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The triaxial and hexadecapole deformations of the Kπ = 0+ and Kπ = 2+ bands of 24Mg have
been investigated by the inelastic scatterings of various probes, including electrons, protons,
and alpha(α) particles, for a prolonged time. However, it has been challenging to explain the
unique properties of the scatterings observed for the 4+

1 state through reaction calculations. This
paper investigates the structure and transition properties of the Kπ = 0+ and Kπ = 2+ bands of
24Mg employing the microscopic structure and reaction calculations via inelastic proton and α

scattering. In particular, the E4 transitions to the 4+
1 and 4+

2 states are reexamined. The structure
of 24Mg was calculated employing the variation after the parity and total angular momentum
projections in the framework of the antisymmetrized molecular dynamics (AMD). The inelastic
proton and α reactions were calculated by the microscopic coupled-channel (MCC) approach
by folding the Melbourne g-matrix NN interaction with the AMD densities of 24Mg. Reasonable
results were obtained on the properties of the structure, including the energy spectra and E2 and
E4 transitions of the Kπ = 0+ and Kπ = 2+ bands owing to the enhanced collectivity of triaxial
deformation. The MCC+AMD calculation successfully reproduced the angular distributions of
the 4+

1 and 4+
2 cross sections of proton scattering at incident energies of Ep = 40–100 MeV and α

scattering at Eα = 100–400 MeV. This is the first microscopic calculation to describe the unique
properties of the 0+

1 → 4+
1 transition. In the inelastic scattering to the 4+

1 state, the dominant
two-step process of the 0+

1 → 2+
1 → 4+

1 transitions and the deconstructive interference in the
weak one-step process were essential.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The band structure and deformations of 24Mg have been investigated by various experimental probes,
including electromagnetic transitions [1–3] and the inelastic scatterings of electrons [4–10], pions
[11], nucleons [12–27], 3He [28,29], and α particles [29–33]. In the positive-parity spectra, the
{0+

1 , 2+
1 , 4+

1 } and {2+
2 , 3+

1 , 4+
2 } states have been assigned to the Kπ = 0+ ground- and Kπ = 2+ side-

bands, respectively. Regarding these positive-parity bands, the properties of the structure, including
the energy spectra and E2 transitions, are described by the collective rotation of the prolate (β)
deformation with the static or vibrational triaxial (γ ) deformation. Moreover, the hexadecapole (β4)
deformations of 24Mg have since been discussed.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/4/043D

01/6171162 by KYO
TO

 U
N

IVER
SITY M

edical Library user on 27 O
ctober 2022

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



PTEP 2021, 043D01 Y. Kanada-En’yo and K. Ogata

To investigate the β4 deformations of 24Mg, various reaction analyses of the inelastic electron,
pion, proton, and α scatterings to the 4+

1 and 4+
2 states [5,11–13,15,21–26,29,31] and those of the

(quasi-)elastic scattering of heavy ions [34,35] have been performed employing collective models.
In the analyses of the inelastic scatterings where the phenomenological fittings of the β2 and β4

parameters with and without the γ parameters were performed, the weak (or zero) and remarkable
β4 deformations have been attributed to the Kπ = 0+ and Kπ = 2+ bands, respectively. Regarding
the 4+

2 (Kπ = 2+) state, which is strongly populated by inelastic scattering, the angular distribution
of the cross sections has been described by parameter fitting. However, for the 4+

1 (Kπ = 0+) state,
such reaction calculations with phenomenological collective models have failed to describe the
angular distribution of the (p, p′) cross sections. Further, microscopic approaches have been applied
to calculate the inelastic scattering of protons [14,27] and the inelastic charge form factors [9,36];
however, no microscopic calculation has succeeded in reproducing the property of the 0+

1 → 4+
1

transition.
In inelastic scattering, the 4+

1 (4.12 MeV) state is weakly produced compared to the 2+
2 (4.24 MeV)

state at close energy. Hence, the 4+
1 cross sections can only be measured with high-quality excitation

spectra, which are sufficient to resolve the degenerating 4+
1 and 2+

2 states. It has been revealed that the
4+

1 form factors that were measured by electron scattering displayed a strange shape (q-dependence),
which was different from those of the normal λ = 4 transitions and the observed 4+

2 form factors
[9]. Furthermore, in the inelastic scattering of protons, a similar strange behavior has been observed
in the angular distribution of the 4+

1 cross sections at incident energies of Ep ≤ 65 MeV, which was
challenging to explain utilizing the one-step cross sections of the distorted-wave Born approximation
(DWBA). Detailed analyses have been conducted for proton scattering at Ep = 15–50 MeV via
coupled-channel (CC) calculations based on a collective model [25,26]. They have suggested the
dominant two-step contribution in the 4+

1 cross sections, and also discussed the effects of the weak
direct process of E4; 0+

1 → 4+
1 transition.

Nevertheless, the agreement of the result with the data was unsatisfactory, and the inelastic scatter-
ing of the proton to the 4+

1 state is still a puzzle. Similarly, in the α scattering at Eα =104–120 MeV,
the multi-step effects proved to be effective in the 4+

1 cross sections [29,31]. These facts indicate
that higher-order effects contribute to the inelastic transitions of the 4+

1 state. Moreover, there is no
fundamental description of the obtained parameters even if the CC calculations with a collective
model could qualitatively or quantitatively fit the 4+

1 cross sections by tuning the adjustable param-
eters in such phenomenological model analyses, and serious model ambiguity may arise in both the
structure and reaction parts. Therefore, a microscopic approach is required to reveal the properties
of the 4+

1 state via inelastic scattering.
In our previous study [37], we investigated the proton and α inelastic scattering off 24Mg via the

microscopic coupled-channel (MCC) calculation combined with a microscopic structure calculation
within the antisymmetrized molecular dynamics (AMD) [38–41]. In the MCC calculations, CC reac-
tion calculations are conducted with the nucleon–nucleus and α–nucleus potentials constructed by
folding effective NN interactions with diagonal (ρ) and transition (ρtr) densities of the target nuclei,
which are obtained by microscopic structure models. The successful results of the MCC+AMD
approach of the proton and α scatterings off various p- and sd-shell nuclei employing the Melbourne
g-matrix NN interaction [48], which is an effective NN interaction in a nuclear medium based on a
bare NN interaction of the Bonn B potential [49], are presented in our previous reports [42–47]. One
of the advantages of utilizing the Melbourne g-matrix NN interaction in the MCC approach [50–54]
is that the interaction exhibits energy and density dependencies and there is no adjustable parameter
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in the reaction part owing to its fundamental derivation. Therefore, the structure calculation can
be easily combined with the reaction calculation of cross sections to examine the validity of the
adopted structure inputs by comparing the calculated results with referenced reaction data. Another
advantage of this approach is the fact that the combination of the microscopic structure and reaction
calculations can be employed to treat the electric transitions and inelastic proton and α scatterings
in a unified manner.

In previous AMD results obtained from the 24Mg structure calculation, there were still challenges
in precisely reproducing the structure properties; the excitation energies were overshot and the
transition strengths were underestimated. These could indicate that the previous method, AMD with
variation after parity (VAP) and total-angular-momentum projections, somewhat underestimates the
collectivity of the excited states of 24Mg. Moreover, it failed to reproduce the shape of the observed
0+

1 → 4+
1 charge form factors, which was a crucial shortcoming in the previous MCC+AMD

calculation for the reproduction of the 4+
1 cross sections of proton and α scattering. In principle,

these limitations in 24Mg structure calculation could be improved by the inclusion of higher-order
correlations that are beyond the AMD model space with a Slater determinant. However, such an
extension of the model space will require huge computational cost. Hence, an alternative treatment
in the AMD+VAP framework is employed to overcome this undershooting of the collectivity in this
paper. Namely, we apply a version of the AMD+VAP model with fixed nucleon spins instead of
optimizing the nucleon spins in the previous version. The fixed-spin version could suitably avoid
the undershooting problem of the AMD+VAP model and obtain good results for the collectivity in
the sd-shell nuclei, as discussed in the structure studies of the shape coexistence phenomena of the
nuclei around 28Si [55,56], and has been applied to the MCC+AMD calculations of the p +28 Si and
α +28 Si reactions [45].

Here, we reexamine the transition properties of the positive-parity states of the Kπ = 0+ and Kπ =
2+ bands of 24Mg via proton and α inelastic scattering by the MCC+AMD approach, employing
improved structure inputs that are obtained by the fixed-spin version of AMD+VAP. Further, we
discuss the properties of the 4+

1 and 4+
2 states by comparing the calculated cross sections with the

experimental data, including the recently observed (α, α′) data at Eα = 130 and 386 MeV [33].
The paper is organized as follows. Section 2 briefly explains the AMD framework of 24Mg and

the MCC approaches for p + 24Mg and α + 24Mg scatterings. The AMD results of the structure
properties of 24Mg are described in Sect. 3. Next, Sect. 4 presents the AMD+MCC results of proton
and α scattering, and discusses the transition properties of the 4+ states. Finally, a summary of the
study is presented in Sect. 5.

2. Method

In the AMD framework, an A-nucleon wave function is represented by a Slater determinant of
single-nucleon Gaussian wave functions as follows:

�AMD(Z) = 1√
A!A{ϕ1, ϕ2, . . . , ϕA}, (1)

ϕi = φX iχiτi, (2)

φX i(rj) =
(

2ν

π

)3/4

exp
[−ν(rj − X i)

2]. (3)

In the equations, A is the antisymmetrizer and ϕi is the ith single-particle wave function written by the
product of the spatial (φX i ), spin (χi), and isospin (τi) wave functions. The nucleon isospin function,
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τi, is fixed to be proton or neutron. In the present version of AMD, we fix the nucleon spin function,
χi, to be an up spin (χ↑) or down spin (χ↓). The Gaussian centroid parameters, Z ≡ {X 1, . . . , X A},
of the single-particle wave functions are assumed to be independent complex parameters, which are
determined by the energy optimization for each J π state of 24Mg.

The energy variation is performed after the parity and total angular momentum projections to
minimize the energy expectation value, E = 〈�|Ĥ |�〉/〈�|�〉, for � = PJπ

MM ′�AMD(Z) that is
projected from the AMD wave function. Here, PJπ

MM ′ is the parity and total angular momentum
projection operator, and M ′ is the quanta of the Z component (JZ ) of the total angular momentum
in the body-fixed frame. Note that M ′ is not necessarily equal to the K quanta, which is defined by
the principal axis of the intrinsic shape, because the principal axis could tilt from the Z-axis during
the energy variation. VAP is performed for J π = 0+, 2+, 3+, and 4+ to obtain the states of the
Kπ = 0+ and Kπ = 2+ bands. We select M ′ = 0, 1, 2, and 2 for J π = 0+, 2+, 3+, and 4+,
respectively, so as to obtain the minimum energy E = 〈�|Ĥ |�〉/〈�|�〉 after the variation for a
given J π . After VAPs of four sets of J π and M ′, the resulting four configurations, �AMD(Z (m)) (m =
1, . . . , 4), are superposed to calculate the final wave functions of positive-parity states. Specifically,
the diagonalization of the Hamiltonian and norm matrices is performed by the basis wave functions,
PJπ

MM ′�AMD(Z (m)), regarding M ′ and m, which correspond to the K mixing and configuration mixing,
respectively.

In the previousAMD+VAP calculation of 24Mg, the nucleon spin functions, χi, were not fixed; they
were optimized by the energy variation. In this paper, we name the present and previous AMD+VAP
calculations, i.e. those without and with nucleon spin optimization, “AMD(fix-s)” and “AMD(opt-s),”
respectively.

The effective nuclear interactions employed in the present structure calculation of AMD(fix-s)
are the same as those used in Refs. [37,40,45,46]. The MV1 (Case 1) central force [57] with the
parameters (b, h, m) = (0, 0, 0.62), and the spin–orbit term of the G3RS force [58,59] with strength
parameters uls ≡ uI = −uII = 3000 MeV are employed. Coulomb force is also included.

The elastic and inelastic cross sections of the proton and α-particle scatterings off 24Mg are
calculated by MCC+AMD in the same way as done in the previous work [37]. The nucleon–nucleus
potentials are constructed in a microscopic folding model (MFM) where the diagonal and coupling
potentials are calculated by folding the Melbourne g-matrix NN interaction [48] with diagonal (ρ(r))
and transition (ρtr(r)) densities of the target nucleus. The α–nucleus potentials are obtained by an
extended nucleon–nucleus folding (NAF) model [52], which is obtained by folding the calculated
nucleon–nucleus potentials with an α density. For more details of the reaction calculations, the reader
is referred to Refs. [37,42–44] and references therein.

For use in the MFM calculation of the nucleon–nucleus potentials, ρ(r) and ρtr(r) of 24Mg are
calculated from the wave functions obtained from AMD(fix-s). The charge symmetry breaking in
the wave functions obtained for the Kπ = 0+ and Kπ = 2+ bands of 24Mg is less than several
percentage points, and hence is omitted in the MFM calculation. Namely, half of the matter densities
ρ(r)/2 and matter transition densities ρtr(r)/2 are used for the proton and neutron components of
the densities in the MFM calculation, where ρ(r) = (ρp(r) + ρn(r)) and ρtr(r) = (ρtr

p (r) + ρtr
n (r)),

because ρp(r) ≈ ρn(r) and ρtr
p (r) ≈ ρtr

n (r) are satisfied. The E2 and E4 transition strengths are
calculated by the proton transition densities as

B(Eλ; Ji → Jf ) = e2

2Jf + 1

∣∣∣
∫

rλρtr
p (r)r2dr

∣∣∣2
. (4)
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Table 1. Intrinsic deformations, β and γ (degree), of the 0+
1 (K = 0), 2+

1 (K = 0), 4+
1 (K = 0), and 3+

1 (K = 0)

states of 24Mg obtained by VAP. The deformation parameters are calculated for the intrinsic wave functions of
single configurations before the projections and configuration mixing. The AMD(fix-s) result is compared to
the AMD(opt-s) one.

J π
i (band) AMD(fix-s) AMD(opt-s)

0+
1 (K = 0) (0.35, 10) (0.35, 3)

2+
1 (K = 0) (0.37, 12) (0.33, 6)

4+
1 (K = 0) (0.37, 12) (0.29, 7)

3+
1 (K = 2) (0.37, 20) (0.34, 12)

Similarly, the isoscalar transition strengths are given as

B(ISλ; Ji → Jf ) = e2

2Jf + 1

∣∣∣
∫

rλρtr(r)r2dr
∣∣∣2 ≈ 4B(Eλ; Ji → Jf ). (5)

To reduce the model ambiguity of the structure calculation, the calculated ρtr(r) are renormalized
by the factor f tr as ρtr(r) → f trρtr(r) to fit the experimental electromagnetic transition strengths and
charge form factors. For the excitation energies of 24Mg, the experimental values are utilized.

3. Structure of 24Mg

In this section we present the AMD(fix-s) results of the structure calculation of 24Mg and compare
them to the previous AMD(opt-s) results.

First, we analyze each AMD configuration, which are obtained by VAP for the 0+
1 (K = 0),

2+
1 (K = 0), 4+

1 (K = 0), and 3+
1 (K = 2) states, before the superposition to discuss the intrinsic

shapes of these states. Table 1 presents the deformation parameters, β and γ , obtained from the
expectation values, 〈X 2〉, 〈Y 2〉, and 〈Z2〉, of the intrinsic wave functions without the parity and total
angular momentum projections. The result of the AMD(fix-s) calculation is compared to that of
the AMD(opt-s) calculation. The AMD(fix-s) calculation obtains larger γ values than the previous
calculation, implying that the triaxial collectivity is enhanced in the AMD(fix-s) result, in which the
β and γ values are almost constant in the Kπ = 0+ ground-band.

The intrinsic density distribution of the AMD(fix-s) result is displayed in Fig. 1. From the density
distribution, the intrinsic states exhibit higher-order correlations beyond the quadrupole deforma-
tions, including the cluster components. Moreover, the intrinsic structure change occurs with an
increase in J along the Kπ = 0+ ground-band even though the quadrupole deformations are almost
unchanged.

Next, we discuss the structure properties obtained by the K mixing and configuration mixing
after the parity and total angular momentum projections. Figure 2 shows a comparison between the
AMD(fix-s) and AMD(opt-s) results of the energy spectra with the experimental data of the ground-
band (Kπ = 0+) and side-band (Kπ = 2+). In the calculations, the Kπ = 2+ band, including
the 2+

2 , 3+
1 , and 4+

2 states, is constructed by the triaxially deformed intrinsic shape and regarded as
the side-band of the Kπ = 0+ ground-band. Because of the enhanced triaxiality, the overshooting
shortcoming of the calculated Kπ = 2+ band energy, which was observed in the AMD(opt-s) result,
is sufficiently improved, and a good correlation with the data is obtained in the AMD(fix-s) result.

The AMD(fix-s) and AMD(opt-s) results of the E2 transition strengths, Bth(E2), are listed in
Table 2 and compared to the experimental data, (Bexp(E2)). The previous AMD(opt-s) calculation
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Fig. 1. Density distribution of the intrinsic wave functions before the parity and total angular momentum
projections of the 0+

1 (Kπ = 0+), 4+
1 (Kπ = 0+), and 3+

1 (Kπ = 2+) states obtained by VAP. In the left, middle,
and right panels, the densities are projected onto the X –Z , Y –Z , and Y –X planes by integrating along the
Y , X , and Z axes, respectively. The intrinsic axes are selected as the principal axes in the following order:
〈ZZ〉 ≥ 〈YY 〉 ≥ 〈XX 〉.
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Fig. 2. Energy spectra of 24Mg for the Kπ = 0+ ground-band and Kπ = 2+ side-band. The calculated spectra
of the AMD(fix-s) and AMD(opt-s) results are compared to the experimental spectra [60].

underestimated the in-band E2 transition strengths by a factor of two, but the results are enhanced
in the AMD(fix-s) calculation. A possible reason for these improvements in the energy spectra and
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Table 2. E2 transition strengths and the electric Q moment of 24Mg. The experimental data are from Refs. [1,
3,60]. The Bth values obtained by AMD(fix-s) are listed with the renormalization factors, f tr, employed for the
reaction calculations. For comparison, the values of AMD(opt-s) from Ref. [37] are also listed. The units of
the E2 transition strengths and Q moments are e2 fm4 and e fm2, respectively.

exp [60] exp [1] exp [3] AMD(opt-s) [37] AMD(fix-s)

J π
i J π

f B(E2) B(E2) B(E2) Bth(E2) f tr Bth(E2) f tr f tr

set-I set-II

2+
1 0+

1 88.4(4.1) 84.3(2.5) 86.5(1.6) 55.4 1.26 70.2 1.12 1.12
4+

1 2+
1 160(16) 95(16) 155(12) 72.8 1.48 101.7 1.26 1.11a

3+
1 2+

2 240(30) 140(25) 157(23) 103.1 120.3
4+

2 2+
2 77(10) 66(12) 76.9(9.9) 36.2 1.46 41.2 1.37 1.37

4+
2 3+

1 73.3 81.7

2+
2 0+

1 8.0(0.8) 5.8(1.2) 6.5(0.5) 2.1 1.95 3.2 1.58 1.58
2+

2 2+
1 12.2(0.9) 11.1(1.6) 12.2(0.9) 0.6 1b 4.1 1.72 1.72

3+
1 2+

1 10.3(1.2) 8.6(1.2) 9.6(0.9) 3.1 5.6
4+

2 2+
1 4.1(0.4) 4.1(0.4) 2.9 1.19 0.1 1b 1b

exp [60]
J π Q Q Q

2+
1 −16.6(6) −15.1 −17.0

aFitting the mean value of Refs. [1,3]. bNo renormalization.

transition strengths of the AMD(fix-s) calculation is the following: in the one-Slater description of
the AMD+VAP framework, the optimization of the nucleon spins possibly smears the collectivity
of the deformations in the med-sd-shell nuclei, but the smearing effect is weakened by fixing the
nucleon spins in the AMD(fix-s) calculation. Nevertheless, to precisely fit the data of the in-band
transition strengths, a 10%–40% enhancement of the transition matrix elements is still required of
the AMD(fix-s) result.

For use in the MCC calculation, we renormalize the calculated ρtr(r) with the factors f tr =√
Bexp(E2)/Bth(E2) to reproduce the experimental transition strengths. In the default MCC calcula-

tion, we utilize the f tr values that are adjusted Bexp(E2) values from Ref. [60] in which the evaluation
was performed with a couple of data sets of lifetime measurements. We call this choice “f tr(set-I).”
In Table 2, we also present two data sets reported in Refs. [1,3]. For most of the transitions, the two
measurements obtained consistent B(E2) values, but inconsistent values for the 4+

1 → 2+
1 transition.

To discuss the effect of this ambiguity on the reaction analysis, we adopt another choice of renor-
malization f tr for the 4+

1 → 2+
1 transition by fitting the mean value of the two data. We call this

optional choice “f tr(set-II).” The adopted f tr values of the default case (set-I) and the optional case
(set-II) are listed in Table 2. The only difference between f tr(set-I) and f tr(set-II) is the value for the
4+

1 → 2+
1 transition.

The E2 and E4 transition strengths of the inelastic transitions from the ground state are listed in
Table 3, where the calculated values of the isoscalar (IS) components, B(ISλ)/4, are listed together
with the experimental values, B(Eλ), measured by γ decays, and the empirical values, B(Cλ), which
were evaluated by the (e, e′) and (π , π ′) data, and B(ISλ)/4 by the (α, α′) data. The E4 transition
strengths from the ground state concentrate in the 4+

2 state, whereas the transition to the 4+
1 state

is much weaker. Compared to the AMD(opt-s) result, a significant improvement is achieved for the
4+

1 → 0+
1 transition employing the AMD(fix-s) calculation, which yields an E4 transition strength
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Table 3. E2 and E4 transition strengths of the 2+ → 0+
1 and 4+ → 0+

1 transitions. For the experimental
values, B(Eλ) from the γ decay data [60], B(Cλ) from the (e, e′) data [7,9], B(ISλ)/4 from the (α, α′) data
[32], and B(Cλ) from the (π , π ′) data [11] are listed. Regarding the theoretical values of the presentAMD(fix-s)
calculation, the original values Bth(ISλ)/4 before the renormalization and the renormalized values f 2

tr Bth(ISλ)/4
are listed together with the renormalization factors f tr(set-I, set-II), which are common for the set I and II cases.
The unit of the transition strengths is e2 fm2λ. For comparison, theAMD(opt-s) results of the original Bth(ISλ)/4
values before the renormalization and the f tr values from Ref. [37] are also listed.

γ decays [60] (e, e′) [9] (e, e′) [7] (α, α′) [32] (π , π ′) [11]
J π (band) B(Eλ ↓) B(Cλ ↓) B(Cλ ↓) B(ISλ ↓)/4 B(Cλ ↓)

2+
1 (K = 0) 88.4(4.1) 90.6(7.0) 105(5) 84 108

2+
2 (K = 2) 8.0(0.8) 5.48(0.60) 5.26(1.2) 14 6.7

4+
1 (K = 0) 200(30) 1200

4+
2 (K = 2) 4800(600) 4700(1100) 4700 2900

AMD(opt-s) AMD(fix-s)

J π (band) B(ISλ ↓)/4 f tr B(ISλ ↓)/4 f tr

original original normalized

2+
1 (K = 0) 54 1.26 68 86 1.12b

2+
2 (K = 2) 2.0 1.95 3.1 7.7 1.58b

4+
1 (K = 0) 1.1 1a 243 477 1.4c

4+
2 (K = 2) 1740 1.66 3350 4050 1.1c

aNo renormalization. bf tr determined to fit the B(Eλ) data [60]. cf tr determined to fit the charge form factors [9].

comparable to the empirical value of the (e, e′) data. Notably, the evaluation of B(IS)/4 by the (α, α′)
data was inconsistent with the value B(C4) of the (e, e′) data, because the DWBA calculation was
performed in the reaction analysis of 120 MeV α scattering data in Ref. [32], although it was not
applicable to the 4+

1 cross sections, as will be discussed subsequently.
Regarding the E4 transitions, we determine f tr by fitting the inelastic charge form factors to the

4+
1 and 4+

2 states measured by electron scattering. The adopted f tr values and the transition strengths
after the renormalization are listed in Table 3. The values are f tr = 1.4 and 1.1 for the 4+

1 and 4+
2

states, respectively, implying that 40% and 10% enhancements are still required to fit the observed
charge form factors.

The squared elastic and inelastic charge form factors are shown in Fig. 3, which shows a comparison
between the renormalized inelastic form factors and the data measured by electron scattering. The
AMD(fix-s) calculation successfully describes the shapes of the experimental form factors, and
precisely reproduces the shapes and magnitude of the observed form factors after the renormalization.
The significant state dependence of the E4 transitions can be observed between the 4+

1 and 4+
2 states

in both the magnitude and shape of the form factors. In the form factors in the range of the transfer
momentum, q ≤ 3 fm−1, the 4+

1 state exhibits a narrow two-peak structure that is different from the
broader shape of the 4+

2 form factors. This result is the first microscopic calculation that successfully
describes this unique character of the shape of the 4+

1 form factors, which had been a challenge to
reproduce by structure calculations.

The calculated matter ρ(r) and the renormalized ρtr(r) of the AMD(fix-s) result are shown in
Fig. 4. The unusual behavior of the 0+

1 → 4+
1 transition density that corresponds to the two-peak

structure of the charge form factors can be observed. For comparison, the Fermi density,

ρFermi(r) = ρ0

1 + exp
( r−c

t/4.4

) , (6)
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Fig. 3. Squared charge form factors of the elastic and inelastic processes of 24Mg. For the AMD(fix-s) result,
the renormalized form factors multiplied by the f tr values in Table 3 are plotted. For comparison, the AMD(opt-
s) result of the renormalized form factors are also shown. The experimental data are those measured by electron
scattering [4,6–9]. In the data for the 2+

2 (4.24 MeV) state in Refs. [4,6,8], the 4+
1 (4.12 MeV) contribution was

not separated.

with c = 2.876 fm and t = 2.333 fm, and the collective-model transition density of the Fermi-type
Tassie form, ρtr

Tassie(r) ∝ rλ−1∂ρFermi(r)/∂r, are shown in the figure. ρtr(r) of 0+
1 → 4+

2 has the
dominant peak at the nuclear surface, consistent with the standard E4 transition as shown by the
collective-model ρtr(r). Conversely, the behavior of ρtr(r) of 0+

1 → 4+
1 is very different from that for

the standard E4 transition: it exhibits an enhanced amplitude in the outer region and some suppression
in the inner region. In the AMD(fix-s) result, this dominant amplitude in the outer region is produced
by dynamical effects beyond the static mean field, and its origin is determined by deconstructive
contributions from various types of excitations, including the α-cluster dynamics at the nuclear
surface and the 16O-core excitation.

For comaprison, the renormalized form factors and transition densities of the previous AMD(opt-
s) calculation are also shown in Figs. 3 and 4, respectively. After the renormalization, the previous
AMD(opt-s) results are consistent with the present AMD(fix-s) results except for the 0+

1 → 4+
1

transition, for which theAMD(opt-s) calculation gives quite different form factors from theAMD(fix-
s) ones and fails to describe the experimental data.

4. Proton and α scattering

MCC+AMD calculations are performed for the proton and α scattering employing the diagonal and
transition densities obtained by AMD(fix-s). The J π = 0+

1 , 2+
1 , 2+

2 , 4+
1 , and 4+

2 states of 24Mg and
λ = 0, 2, and 4 transitions between them are included in the CC calculations, which we call the
full CC calculations. In the default MCC+AMD calculations, the calculated transition densities are
renormalized by the factors f tr(set-I), which are listed in Tables 2 and 3. We calculate the elastic and
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Fig. 4. Calculated matter densities ρ(r) and transition densities ρ tr(r) of 24Mg obtained by the present
AMD(fix-s) calculation. The renormalized transition densities, f trρ tr

th, employing the factors f tr listed in
Table 3, are shown. For comparison, the Fermi density ρFermi(r) = ρ0[1 + exp( r−c

t/4.4 )]−1 with c = 2.876 fm
and t = 2.333 fm, and the collective-model transition densities of the Fermi-type Tassie form, ρ tr

Tassie(r) ∝
rλ−1∂ρFermi(r)/∂r, are shown. ρ tr

Tassie(r) is normalized to fit the B(E2; 2+
1 → 0+

1 ) and B(E4; 4+
2 → 0+

1 ) of the
AMD(fix-s) result. The previous AMD(opt-s) results from Ref. [37] are also shown in panels (c)–(f).

inelastic cross sections of the proton scattering at incident energies of Ep = 40, 49, 65, and 100 MeV,
and α scattering at Eα = 104, 120, 130, and 386 MeV. To observe the CC effects, the one-step cross
sections are also calculated by DWBA, employing the same inputs. It should be commented that the
procedures for the reaction calculations in this paper are, in principle, the same as those in Ref. [37]
except for the structure inputs; the revised diagonal and transition densities of 24Mg obtained by
AMD(fix-s) are utilized in the present calculation instead of the AMD(opt-s) densities in the previous
calculation.

The calculated proton scattering cross sections are shown in Fig. 5 and compared to the experimen-
tal data. The present MCC+AMD calculation reasonably reproduces the amplitudes of the elastic
and inelastic cross sections of proton scattering within this energy range. It also reproduces the
diffraction patterns around the peak positions. The dip structures of the elastic cross section data
cannot be reproduced by the present MCC+AMD calculation, which is mainly due to the absence of
the spin–orbit potentials. The dashed lines represent the elastic cross sections obtained with the one-
channel calculation including the microscopic central potential together with a phenomenological
spin–orbit potential [61]. Although a slight disagreement around the dips remains, the inclusion of
the phenomenological spin–orbit potential improves the agreement with the elastic scattering data
significantly. This has been pointed out in previous studies [50,63]. In Ref. [63], in a phenomenolog-
ical approach, it was shown that the spin–orbit potential hardly affects the inelastic cross sections.
According to this finding, it is expected that the present results for the proton inelastic cross sections
shown in Fig. 5 will not change if a spin–orbit potential is implemented in the MCC calculation.
Compared to the DWBA calculation, it is observed that the one-step process contributes dominantly
to the proton scattering cross sections except in the 4+

1 state. For the proton inelastic scattering to
the 4+

1 state, the MCC+AMD calculation reproduces the amplitude and angular distribution around
the first and second peaks, whereas the DWBA cross sections are inconsistent in both amplitude and
angular distribution. The successful result for the 4+

1 cross sections, which could not be obtained by

10/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/4/043D

01/6171162 by KYO
TO

 U
N

IVER
SITY M

edical Library user on 27 O
ctober 2022

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



PTEP 2021, 043D01 Y. Kanada-En’yo and K. Ogata

10-6

10-4

10-2

100

102

 0  20  40  60  80  100 120 140

p+24Mg: 0+
1

40 MeV

49 MeV(×10-2)

65 MeV(×10-4)

100MeV
(×10-6)

R
ut

he
rf

or
d 

ra
tio

θc.m. (degree)

CC set-I
DWBA

w spin-orbit
exp

10-6

10-4

10-2

100

102

 0  20  40  60  80  100 120 140

p+24Mg:2+
1

40 MeV

49 MeV(×10-2)

65 MeV(×10-4)

100MeV(×10-6)

cr
os

s 
se

ct
io

n 
(m

b/
sr

)
θc.m. (degree)

CC set-I
DWBA

exp

10-8

10-6

10-4

10-2

100

102

 0  20  40  60  80  100 120 140

p+24Mg: 2+
2

40 MeV

49 MeV(×10-2)

65 MeV(×10-4)

100MeV(×10-6)

cr
os

s 
se

ct
io

n 
(m

b/
sr

)

θc.m. (degree)

CC set-I
DWBA

exp

10-8

10-6

10-4

10-2

100

102

 0  20  40  60  80  100 120 140

p+24Mg: 4+
1

40 MeV

49 MeV(×10-2)

65 MeV(×10-4)

100MeV(×10-6)

cr
os

s 
se

ct
io

n 
(m

b/
sr

)

θc.m. (degree)

CC set-I
DWBA

exp

10-8

10-6

10-4

10-2

100

102

 0  20  40  60  80  100 120 140

p+24Mg: 4+
2

40 MeV

49 MeV(×10-2)

65 MeV(×10-4)

100MeV
(×10-6)

cr
os

s 
se

ct
io

n 
(m

b/
sr

)

θc.m. (degree)

CC set-I
DWBA

exp

Fig. 5. Cross sections of the elastic and inelastic proton scattering off 24Mg at Ep = 40, 49, 65, and 100 MeV
calculated by MCC+AMD (solid lines with label “CC set-I”) and DWBA (dotted lines) employing f tr(set-I).
The elastic cross sections obtained with the one-channel calculation by including the microscopic central
potential together with a phenomenological spin–orbit potential [61] are also shown (dashed lines with label
“w spin-orbit.” The experimental data are the cross sections at Ep = 40 [13,14], 49 [17], 65 [19,62], and
100 MeV [20,62].

the AMD(opt-s) densities in the previous MCC+AMD calculation, is a new result of the the present
MCC+AMD calculation by employing the AMD(fix-s) densities.

The results of the α scattering are shown in Fig. 6. The calculated elastic and inelastic cross
sections are compared to the experimental data. The MCC+AMD calculation adequately reproduces
the amplitudes and angular distributions of the existing data at an energy range of Eα = 100–
400 MeV. The good agreements with the experimental cross sections for the 0+

1 , 2+
1 , 2+

2 , and 4+
2

states are obtained by the present MCC+AMD calculation employing the AMD(fix-s) densities
consistently with the previous results obtained with theAMD(opt-s) densities. The present calculation
also succeeds in reproducing the 4+

1 cross sections, for which theAMD(opt-s) densities in the previous
MCC+AMD calculation failed to describe the experimental data. Compared to the one-step cross
sections of DWBA, significant CC effects are observed in the 4+

1 and 4+
2 cross sections. In particular,

the one-step cross sections of the 4+
1 state are inconsistent with the amplitude and angular distribution

of the observed (α, α′) data, thereby implying that the multi-step process is also essential for the α

inelastic scattering to the 4+
1 state.
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Fig. 6. Cross sections of elastic and inelastic α scattering off 24Mg at Eα = 104, 120, 130, and 386 MeV
calculated by MCC+AMD (solid lines with label “CC set-I”) and DWBA (dotted lines) employing f tr(set-I).
The experimental data are the cross sections at Eα = 104 [31,62], 120 [32], 130 [33], and 386 MeV [33].

To acquire more details on the direct and multi-step contributions to the 4+
1 cross sections of

proton and α scatterings, we conduct the CC calculations by omitting the 0+
1 → 4+

1 transition.
We compare the results to the full CC result including all the λ = 0, 2, 4 transitions. Figure 7
displays the results with and without the 0+

1 → 4+
1 transition for the 4+

1 cross sections of proton
and α scatterings together with the one-step cross sections of DWBA. In the CC results without
the 0+

1 → 4+
1 transition, the two-step process via the E2; 0+

1 → 2+
1 and E2; 2+

1 → 4+
1 transitions

delivers the dominant contribution to the 4+
1 cross sections of proton and α scattering. Compared

to the two-step contribution, the one-step contribution is more than one order weaker. However, in
the full CC results, the direct 0+

1 → 4+
1 process suppresses the dominant two-step contribution,

particularly in the α scattering cross sections, and significantly alters the angular distribution of the
4+

1 cross sections. This deconstructive interference of the dominant two-step contribution by the
one-step process is essential in describing the observed diffraction patterns.

Notably, in the energy systematics, the observed 49 MeV (p, p′) data at the forward angles were
inconsistent with the data at Ep = 40 and 65 MeV in the other experiments. Additionally, in the α

scattering data, the 130 MeV (α, α′) data were inconsistent with the data at Eα = 104 and 120 MeV.
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Fig. 7. The MCC+AMD results with and without the 0+
1 → 4+

1 transitions of the (p, p′) and (α, α′) cross
sections to the 4+

1 state of 24Mg, obtained with the present AMD(fix-s) calculation using f tr(set-I). The full
CC calculation including the 0+

1 → 4+
1 transitions (CC set-I) and the CC calculation without the 0+

1 → 4+
1

transition are shown by solid and dashed lines, respectively. The one-step (DWBA) cross sections (dotted lines)
are also shown for comparison. The experimental (p, p′) data are from Refs. [13,17,19,20,62], and the (α, α′)
data are from Refs. [31–33,62].

These data should be reexamined by the careful separation of the weak 4+
1 (4.12 MeV) spectra from

the strong 2+
2 spectra of the inelastic scatterings.

Figure 8 compares the present and previous results of MCC+AMD for the 4+
1 cross sections

obtained with the AMD(fix-s) and AMD(opt-s) densities, respectively. The present calculation
employing the AMD(fix-s) densities successfully reproduces the angular distributions of the (p, p′)
and (α, α′) cross sections, whereas inconsistent results were obtained in the previous calculation
using the AMD(opt-s) densities because the E4; 0+

1 → 4+
1 transition density of AMD(opt-s) was

incorrect (refer to the charge form factors in Fig. 3(d)). In the results obtained with the AMD(opt-s)
densities, the direct 0+

1 → 4+
1 transition gives a minor contribution to the 4+

1 cross sections, and
the full CC result is consistent with the CC calculation without the 0+

1 → 4+
1 transition. In other

words, the success of the present MCC+AMD calculation is because of the detailed description of
the 0+

1 → 4+
1 transition density, which is essential for the deconstructive interference of the strong

two-step process by the weak one-step process in the 4+
1 cross sections. This result indicates that the

MCC approach is beneficial to examine the validity of the structure inputs even if the one-step contri-
bution is not dominant. Notably, it is proved that the MCC approach combined with the microscopic
structure calculation is necessary to solve the puzzle in the 4+

1 cross sections.
In the detailed comparison of the preset result with the observed data, there is a slight overestimation

of the (α, α′) cross sections of the 4+
1 state. To observe the effect of the ambiguity in the E2; 4+

1 → 2+
1

transition strength to the 4+
1 cross sections, we conduct the MCC+AMD calculation for f tr(set-II).

Figure 8 shows a comparison of the results of f tr(set-I) and f tr(set-II). The difference between the set-
I and -II calculations is only a slight modification in the renormalization factor of the E2; 4+

1 → 2+
1

transition density; it changes from f tr(set-I) = 1.26 to f tr(set-II) = 1.11. Regarding set-II, f tr(set-II)
of 1.11 for 4+

1 → 2+
1 coincides with f tr of 1.12 for the 2+

1 → 0+
1 transition in the same band. By this

modification, the 4+
1 cross sections are slightly reduced, especially for the α scattering, and better
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Fig. 8. Inelastic proton and α scattering cross sections of the 4+
1 state of 24Mg calculated by MCC+AMD

employing the AMD(fix-s) densities in the two renormalization factor cases, f tr(set-I) and f tr(set-II). The
previous MCC+AMD results employing the AMD(opt-s) densities [37] are also shown. The experimental
(p, p′) data are taken from Refs. [13,17,19,20,62], and the (α, α′) data are from Refs. [31–33,62].

results are obtained in set-II than in set-I. This implies that the value f tr = 1.11 for the E2; 4+
1 → 2+

1
transition, which is adjusted to B(E2; 4+

1 → 2+
1 ) = 125 e2fm4, is favorable to describe the 4+

1 cross
sections in the present MCC+AMD approach, although we cannot propound a definite conclusion
because of the possible ambiguities in other transitions.

5. Summary

The structure and transition properties of the Kπ = 0+ and Kπ = 2+ bands of 24Mg were investigated
by microscopic structure and reaction calculations via inelastic proton and α scattering. For the
structure calculation, we adopted AMD+VAP with fixed nucleon spins, called AMD(fix-s), instead
of the previous AMD+VAP calculation with optimized nucleon spins, which we called AMD(opt-s).
Employing the revised structure calculation (AMD(fix-s)), the E4 transitions to the 4+

1 and 4+
2 states

were reexamined.
Employing theAMD(fix-s) calculation of the 24Mg structure, improved results for the energy of the

Kπ = 2+ band and the E2 and E4 transition strengths, which the previous AMD(opt-s) calculation
could not quantitatively reproduce, were obtained. These improvements were obtained because
of the enhanced triaxiality achieved by the AMD(fix-s) calculation. For the transition properties
of the 4+ states, a significant improvement was obtained for the E4 charge form factors by the
AMD(fix-s) result. The remarkable difference between the 4+

1 and 4+
2 states of the charge form

factors, which was observed by electron scattering, was described well by theAMD(fix-s) calculation.
in particular, the calculation successfully reproduced the unusual behavior of the 4+

1 form factors
with a narrow two-peak structure. This structure corresponded to the enhanced outer amplitude of
ρtr, which was different from the conventional shape of standard E4 transitions. This is the first
microscopic calculation that described this unique property of the E4; 0+

1 → 4+
1 transition.

Employing the renormalized AMD(fix-s) densities, the MCC calculations of the proton and α

scattering off 24Mg were performed utilizing the Melbourne g-matrix effective interaction. The
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MCC+AMD calculation in this study reasonably reproduced the elastic and inelastic cross sections
of proton scattering in the energy range Ep = 40–100 MeV. For the α scattering, the calculation
reproduced the amplitudes and angular distributions of the existing data adequately at an energy
range of Eα = 100–400 MeV. In particular, the present calculation with theAMD(fix-s) densities was
in good agreement with the (p, p′) and (α, α′) data for the 4+

1 state, which has long been a challenge
to explain via reaction calculations. In the detailed analysis of the CC calculations with and without
the 0+

1 → 4+
1 transition and the DWBA calculation, it was revealed that the dominant two-step

process via the E2; 0+
1 → 2+

1 and E2; 2+
1 → 4+

1 transitions and the deconstructive interference by
the weak one-step process were essential for the inelastic proton and α scattering to the 4+

1 state.
The present results indicated that the MCC approach was beneficial for examining the validity

of the structure inputs even if the one-step contribution was not dominant. The MCC approach
combined with the microscopic structure calculation, which afforded correct charge form factors,
was necessary for solving the puzzle in the proton and α inelastic scattering to the 4+

1 state of 24Mg.
In the structure calculation, better results for the Kπ = 2+ side-band were obtained with the present

AMD(fix-s) calculation. However, the present framework of theAMD(fix-s) is not suitable to describe
1p–1h excitations including negative-parity states because nucleon spin degrees of freedom are frozen
in the model space. For further improvement of the structure calculation for various excited states of
24Mg, an extension of the model space beyond a one-Slater-determinant description, for example,
the generator coordinate method using parameters for β2, γ , and β4 deformations, is necessary.
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