. 3d clearly shows
the parallel evolution of hydrogen peroxide and iron and the delayed re-
sponse of the radical species R respect to the concentration of H2O2.

2.2. Experimental data

The experimental data used to calibrate the model is also obtained from
the literature (Yu et al., 2020). The work by Yu et al. (2020) addresses the
formulation of the optimization of a fully flexible H2O2dosage profile in
photo-Fenton processes and reports data series according to this idea. The
work is limited because of the unaffordable experimental burden but
stresses the need for a reliable process model and provides suitable data
for calibrating such a model.

The work by Yu et al. (2020) specifically studied the photo-Fenton re-
mediation of a Paracetamol (PCT) and the experimental results include
the evolution of the concentration of TOC, H2O2, and O2. The data reported
corresponds to a set of systematically designed dosage profiles covering a
complete domain of alternatives (Table 2). The reaction time (2 h) was di-
vided into eight-time slots of 15min (S1 to S8) and for each one dosage was
set active or not (1,0) so that the same amount of H2O2 was fractioned and
distributed along such time span.

For all profiles, the first slot (S1) is obviously always on (1), while for
the last three (S6, S7, and S8) dosage was decided to be off (0). Thus,
there are four degrees of freedom (S2, S3, S4, and S5, shadowed in
Table 2) and 16 cases leading to the codification used in Table 2. The
label “No dosage” refers to the assay for which the same total amount of
H2O2 was supplied all at once at the beginning, and for which this codifica-
tion does not apply (N/A).

In order to illustrate the design of experiments, three cases (Code 02,
Code 05, and Code 07) are represented in Fig. 4, showing each dosage pro-
file set and the corresponding response obtained (TOC, H2O2, and O2). All
5

experiments were repeated twice, and the average values are represented
and used as reported by Yu et al. (2020).

2.3. Model fitting and parameter estimation

Themodel (Eqs. (1)–(18)) is calibrated by estimating the best parameter
values. This is done by solving a nonlinear multivariate optimization prob-
lem to minimize the sum of the squared differences between the model
values and the corresponding experimental data available. In this case,
this includes the easily monitored TOC, H2O2, and O2 concentrations,
while excluding dummy variables such as the concentrations of intermedi-
ates (MX1, MX2, etc.). This is summarized by Eq. (20).

min Z ¼ ∑
i

dTOC½ �i � TOC½ �i
� 	2

þ∑
j

dH2O2½ �j � H2O2½ �j
� 	2

þ∑
k

dO2½ �k � O2½ �k
� 	2

(20)

where the circumflex denotes experimental data.



Fig. 4. Experimental data for 3 particular hydrogen peroxide dosage profiles (codes 2, 5, and 7; 4 h reaction time). Above: flow rate and amount of H2O2 added. Below: TOC,
H2O2 and O2evolution.
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This problem is solved using the Non-linear least-squares method with
the Levenberg-Marquardt algorithm available in the Estimator Toolbox of
MATLAB/Simulink® version R2021b.

To assess the goodness of fit, the RootMean Square Error (RMSE), as the
standard deviation of the residuals (prediction errors), will be used and pre-
sented for each measured time series k (TOC, H2O2, and O2, ˗Eq. (21)). The
coefficient of determination R2 (Eq. (22)) is also presented as an informa-
tive statistical measure that is widely used. Caution is required in the use
and interpretation of R2 in nonlinear models since the total sum-of-
squares is not equal to the regression sum-of-squares plus the residual
sum-of-squares, as in the case of linear regression (Spiess and Neumeyer,
2010). It is used along with RMSE for illustrative purposes.

RMSEk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
Nk

i¼1
byik � yikð Þ2=Nk

� �s
(21)

Rk
2 ¼ 1 � ∑

N

i¼1
byi � yið Þ2=∑

N

i¼1
byi � yð Þ2

� �
(22)

where byi and yi correspond to the measured and simulated values at the
given time, respectively, and y is the mean of the measured data.
Table 2
Design of experiments (Yu et al., 2020).

ID
(Code)

ID
(bin)

S1 S2 S3 S4 S5 S6 S7 S8 Fraction per slot

No dosage N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
0 0000 1 0 0 0 0 0 0 0 1
1 0001 1 0 0 0 1 0 0 0 1/2
2 0010 1 0 0 1 0 0 0 0 1/2
3 0011 1 0 0 1 1 0 0 0 1/3
4 0100 1 0 1 0 0 0 0 0 1/2
5 0101 1 0 1 0 1 0 0 0 1/3
6 0110 1 0 1 1 0 0 0 0 1/3
7 0111 1 0 1 1 1 0 0 0 1/4
8 1000 1 1 0 0 0 0 0 0 1/2
9 1001 1 1 0 0 1 0 0 0 1/3
10 1010 1 1 0 1 0 0 0 0 1/3
11 1011 1 1 0 1 1 0 0 0 1/4
12 1100 1 1 1 0 0 0 0 0 1/3
13 1101 1 1 1 0 1 0 0 0 1/4
14 1110 1 1 1 1 0 0 0 0 1/4
15 1111 1 1 1 1 1 0 0 0 1/5
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2.4. Global sensitivity analysis

Parameter sensitivity analysis is used to examine a mathematical model
to reveal the relative importance of the various mechanisms included in the
model and the robustness of its output with respect to parameter uncer-
tainty (Latunde and Bamigbola, 2018).

One approach to sensitivity analysis is Local Sensitivity Analysis (LSA),
which is computationally inexpensive. They are based on derivatives (nu-
merical or analytical) and analyze the effect of one parameter at a time,
while the other parameters are kept constant. However, these methods
are limited to the exploration of only a small portion of the solution space
(Castillo et al., 2004).

Another approach is global sensitivity analysis (GSA), often imple-
mented using Monte Carlo techniques to overcome the limits of LSA (line-
arity and normality assumptions and local variations). GSA uses a
globally representative set of samples to explore the solution space. Further-
more, several input factors can be simultaneously varied to evaluate not
only the effect of one factor at a time but also the effect of interactions be-
tween inputs, since the sensitivity to an input may depend on other inputs
(Saltelli et al., 1999). In this study, GSA is adopted as it has been imple-
mented frequently for models having multiple correlated outputs.

There are several GSA techniques, mostly statistical and analytical
methods. New analytical and statisticalmethods are reported such as global
screening methods (e.g. Morris method)(Campolongo et al., 2007),
variance-based methods (e.g. Sobol's method and Fourier Amplitude Sensi-
tivity Test) (Saltelli et al., 1999) sampling-based methods (e.g. Latin hyper-
cube sampling with partial rank correlation coefficient index, LHS-PRCC)
(Helton et al., 2006) and others. These techniques have been developed
specifically for complex models of policy and allocation problems.

One of the statistical methods for GSA using the sampling techniques is
the application of partial rank correlation coefficients (PRCC) as a measure
of sensitivity for a large, complex computerizedmodel. The best of the sam-
pling schemes, Latin hypercube sampling (LHS), is a procedure that struc-
tures input trials in an optimum and comprehensive model-testing design.
The LHS method is selected along with an efficient stratification Monte
Carlo sampling method allowing the extraction of a large amount of uncer-
tainty and sensitivity information with a relatively small sample size
(Marino et al., 2008).

The combined LHS-PRCC method is used to analyze how the model pa-
rameters and the output are correlated, removing the effects of the remain-
ing parameters and considering general monotonic relationships between
inputs and outputs. In PRCC, also referred to as Spearman analysis and



a) Without dosage. Initial simulation. b) Without dosage. After model fitting.

a) With dosage (Code 02,0010). Initial simulation. b) With dosage (Code 02,0010). After model fitting.

Fig. 5. Parameter estimation and residual values for two illustrative cases with and without dosage (simulated data).
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ranked transformation, a model with P number of model parameters and a
model output y can be written as a function of all the model parameters
values xk (k = 1, 2, …, P) so that y = f(x1,x2,…,xP). Hence, N samples
(i = 1, 2, …, N) for each model parameter will produce a set of P sample
vectors Xk (1 × N) and an associated vector Y (1 × N) of output values.
Then, the partial rank correlation coefficients for each parameter (RXkY)
are calculated as follows (Marino et al., 2008):

RXkY ¼ cov Xk ,Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xkð ÞVar Yð Þp ¼ ∑N

i¼1 xik � xð Þ yi � yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xik � xð Þ2 yi � yð Þ2
q (23)

The R values range from−1 to 1, their magnitude indicates the param-
eter influence, and the sign indicates whether an increase in the parameter
value corresponds to an increase or decrease in the output (Helton et al.,
2006). Generally, it is assumed, also in this work, that a RXY values between
−0.1 and 0.1 (−0.1< RXY < 0.1) reflect a poor level of importance of a
parameter.

The combined LHS-PRCC procedure is fully described elsewhere
(Marino et al., 2008), but generally involves (i) sampling of the parameter
space, (ii) obtaining model output for each set of sampled parameters, (iii)
ranking parameter and output values and replacing their original values
with their ranks, and (iv) calculating the RXY for each input parameter.
Table 3
The goodness of fit for the model adjusted to simulated data.

Goodness of fit RMSE (mM) R2

Case study Dosage No dosage Dosage No dosage

TOC 0.005 0.0008 0.998 0.999
H2O2 0.029 0.017 0.999 0.999
O2 0.013 0.005 0.997 0.999
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In regard to the model output, different options are possible, and a deci-
sion is required. The model produces many different calculated values that
need to be pondered and/or aggregated to produce a reduced and compre-
hensive set of output values Y. The option in this work is the summation of
the square errors, which be considered independently for the three process
variables that are experimentally monitored (TOC, H2O2, and O2):

Y1 ¼ ∑
i

dTOC½ �i � TOC½ �i
� 	2

(24)

Y2 ¼ ∑
j

dH2O2½ �j � H2O2½ �j
� 	2

(25)

Y3 ¼ ∑
k

dO2½ �k � O2½ �k
� 	2

(26)

This choice favors thefidelity of themodel to the available experimental
data but would be open to discussion in other situations (e.g. an economic
output in case of further using the model for optimization).

GSA is implemented in Simulink Design Optimization software using 150
samples obtained by LHS and all experimental data sets provided by Yu et al.,
2020. Finally, the results (RXkrYr

) for each parameter are averaged accordingly.
Hence themodel is discussed in regard to the chances for reducing complexity.

3. Results and discussion

3.1. Model simulation, verification, and analysis

A first step aimed at verifying the procedure and providing comparative
results isfitting themodel to the ideal datawithout experimental error from
the simulation of the model using the same parameter values by Cabrera
Reina et al. (2012).



Fig. 6. Sensitivity analysis and correlation coefficients RXY for all model parameters (absolute value).
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Fig. 5 shows the simulations before and after parameter estimation for
two cases: one with no dosage using the data provided in Table 1 and one
with an additional H2O2 dosage profile defined by an inlet flow active
from 0 to 15 min and from 45 to 60 min (Code 02).

Results show excellent agreement between the ideal data and predicted
data. In the case of no dosage, the RMSE resulted in 0.0008, 0.017,
0.005 mM for TOC, H2O2, and O2, respectively. In the case of dosage
case, the lowest values of RMSE of 0.005, 0.029, 0. 013 mM for TOC,
H2O2, and O2, respectively. This is summarized in Table 3.

Thus, the quantitative results in Table 3 confirm a good tuning of the
fitting method, efficient performance, and the capability to attain accurate
fitting of the model to the data. Residual values and RMSE (mM) obtained
with simulated data attained are much lower than the usual experimental
error associated with the measurements of TOC, H2O2, and O2 (Audino
et al., 2019b).

3.2. Global sensitivity analysis

The robustness and complexity of the model are next analyzed via GSA,
assuming independent model parameters and adopting 150 samples for
each parameter using LHS-PRCC. The output is the sum of square errors be-
tween simulated and experimental data through all samples and for each
measured variable (TOC, H2O2, and O2).

Fig. 6 shows the corresponding averaged correlation coefficients ob-
tained for each parameter of the photo Fenton model, sorted by its influ-
ence on the signal matching of the simulated data (obtained by LHS) to
Fig. 7. Sensitivity analysis and correlation coefficients RXY for all
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the all data sets of the experimental data for TOC, H2O2, and O2 as well
as the average of all those in the role of the sensitivity function. Particularly,
Fig. 6 reveals that correlation coefficients for k5, k6 , and k8 are below the
threshold |RXY|≥ 0.10 for all three outputs TOC, H2O2 and O2, which indi-
cates their scarce relevance to the capability of the model to fit the experi-
mental data.

The negligible effect of k6 and k5 suggests that two different reactions
with hydroxyl radicals (Reaction (5) with O2 and Reaction (6) without
O2) equally compete for producing the same output. Consequently,
Reactions (5) and (6) are coupled, assuming that Reaction (5) is the only re-
action convertingM toMX1. Certainly, this analysis and this assumption are
acceptable only in the presence of light.

On the other hand, the negligible effect of k8 suggests that the reaction
ofMX1 and R generating CO2 (and intermediate compoundMX2) is not nec-
essary for the model to accurately describe the delay in the conversion of M
to CO2.

These parameters with scarce influence on the model output can be
omitted to reduce its complexity. Hence, they were removed, and GSA
was run againwithout k6 or k8 to assess the importance of the rest of the pa-
rameters. Results are shown in Fig. 7.

Considering the same criterion (|RXY|≥ 0.10), all the remaining param-
eters were revealed necessary as their corresponding |RXY| values were ob-
tained greater than this threshold for at least one measured variable (TOC,
H2O2, or O2). Therefore, the kinetic constants (k1, k2, k3,k4,k5,k7,k9, KLa),
stoichiometric coefficients c1, g1, and g2, in addition to operational param-
eter I, are finally the 12 parameters to be estimated.
parameters of the model without k6 and k8 (absolute value).



Table 4
Estimation results of the kinetic parameters for Code 02 as the best fit through the
first round.

Kinetic constants Initial value Fitted values

I (W. m−2) 32 29.75
KLa(h−1) 2.7 0.49
c1 0.1 5.9
g1 0.75 0.32
g2 0.47 0.63
k1(mM−1.h−1) 8.81 8.07
k2((W. m−2)−1 .h−1) 5.63 28.46
k3(mM−1.h−1) 75.8 0.97
k4(mM−1.h−1) 42,798 43,962
k5(mM−2.h−1) 2643 1113
k7(mM−1.h−1) 2865 42,133
k9(mM−1.h−1) 107 93.27
Goodness of fit RMSE (mM) R2

TOC 0.010 0.99
H2O2 0. 200 0.96
O2 0. 111 0.94
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It is worth discussing the change in the relative significance of certain
parameters after reducing the model. The most relevant variation is found
for KLa, which becomes the least influential parameter. Surprisingly, KLa
is revealed as the less influential parameter for explaining the behavior of
dissolved oxygen.

On the one hand, the rate change of [O2] depends on (eq. 15):

• the oxygen input via dosage [O2]in, which is considered zero,
• the internal generation of O2 via Reactions (3) and (4) (parameters
g1 and g2),

• the internal consumption of O2 via Reaction (5) (parameter c1),
• and the diffusion of O2 from/to the environment (parameter KLa)

On the other hand, [O2] values are close to saturation, [O2]∗; the gradi-
ent [O2] − [O2]∗ is almost null, and the product is hardly affected by the
value of KLa. This point is relative to the values attained by g1r3 + g2r4 −
c1r5, and certainly, the same sensitivity analysis shows that g1, g2, and c1
Table 5
Estimated kinetic parameters (ki (mM−1.h−1), k2 ((W. m−2)−1 .h−1), k5 (mM

Code
No dosage 221.550 0.653 5.325 0.247 1.007 7.

0 14.859 0.426 7.157 0.248 0.694 11.
1 25.332 0.534 5.493 0.151 0.644 7.
2 29.751 0.493 5.902 0.319 0.633 8.
3 25.471 0.388 6.172 0.418 0.701 8.
4 28.004 0.491 5.905 0.466 0.639 8.
5 42.079 0.532 5.960 0.335 0.597 9.
7 29.595 0.511 5.897 0.321 0.621 9.
8 23.972 1.625 6.566 1.294 0.579 7.
9 57.256 0.517 5.837 0.893 0.607 8.
10 30.901 0.522 5.964 0.327 0.630 8.
11 7.159 0.440 6.428 0.904 0.606 12.
12 32.721 0.509 5.871 0.491 0.636 8.
13 69.654 0.497 5.793 0.348 0.610 9.
14 30.097 0.474 5.903 0.325 0.640 8.

Mean 44.560 0.574 6.011 0.472 0.656 9.
Median 29.751 0.509 5.903 0.335 0.633 8.
Std. Dev. 51.280 0.297 0.440 0.313 0.102 1.
Confidence 28.398 0.164 0.244 0.173 0.057 0.
Int.(α=0.05) (± 64 %) (± 29 %) (± 4 %) (± 37 %) (± 9 %) (± 9

After discarding values beyond 3�

Mean 31.918 0.499 6.011 0.472 0.631 9.
Median 29.673 0.503 5.903 0.335 0.632 8.
Std. Dev. 15.816 0.061 0.440 0.313 0.034 1.
Confidence 8.758 0.034 0.244 0.173 0.019 0.
Int.(α=0.05) (± 27 %) (± 7 %) (± 4 %) (± 37 %) (± 3 %) (± 9
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have the most significant effect on the model output after k1. The values
of g1, g2, and c1 can freely combine, and effectively they do, to adjust the
model response to the experimental data.

This interesting result shows that different model fittings could be able
to explain the same experimental data. This is clearly connected to the prior
discussion on the multiple local optima that can be encountered by the op-
timization algorithm and reveals that while a model can be correctly ad-
justed for practical purposes, further mathematical research beyond the
scope of this work is required to determine the best number of model pa-
rameters and their optimal value.
3.3. Model fitting and parameter estimation

The issue when attempting the fitting of a nonlinear model to experi-
mental data is the initial guess of the iterative optimization procedure.
Fitting methods may find different sets of parameter values or may con-
verge to local solutions, if at all (Dattner, 2015). Convergence problems
and the existence of multiple optima have been detected in this work de-
pending on the selection of the set of initial parameters values. While
these problems are reported, a general solution approach is out of the
scope of this work and it is not attempted. Hence, an ad-hoc heuristic is em-
ployed and presented based on using a multi-start algorithm that fits the
model to individual data sets and finds a set of parameter values that ap-
plies to all the dosage profiles.

The proposed approach is summarized to execute a preliminary step
with a set of initial values in the parameter space and generate a first-
round fit for all assays. Then, following the strategy, the average of esti-
mated parameter values for all the data sets are evaluated in terms of capa-
bility to predict different dosage profiles as well as acceptable goodness of
fit. In the case of unacceptable fit, the new fitting round is performed
starting with the best fitting results out of all data sets as the initials for
the parameter search. In other words,

1. Use the reported values for the parameters (Cabrera Reina et al., 2012)
as the initial values
−2.h−1), I (W. m−2) and KLa (h−1).

954 36.317 68.719 42125 1008.7 31853 96.878
638 38.077 43.987 35152 1045.0 85686 88.710
408 34.344 0.033 44273 1064.3 10343 84.674
073 28.458 0.971 43962 1113.0 42133 93.265
807 29.139 1.593 50899 1694.1 163780 90.318
555 22.501 0.048 44969 1118.7 51767 92.468
305 38.622 0.114 44871 1117.3 41309 90.406
650 28.423 0.155 50391 1118.5 40982 94.287
153 93.918 1.091 40703 1128.6 47280 87.024
620 52.795 9.306 48131 1080.5 53672 90.116
700 35.568 0.168 46679 1096.0 55000 89.894
423 39.853 3.440 51131 1266.6 51990 95.191
619 19.920 2.949 47142 1071.0 40721 94.046
908 19.693 9.612 47334 1119.8 41749 90.309
514 27.604 0.881 46018 1047.6 44529 89.449
022 36.349 9.538 45585 1139.3 53520 91.136
620 34.344 1.091 46018 1113.0 44529 90.318
433 18.131 19.816 4186 164.0 34217 3.229
794 10.041 10.974 2318 90.8 18949 1.788
 %) (± 28 %) (±115%) (± 5 %) (± 8 %) (± 35 %) (± 2 %)

022 32.237 2.335 45585 1099.7 45644 91.136
620 31.742 0.971 46018 1104.5 43331 90.318
433 8.993 3.343 4186 60.0 16090 3.229
794 4.980 1.852 2318 33.2 8910 1.788
 %) (± 15 %) (± 79 %) (± 5 %) (± 3 %) (± 20 %) (± 2 %)



No dosage Code00 Code01 Code02

Code03 Code04 Code05 Code07

Code08 Code09 Code10 Code11

Code12 Code13 Code14

Fig. 8. Experimental data and predicted profiles in different dosage modes with final average values for the parameters.
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Table 6
Root mean square error (RMSE) and coefficient of determination (R2 Squared) for all the sets of experimen-
tal data, including those not used for model fitting (validation cases Code 06 and Code 15, which appear
shadowed).

ID ID RMSE R2 Ordinary

(Code) (bin) TOC (mM) H2O2 (mM) O2 (mM) TOC H2O2 O2

No dosage N/A 0.0151 0.3854 0.1513 0.97 0.97 0.87

0 0000 0.0101 0.8595 0.2097 0.99 0.91 0.95

1 0001 0.0084 0.2761 0.0835 0.99 0.93 0.96

2 0010 0.0096 0.2630 0.1204 0.99 0.93 0.92

3 0011 0.0118 0.3282 0.1780 0.98 0.86 0.96

4 0100 0.0072 0.2475 0.0959 0.99 0.95 0.95

5 0101 0.0097 0.3670 0.1126 0.99 0.82 0.94

6 0110 0.0082 0.3931 0.1067 0.99 0.85 0.95

7 0111 0.0097 0.3050 0.1067 0.99 0.90 0.95

8 1000 0.0117 0.3728 - 0.97 0.95 -

9 1001 0.0078 0.3741 0.0908 0.99 0.83 0.95

10 1010 0.0077 0.4006 0.0913 0.99 0.83 0.95

11 1011 0.0091 0.4841 0.0893 0.99 0.79 0.96

12 1100 0.0087 0.3045 0.0812 0.99 0.93 0.96

13 1101 0.0064 0.4609 0.0793 0.99 0.77 0.96

14 1110 0.0065 0.4114 0.0991 0.99 0.82 0.95

15 1111 0.0089 0.2109 0.1294 0.99 0.94 0.95
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2. Use the best fitting results out of all trials in the first round as initial
values for the second tuning round

The parameter values reported by Cabrera Reina et al. (2012) were used
as initial guesses. Next, the best fitting results (lowest RMSE) were chosen as
the initial values to be used for the second round of parameter estimation.

Table 4 provides the estimation results of the kinetic parameters for
Code 02 as the best fit among all reflected assays with RMSE values
below 0.20 mM for TOC, H2O2, or O2 using the reported values for the pa-
rameters as initials.

Table 5 displays the parameter values produced by the fitting of the
model to each of the experimental data sets obtained from each dosage pro-
file using the results obtained in the first round (see Table 4) as initial values.
While the quality of the fitting is similar for all the cases, the set of values ob-
tained for each parameter presents different distribution patterns with a very
large variance in some. Parameters, k9, c1, k4, k5, g2, k1 present low variance
(in increasing order) and, k9 is revealed as themost certain value. Parameters,
k2, KLa, k7, g1, I and k3 (in increasing order) present large variance and some
disparate values. k3 is the most fluctuating parameter.

To address this disparity, values beyond 3σ are highlighted in Table 5
(bold shadowed). These values may indicate outliers, but also suggest
that fittings for No dosage, 3 and 8 may be following another pattern
(which suggests in turn the determination of a different local optimum).

On the one hand, this indicates that further workmay be required in re-
gard to global optimization and attaining the same fitting in all the cases.
On the other hand, identifying outliers requires a lot of caution and has
no definitive criteria. From a practical point of view, the point is investigat-
ing to which extent this produces a good enough model for predicting the
evolution of the process as a function of the dosage.

Hence, values beyond three standard deviations (3σ, 1 out of 370 mea-
surements) are discarded as unlikely to have a set of 15 measurements
(2,98σ was used for k3). This allows producing more sensible data sets
and average values for the next step.

Despite their variability, the average values estimated for the model pa-
rameters allow producing practical model responses matching the experi-
mental results (Fig. 8). Fig. 8, compares the experimental data and the
simulated TOC, H2O2, or O2 profiles for all dosage schemes used in model
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fitting, and shows a qualitative image of the overall capability of the
model to reproduce the measured behavior of the process, remarkably the
changing trend of the H2O2, or O2 profiles.

Table 6 presents the quantification of the goodness of fit for each assay.
TOC values for all simulated examples were accurately predicted, and the
RMSE values were lower than 0.015 mM and R2 values were close to
unity. Also, the simulation for H2O2 and O2 resulted in good agreement
with the experimental data, but to a lesser extent. The concentration values
estimated for the monotonic evolution of TOC are accurate, within the
limits of the experimental error and the precision of the measurements.
Conversely, the trends estimated for the fluctuating H2O2 and O2 concen-
tration profiles (the derivatives, which may be useful for the process moni-
toring) follow the evolution of the experimental data, but the residual
values are larger. However, these differences cause a minor influence on
the practical application of the model to describe the performance of the
process, which is expressed in terms of the evolution of TOC.

The average CPU time required by the multi-level method to reach con-
vergence for one single run of parameter estimation or GSA is 20 to 30 min
in a PC i7-Intel(R) Xeon(R) Silver 4114 CPU@2.20GHs 128Gb RAM. How-
ever, using Parallel Computing Toolbox™ software speeds up parameter es-
timation/GSA of Simulink models by distributing the simulations, and
significantly reduces the total estimation run-time by 5 to 7 times.
3.4. Validation

Model validation is an important part of the study that was carried out
to confirm that the model actually achieves the purpose of explaining the
process dynamics under dosage schemes not included in the model fitting.
Thus, the experimental data sets Code 06 and Code 15 that were not used in
the calibration of model parameters were compared to the simulations ob-
tained by setting the same dosage profiles to the model fit to the rest of the
data sets. These two dosage profiles follow two different H2O2 supply strat-
egies: dosingH2O2 continuously from0 to 15min and from30 to 60min for
Code 06; and dosing H2O2 continuously from 0 to 75 min for Code 15 15.
Fig. 9 displays the simulations and the experimental data along with their
residuals for these two cases.



a) Code 06

b) Code 15

Fig. 9. Validation: experimental data (codes 06 & 15) and predicted profiles.
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In both cases, the model very accurately explains the monotonic decay
of the TOC concentration (RMSE<0.009 mM) as well as the convex behav-
ior of the derivative due to the initial delay that the presence of intermedi-
ates causes in TOC response. The model also describes very well the
fluctuating concentrations of hydrogen peroxide and dissolved oxygen
along the 4 h reaction time. However, the residuals values for H2O2 and
O2 are greater than those obtained for TOC.

The quantification of the goodness offit is also presented in Table 6. The
prediction is given in the validation cases with an RMSE<0.009 mM for
TOC, close to the detection error of the measurement, which is 0.02 mM.
The R2 value of 0.99 shows the good fit of the model in the case of TOC.
The model is capable of describing the evolution of H2O2 under variable
dosage with an RMSE value lower than 0.42 mM, which corresponds to
8% of the maximum H2O2 concentration (5.397 mM) in the reactor.
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Likewise, O2 evolution was predicted properly by an RMSE <0.127 mM
close to 9% the maximum O2 concentration (1.406 mM) in the reactor.

The model validation process indicated the adequacy of the model rep-
resentation of the system under study. The model and the procedure to ad-
just it is shown to be capable of reproducing the evolution of the reaction
under diverse and variable dosage schemes and predicting future situations
under new operating conditions. Hence, the tools and the methodological
approach, the main contribution of this work, are ready for easily testing
and assessing new dosage strategies that could be designed. On one hand,
the use of a fitted model to test any given continuous time-dependent
H2O2dosage profile would clearly provide a deeper understanding of the
photo-Fenton treatment and support informed decision-making on the
H2O2supply problem. On the other hand, the possibility of developing
andfitting such amodel enables the future use ofmodel-based optimization
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techniques so that the systematic exploration of alternatives could subse-
quently lead to determining the optimal dosage strategy for each situation.

4. Conclusions

This work contributes a novel step towards solving the optimal dosage
scheme required by photo-Fenton processes. Experimental approaches are
essential to providing the necessary insight into the mechanisms involved
in the efficient use of hydrogen peroxide, but the exploration and assess-
ment of all possible dosage profiles cannot be attempted experimentally.
Hence, this work has presented and discussed the development, fitting,
and validation of a dynamic photo-Fentonmodel including aflexible hydro-
gen peroxide supply aimed at being further exploited in determining the
optimal dosage profile for a given photo-Fenton treatment. The work relies
on the previous works by Cabrera Reina et al. (2012) and Audino et al.
(2019a) to propose the model and uses the experimental results provided
by Yu et al. (2020) to fit the model to the comprehensive set of hydrogen
peroxide supply schemes.

After verifying the model with the adjustment to simulated data, a
sensitivity analysis of the model fitting was performed. This analysis
provided valuable insight into the nature of the model, as well as on
the mathematical challenges still pending in regard to determining
globally optimal fittings. Two of the reactions proposed were found to
have a scarce influence on the fitting of the model, for which they
were excluded. Hence, the model has been adjusted to a series of exper-
imental data with different dosage profiles, and has been next validated
using independent experimental data sets that were not used in the cal-
ibration of the model.

The validation using different dosage profiles confirmed the capacity of
the model to accurately explain alternative dosage schemes, showing aver-
age errors such as RMSE<0.009 mM for TOC, RMSE<0.42 mM for H2O2,
and RMSE <0.127 mM for O2. Such a fidelity of the model in describing
the experimental measurements can be acceptable at this point, but it will
require further analysis when addressing the optimization of the dosage
profile and considering the capacity of the model to accurately describe
the objective function (e.g. a process economic output). Therefore, the
model development is ready to address further attempts the model-based
optimization of the dosage profile in subsequent investigations.
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