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The rapid adoption of wireless sensor devices has made it easier to record location 
information of people in a variety of spaces (e.g., exhibition halls). Location information 
is often aggregated due to privacy and/or cost concerns. The aggregated data we use 
as input consist of the numbers of incoming and outgoing people at each location and 
at each time step. Since the aggregated data lack tracking information of individuals, 
determining the flow of people between locations is not straightforward. In this article, 
we address the problem of inferring latent people flows, that is, transition populations 
between locations, from just aggregated population data gathered from observed locations. 
Existing models assume that everyone is always in one of the observed locations at 
every time step; this, however, is an unrealistic assumption, because we do not always 
have a large enough number of sensor devices to cover the large-scale spaces targeted. 
To overcome this drawback, we propose a probabilistic model with flow conservation 
constraints that incorporate travel duration distributions between observed locations. To 
handle noisy settings, we adopt noisy observation models for the numbers of incoming 
and outgoing people, where the noise is regarded as a factor that may disturb flow 
conservation, e.g., people may appear in or disappear from the predefined space of interest. 
We develop an approximate expectation-maximization (EM) algorithm that simultaneously 
estimates transition populations and model parameters. Our experiments demonstrate the 
effectiveness of the proposed model on real-world datasets of pedestrian data in exhibition 
halls, bike trip data and taxi trip data in New York City.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Location information of people is now being gathered in various spaces such as exhibition halls, shopping malls, amuse-
ment parks, and urban cities. Understanding people’s mobility patterns from location data is of critical importance in many 
fields including navigation systems [11], travel route recommendation [18], location-based mobile advertising [7], urban 
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Fig. 1. Aggregated population data. Observed the numbers of incoming and outgoing people at each observed location and at each time step (blue). The next 
location of each individual is unobserved (red). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The problem we focus on: Inferring latent people flows between locations from just aggregated population data. The left part represents the number 
of incoming and outgoing people at each location and at each time step, which we use as input data. The right part is the output to be estimated: 
Unobserved transition populations between locations.

planning [39], and disaster management [29]. For example, finding popular routes of people in exhibition halls yields bet-
ter route recommendations. Knowing mobility patterns in shopping malls is useful for providing advertising information 
according to their current locations.

There are often cases where location tracking of individuals is difficult; aggregated population data are only available 
instead, whose two major reasons are as follows: Firstly, privacy concerns are recently increasing, location information is 
thus not only anonymized but also often aggregated [6]. Secondly, tracking data collection is too costly because one requires 
to prepare a software system for tracking users and to obtain the user’s agreement for tracking user location. The typical 
response is to use people counting systems for directly obtaining aggregated population data. These systems are constructed 
by various sensors such as video cameras [5] and inductive-loop traffic detectors [16]; these are cost-effective and easy to 
install.

The aggregated population data considered in this study consist of the numbers of incoming and outgoing people at 
each observed location and at each time step. Fig. 1 shows an example of the aggregated data collected from three observed 
locations. For example, in an exhibition hall, we may be able to obtain the number of visitors entering or leaving each 
event booth over time via wireless technologies, e.g., Bluetooth Low Energy (BLE). Other examples include pedestrian data 
for each attraction in an amusement park [8], each store in a shopping mall [25], and traffic data from intersections [17]. In 
this article, given just aggregated data, we address the problem of inferring latent people flows, i.e., transition populations 
between locations, shown in Fig. 2. Solving this problem allows us to analyze mobility patterns while preserving privacy 
and/or saving data collection costs.

Recently, many methods based on deep neural networks have been developed for analyzing aggregated population 
data [10,37,38,40]. The problem addressed in these studies is related but essentially different from ours. The aim of these 
studies is to predict the future numbers of incoming and outgoing people at each observed location; thus, they cannot es-
timate the transition populations between locations from just the numbers of incoming and outgoing people. A DNN-based 
method has been developed for predicting transition populations [41]; however, the prediction function of the method is 
learned in the supervised setting, so that one has to collect the transition populations between locations for training the 
model. Our study, on the other hand, considers the problem of estimating the transition populations from just the numbers 
of incoming and outgoing people, where the estimation process can be achieved in the unsupervised setting; namely it does 
not require the training data for transition populations. The unsupervised setting we focus on is practically reasonable, be-
cause most of the aggregated datasets gathered by cost-effective ways (e.g., people counting systems) do not have transition 
information.
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A similar problem has been tackled by collective flow diffusion models (CFDM), in which people flows are assumed to 
be probabilistic diffusion processes on a graph; nodes are locations and edges are paths between locations [17]. Several 
extensions of CFDM have recently been developed for estimating transition populations between locations from aggregated 
population data [1,8,13,14]. The basic idea of these models is to infer transition populations by maximizing a likelihood 
subject to constraints that represent people flow conservation. The constraints assume that any person who leaves a location 
at one time step always arrives at another location at the same time step. In other words, these models assume that 
everyone is always in one of the observed locations at every time step. This assumption, however, is too restrictive for many 
real-world settings, because we do not always have a large enough number of sensor devices to cover a large-scale space 
of interest: Each sensor device has an observation range in which people can be counted (depicted by the gray circles in 
Fig. 2), meaning that people might be moving through passages that are outside the ranges at an observation time step. In 
that case, the flow conservation constraints might not be satisfied, and thus CFDM fails to estimate transition populations 
between locations accurately.

We propose a new probabilistic model, called Time-delayed Collective Flow Diffusion Models (T-CFDM) hereinafter, that 
robustly infers transition populations between locations in more practical settings where the observation range of sensor 
devices is limited and some people are not observed in any location in some time periods. In T-CFDM, people are assumed 
to move from location to location according to transition probabilities that depend on their current locations. Since the 
transition populations are not observed, we treat them as latent variables. Our key idea is to design flow conservation 
constraints that incorporate travel duration distributions between locations. They aim to model the people in transit, that 
is, those who leave one location at one time step and arrive at another location after some delay; moreover, our modeling 
allows us to capture the heterogeneity in travel duration among individuals as it treats travel duration as a random variable 
that follows a probability distribution, namely it is not a point estimate. This is a critical advance in modeling the temporal 
dynamics of people flows. For example, in an exhibition hall, some people might promptly move to their next location, but 
others might take a rest before arriving at another location; in urban areas, moving speeds might depend on the means of 
transport used (e.g., walking, bike, car).

In practical situations, the flow conservation constraints might not strictly hold, because the observations are noisy. For 
example, people may enter or exit from the predefined space, implying that the total number of people is not constant. 
Another example is that sensing errors might be contained in the observations. To handle the noisy settings that may 
disturb flow conservation, we adopt noisy observation models for the numbers of incoming and outgoing people, as in [28]. 
In other words, we treat the flow conservation constraints as soft constraints. This allows determination of noise variance 
at respective locations via maximum likelihood estimation. We develop an approximate expectation-maximization (EM) 
algorithm that simultaneously estimates transition populations and model parameters.

The major contributions of this article include the following:

• We propose T-CFDM, a first model that incorporates travel duration distributions for robustly inferring transition pop-
ulations from noisy aggregated population data gathered at limited locations. This contribution is significant in that it 
broadens the applicability of CFDM-based methods to many practical cases.

• We develop an efficient approximate EM algorithm to estimate transition probabilities, transition populations, travel 
duration distributions, and noise variances, simultaneously.

• We evaluate the effectiveness of the proposed model by using real-world datasets, pedestrian location logs from large-
scale exhibition halls, and bike trip data and taxi trip data from New York City.

This article is organized as follows: In Section 2, we outline related work. Section 3 describes our problem of inferring 
latent people flows from just aggregated population data. In Section 4, we formulate the proposed model that incorporates 
travel duration distributions between locations. In Section 5, we present the approximate EM algorithm for learning model 
parameters. Section 6 demonstrates the effectiveness of the proposed model by using multiple real-world datasets. Finally, 
we present concluding remarks and a discussion of future work in Section 7. This article is an extended version of [32]. The 
main differences from [32] are described in Appendix A.

2. Related work

2.1. Collective graphical models

Collective graphical models (CGMs) [26] have been recently developed as a general framework for analyzing aggregated 
data. They have been applied to modeling contingency tables [26], and bird migration [27]. Prior works provide efficient 
inference techniques for CGMs based on the maximum a posteriori [28], MCMC sampler [26], message passing [31], vari-
ational Bayesian inference [14], and minimum convex cost flow algorithm [2]. Noisy observation models for aggregated 
data are introduced in [28,21,26]; they allow for treatments with noisy observation settings. Collective flow diffusion model 
(CFDM) [17] is the first application of the efficient inference techniques developed for CGMs to the transportation domain. 
By maximizing a likelihood subject to constraints that represent people flow conservation, this model can estimate tran-
sition populations between locations from just aggregated data [17,8]. Several recent works have attempted to estimate 
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people flows from spatiotemporal population data [14,1,13]. These models do not, however, consider people’s travel dura-
tion between locations, and thus they might fail to estimate the transition populations in the case where the number of 
sensor devices is not sufficient to cover a large-scale space of interest and some people in transit are outside the observation 
range.

The proposed model is the extension of CFDM, and incorporates travel duration distributions into the constraints that 
represent flow conservation. This allows us to more accurately estimate the transition populations by considering the travel 
durations between observed locations even if we have just aggregated population data gathered at limited locations.

2.2. Information diffusion models

Information diffusion models are related to our proposal, because their main goal is to estimate latent flows of a piece 
of information over social networks [15,20]. Recent progress was to estimate the hidden network structure and the model 
parameters that govern the diffusion process of information [12,19,24,33]. These methods incorporate a continuous-time 
distribution to model the temporal dynamics of information flows, with the aim of describing the spread of information 
from node to node with delays over time. In the analysis of information flows, however, it is not necessary to consider flow 
conservation, a critical factor in modeling the temporal dynamics of people flows.

On the basis of the idea of information diffusion modeling, we have designed travel duration distributions between 
locations. By maximizing the likelihood with flow conservation constraints that incorporate the travel duration distributions, 
our model can infer latent people flows between locations from aggregated population data.

2.3. Urban computing

Many statistical methods have been developed for analyzing people’s mobility patterns from their trajectory data gath-
ered by mobile devices [9,22,18,39]. The common assumption is that we can obtain the histories of locations visited by each 
user; that is, they can be tracked individually over time. The location information of individuals is, however, often aggre-
gated to protect privacy, and the resulting aggregated data do not contain the tracking information of individuals, making 
these existing methods inapplicable. Many works have been published recently that use the latest technologies, i.e., deep 
neural networks (DNNs), for analyzing aggregated population data such as the numbers of incoming and outgoing people 
at each location [10,37,38,40]. The problem of these works is, while considering various external factors (e.g., weather), to 
predict the future numbers of incoming and outgoing people, which is essentially different from the problem addressed in 
this article. In other words, these DNN-based methods cannot solve the problem of estimating the transition populations 
between locations from the numbers of incoming and outgoing people. Although a DNN-based method has been developed 
for predicting transition populations, it requires the transition populations for training in the supervised setting [41]. Our 
study aims to estimate the transition populations between locations in the unsupervised setting, namely it does not require 
the training data for transition populations.

The method of [36] tried to recover user trajectories given aggregated data and transition probabilities. Its drawback is 
that the transition probabilities must be manually set by using other information such as distances between locations: The 
method cannot estimate the transition populations between locations from just aggregated population data.

Different from the prior works in the field of urban computing, our model can estimate, from just the numbers of 
incoming and outgoing people, not only the transition populations but also transition probabilities. The estimation process 
can be achieved in the unsupervised setting, meaning that it does not require the training data for transition populations or 
the auxiliary information (e.g., distances). Moreover, our model enables us to estimate the travel duration distributions; this 
yields robust estimations even if the number of observed locations is limited.

3. Problem setting

In this section, we describe the aggregated population data considered here, i.e., the numbers of incoming and outgoing 
people at each location and at each time step, and define our problem of inferring latent people flows. The notations used 
in this article are listed in Table 1.

Aggregated population data. Let t ∈ {1, . . . , T } be a discrete time step. Let V denote a set of locations and i ∈ V denote 
a location. Let Y out

ti ∈ N0 be the number of outgoing people of location i at time step t , where N0 = {0, 1, 2, . . .} denotes 
the set of nonnegative integers, and Y in

ti ∈ N0 be the number of incoming people of location i at time step t , where we 
assume that these flows are aggregated by each time interval [t − 1, t), namely people who left or entered a location during 
the interval [t − 1, t) are counted in the flows at time step t . Aggregated population data refer to the paired sets of the 
outgoing people counts Y out = {Y out

ti | t = 1, . . . , T ; i ∈ V } and of the incoming people counts Y in = {Y in
ti | t = 1, . . . , T ; i ∈ V }.

Problem. Our problem is to infer latent people flows, i.e., transition populations between locations, from aggregated 
population data; this problem is illustrated schematically in Fig. 2. Let G = (V , E) be the undirected graph that represents 
accessibility information in such a way that the neighbor E i = { j ∈ V | (i j) ∈ E} of location i ∈ V on G represents the set 
of locations that are directly accessible from i. Let Mtij ∈ {0, . . . , Y out

ti } be the transition population, that is, the number of 
people who left location i ∈ V at time step t and whose next location is j ∈ E i . We define the set of transition populations 
as M = {Mtij | t = 1, . . . , T ; i ∈ V ; j ∈ E i}. Given Y out, Y in, T and G , our goal is to infer transition populations M .
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Table 1
Notation.

Symbol Description

T number of time steps

t time step, t ∈ {1, . . . , T }
V set of locations

G undirected graph, G = (V , E)

i, j locations, i, j ∈ V

E i set of locations directly accessible from location i, E i = { j ∈ V | (i j) ∈ E}
Y out

ti number of outgoing people at location i and at time step t, Y out
ti ∈N0

Y in
ti number of incoming people at location i and at time step t, Y in

ti ∈N0

Nout
ti noise-free variable for Y out

ti

N in
ti noise-free variable for Y in

ti

Mti j transition population leaving location i at time step t and whose next location is j, Mtij ∈ {0, . . . , Y out
ti }

θi j transition probability that people move from location i to j, θi j ≥ 0,
∑

j∈E i
θi j = 1

γ i j set of parameters of the travel duration distribution from location i to j

σ 2
i noise variance for the number of outgoing people at location i

λ2
i noise variance for the number of incoming people at location i

4. Model

We propose T-CFDM (Time-delayed Collective Flow Diffusion Models), a probabilistic model for inferring latent people 
flows, i.e., transition populations between locations, from aggregated population data gathered at limited locations. Note that 
we use just incoming and outgoing people counts as inputs, meaning that we attempt to infer transition populations in the 
unsupervised setting. We first model the temporal dynamics of people flows in the noise-free setting, that is, the numbers 
of incoming and outgoing people are strictly preserved. Travel duration distributions between locations are incorporated into 
the flow conservation constraints. This modeling is especially advantageous in such a situation that the sensor devices have 
limited observation range and some people are not observed in any location in some time periods. We then introduce the 
noisy observation models for the numbers of incoming and outgoing people; they allow us to treat the flow conservation 
constraints as soft constraints and thus handle noisy settings.

In T-CFDM, the temporal dynamics of people flows are assumed to be probabilistic diffusion processes on a graph, where 
the nodes are locations and the edges are paths between locations. Even if the graph structure such as a road network or 
a set of neighbor information is unknown, our model is still applicable by assuming a complete graph among locations. We 
assume that people move from location to location in accordance with location-dependent and time-independent transition 
probabilities. Let θi j ≥ 0 be the transition probability that people move from location i to j, where 

∑
j∈E i

θi j = 1. Let 
Nout

ti and N in
ti denote noise-free variables for Y out

ti and Y in
ti , respectively. We assume that Mti = {Mtij | j ∈ E i} follows a 

multinomial distribution,

p(Mti | Nout
ti , θ i) = Nout

ti !∏
j∈E i

Mti j !
∏
j∈E i

θ
Mtij

i j , (1)

where θ i = {θi j | j ∈ E i}. The transition population Mtij satisfies the following two relations to ensure flow conservation:

Nout
ti =

∑
j∈E i

Mti j, (2)

N in
ti =

∑
j∈E i

t∑
t′=1

F (�tt′ ;γ ji)Mt′ ji . (3)

The conservation for outgoing counts (2) indicates that the sum of people leaving location i at time step t equals the 
outgoing count at the same time step. The conservation for incoming counts (3) indicates that the weighted sum of people 
leaving location j before time step t toward location i equals the incoming count of location i at time step t; the idea 
behind (3) is that people who leave one location in one time step arrive at another location after some delay. Here, �tt′ =
t − t′ is travel duration, where t and t′ are the arriving and leaving time steps, respectively. Weight function F (�; γ ji) is a 
travel duration probability where � ∈ {0, . . . , T − 1}, which is the probability that the travel duration is �; γ ji denotes its 
parameters for transitions from location j to i, which are assumed time-invariant, that is, the travel duration distributions 
do not vary in time. Details of F (�; γ ji) are given in the following paragraphs. In our modeling, the travel duration is 
treated as a random variable that follows the probability distribution; it is not a point estimate. This allows us to handle 
the heterogeneity in travel duration among individuals.
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Table 2
Travel duration probabilities.

Travel duration distribution Travel duration probability

f (τ ;γ ji) F (�;γ ji)

Exponential

{
α ji e−α jiτ if 0 ≤ τ

0 otherwise
e−α ji � − e−α ji (�+1)

Rayleigh

{
α jiτe− 1

2 α jiτ
2

if 0 ≤ τ

0 otherwise
e− 1

2 α ji (�)2 − e− 1
2 α ji (�+1)2

Weibull

{
α jiβ ji(α jiτ )β ji−1e−(α jiτ )

β ji
if 0 ≤ τ

0 otherwise
e−(α ji �)

β ji − e(α ji (�+1))
β ji

Fig. 3. Visualization of travel duration probabilities. The red lines are the travel duration distributions f (τ ; γ ji), and the red areas are the travel duration 
probabilities F (�; γ ji). The gray vertical lines are spaced by unit time steps.

To derive the travel duration probability F (�; γ ji), we first introduce continuous travel duration distribution f (τ ; γ ji)

as the probability density function of continuous travel duration τ ≥ 0. The travel duration probability F (�; γ ji) is then 
calculated by the following integral of f (τ ; γ ji) over the interval from � to � + 1:

F (�;γ ji) =
�+1∫
�

f (τ ;γ ji)dτ . (4)

Notice that our model does not depend on the particular choice of the travel duration distribution, so that one can use 
any distribution as f (τ ; γ ji). Table 2 summarizes the travel duration distributions and the travel duration probabilities 
when using exponential, Rayleigh, and Weibull distributions, which are widely used for assessing duration in various fields 
such as user modeling [34] and diffusion modeling [24,19]. The exponential and Rayleigh distributions are one-parameter 
distributions, where we set γ ji = α ji and α ji > 0. The Weibull distribution is a more flexible distribution that has two 
parameters, where we set γ ji = {α ji, β ji}. Here, α ji > 0 is the scale parameter and β ji > 0 is the shape parameter of the 
distribution. The exponential distribution is a special case of the Weibull distribution with β ji = 1; the Weibull distribution 
with β ji = 2 is equivalent to the Rayleigh distribution. Fig. 3 illustrates the examples of using the different distributions.

In practical situations, the flow conservation constraints (2) and (3) might not strictly hold, because the observations 
are noisy. The noise can be regarded as factors that may disturb flow conservation, for example, people may enter or exit 
from the predefined space, e.g., an exhibition hall, that is being targeted. Another example is that sensing errors might be 
contained in the observations. To handle noisy settings, we adopt noisy observation models for the numbers of incoming 
and outgoing people in a manner similar to that described in [28,21,26]; namely we assume that the observed outgoing 
count Y out

ti and the observed incoming count Y in
ti are random variables dependent on their noiseless counterparts Nout

ti and 
N in

ti , respectively. This allows us to treat the flow conservation constraints as soft constraints. Although the use of Poisson 
distributions with means of Nout

ti and N in
ti would be the most natural option since Y out

ti and Y in
ti are count data, it makes it 

difficult to adjust the strength of the soft constraints, for the variances of the Poisson distributions are determined by their 
means. Another option is to use the following Gaussian distributions by regarding Y out

ti and Y in
ti as real numbers,

p(Y out
ti | Nout

ti ,σ 2
i ) = 1√

2πσ 2
i

exp

(
− 1

2σ 2
i

(Y out
ti − Nout

ti )2

)
, (5)

p(Y in
ti | N in

ti , λ
2
i ) = 1√

2πλ2
i

exp

(
− 1

2λ2
i

(Y in
ti − N in

ti )
2

)
, (6)

6

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Y. Tanaka, T. Iwata, T. Kurashima et al. Artificial Intelligence 292 (2021) 103430

Algorithm 1: Inference procedure for the proposed model.

Input : Y out , Y in , V , {E i | i ∈ V }, T
Output : M , �, �, �, �
1: Initialize M , �, �, �, �
2: repeat
3: /* E-step */
4: Update M by solving (11)
5: /* M-step */
6: Update θi j by (13) for i ∈ V ; for j ∈ E i

7: Update �, �, � by solving (14)
8: until Convergence

where σ 2
i > 0 and λ2

i > 0 are noise variances for outgoing and incoming count, respectively, at location i. These variances 
play a role in controlling the penalty incurred in violating the soft constraints. This option is also advantageous in that 
we can use continuous optimization methods to estimate the transition populations. Details are given in Section 5. In the 
following, we use the Gaussian distributions as the noise models.

Another way of handling noisy observations was introduced in [14,1,13,32]; it consists of the following procedures: 
(a) assume the noise-free model as in (1); (b) construct the objective function with penalty terms that are the squared 
difference between the left- and right-hand sides in each of (2) and (3); (c) determine a hyperparameter for controlling 
the penalty terms by a validation procedure. A drawback of this approach is that the validation procedure in (c) is time-
consuming; to reduce the computation time the hyperparameter should be shared among all the locations even though 
the noise variances might be different among locations. Different from this approach, the noisy observation models consid-
ered here are cost-effective and allow us to determine the noise variances at respective locations via maximum likelihood 
estimation.

We summarize the parameters of T-CFDM as follows: Transition probabilities � = {θ i | i ∈ V }; parameters of travel 
duration distributions � = {γ i j | i ∈ V ; j ∈ E i}; noise variances for outgoing counts � = {σi | i ∈ V }; noise variances for 
incoming counts � = {λi | i ∈ V }.

5. Inference

Overview. We develop an approximate expectation-maximization (EM) algorithm for simultaneously estimating the tran-
sition populations M between locations and the set of parameters � = {�, �, �, �}. Following the standard prescription of 
the EM algorithm [3], we define the Q-function

Q (�̂,�) =
∑

M

p(M | Y out, Y in, �̂) log p(Y out, Y in, M | �), (7)

which is the logarithm of the complete-data likelihood of �, averaged with respect to the posterior distribution of M
conditional on data Y out, Y in and evaluated using the current parameter estimate �̂. Summing up over all possible values 
of M in (7) is infeasible due to computation costs, and thus we replace the posterior expectation with a plug-in procedure 
of the maximum a posteriori (MAP) estimate: The approximate Q-function is obtained by plugging the MAP estimate M̂ of 
M given by

M̂ = arg max
M

log p(M | Y out, Y in, �̂) (8)

into the complete-data log likelihood, as

Q approx(�̂,�) = log p(Y out, Y in, M̂ | �). (9)

Note that, although we adopt the shorthand notation M̂ for M̂(�̂) here and hereafter, M̂ actually depends on �̂ via (8). 
A similar approximate EM algorithm was introduced in [28], and their computational experiments demonstrated that it 
provides an efficient and effective way of estimating the transition populations between locations and the model param-
eters. We obtain the MAP estimates of M in E-step, and obtain the maximum likelihood estimates of � by maximizing 
Q approx(�̂, �) in M-step. Our inference procedure is shown in Algorithm 1. Discussions of the approximate EM algorithm 
and its validity are included in Appendix B. Given a complete graph among locations, the computational complexity of the 
inference algorithm is O (T 2|V |2) for each iteration, where |V | is the number of locations. Although the complexity drasti-
cally increases when T and/or |V | is large, in practice, one can deal with the large-scale problems by using the following 
procedures: (a) ignore transition with long durations; (b) incorporate neighbor information from a road network. Then, its 
complexity can be reduced to O (T T̄ |V ||Ē|), where T̄ (� T ) is a period long enough to complete the transition, and where 
|Ē|(� |V |) is the average number of neighbor locations. Details of E- and M-steps are described in the following paragraphs.

E-step. Suppose that the current estimate �̂ of the parameters � is given. Using Bayes’ rule, the log-posterior distribution 
of M is given by
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log p(M | Y out, Y in, �̂)

∝ log p(Y out, Y in, M | �̂)

≈
T∑

t=1

∑
i∈V

[
− 1

2σ̂ 2
i

(
Y out

ti −
∑
j∈E i

Mti j

)2 − 1

2λ̂2
i

(
Y in

ti −
∑
j∈E i

t∑
t′=1

F (�tt′ ; γ̂ ji)Mt′ ji

)2

+
(∑

j∈E i

Mti j

)
log

(∑
j∈E i

Mti j

)
+

∑
j∈E i

(
Mtij log θ̂i j − Mtij log Mtij

)]

=: L(M), (10)

where we use the relations (2) and (3); we employ Stirling’s approximation, log n! ≈ n log n −n, in order to calculate log Mtij !
and (

∑
j∈E i

Mti j)! efficiently, as in [28]. Here, we define the objective function for M as L(M). The optimization problem to 
be solved to determine M̂ is as follows:

maximize
M

L(M)

subject to Mtij ≥ 0, t = 1, . . . , T ; i ∈ V ; j ∈ E i,
(11)

where we use a continuous relaxation from Mtij ∈ {0, 1, . . . , Y out
ti } to Mtij ≥ 0, which enables us to use various continuous 

optimization methods. This article solves the optimization problem by using the L-BFGS-B method [4]. The derivative of the 
objective function L(M) (10) with respect to Mtij is described in Appendix C.

M-step. Given the current MAP estimate M̂ of M , the approximate Q-function (9) is as follows:

Q approx(�̂,�) = log p(Y out, Y in, M̂ | �)

∝
T∑

t=1

∑
i∈V

[
−1

2
logσ 2

i − 1

2
σ 2

i

(
Y out

ti −
∑
j∈E i

M̂ti j

)2 − 1

2
logλ2

i

− 1

2λ2
i

(
Y in

ti −
∑
j∈E i

t∑
t′=1

F (�tt′ ;γ ji)M̂t′ ji

)2 +
∑
j∈E i

M̂ti j log θi j

]

=: J (�,�,�,�), (12)

where the objective function for the model parameters is defined as J (�, �, �, �). The maximum likelihood estimate of 
θi j is explicitly given by the following closed-form solution via the Lagrangian multiplier method,

θi j =
∑T

t=1 M̂ti j∑T
t=1

∑
j∈E i

M̂ti j

. (13)

When we use the Weibull distribution as the travel duration distribution, which has two parameters, i.e., γ ji = {α ji, β ji}, 
for each pair of locations, the optimization problem for parameters �, �, and � is as follows:

maximize
�, �, �

J (�,�,�,�)

subject to α ji > 0, j ∈ V ; i ∈ E j,

β ji > 0, j ∈ V ; i ∈ E j,

(14)

which we solve by using the L-BFGS-B method [4].

6. Experiments

6.1. Data

We evaluated the proposed model using real-world datasets: Pedestrian data from exhibition halls, and bike trip data 
and taxi trip data from New York City. Details of the datasets are shown in subsequent paragraphs.

Pedestrian data from exhibition halls. The data consist of pedestrian location logs, which were collected at an event 
that attracted large crowds, Niconico Chokaigi 2016,1 held at Makuhari Messe located near Tokyo, Japan, from 10:00 a.m. to 
6:00 p.m. on April 29th, 2016. The event was spread over four exhibition halls, Hall 1, Hall 2, Hall 3, and Hall 4 with sizes 

1 http://www.chokaigi .jp /2016 /en/.
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Table 3
The totals of incoming and outgoing people count in the real-world datasets.

Data Pedestrian data

Time-of-day 10:00 a.m.–2:00 p.m. 2:00 p.m.–6:00 p.m.

Area Hall 1 Hall 2 Hall 3 Hall 4 Hall 1 Hall 2 Hall 3 Hall 4

# outgoing 19,667 20,957 8,605 6,531 11,139 14,069 6,965 4,533
# incoming 19,840 21,198 8,770 6,630 10,974 13,829 6,806 4,437

Data Bike trip data Taxi trip data

Time-of-day 8:00 a.m.–4:00 p.m. 4:00 p.m.–12:00 p.m. 8:00 a.m.–4:00 p.m. 4:00 p.m.–12:00 p.m.

Date Mar. 1 Jun. 1 Mar. 1 Jun. 1 Mar. 1 Jun. 1 Mar. 1 Jun. 1

# outgoing 7,275 13,277 7,091 14,931 93,514 91,911 107,923 104,188

# incoming 7,361 13,398 7,279 15,372 93,839 91,523 100,632 107,701

of 186.3 m × 124.8 m, 183.2 m × 124.8 m, 127.6 m × 124.8 m, and 190.9 m × 108.3 m, respectively. The number of event 
booths, |V |, in Hall 1, Hall 2, Hall 3, and Hall 4 were 38, 27, 10, and 9, respectively. We analyze data for these four halls 
separately, so that we do not consider edges across halls but those within each hall only. E i is a set of edges assuming a 
complete graph for each of the exhibition halls. We gathered pedestrian location logs by placing Bluetooth beacons at each 
booth. The technology allows us to observe the times at which each user entered or left the observation range (at most 
10–15 meters from each beacon). The data consist of 3,727 mobile users who agreed to provide detailed information of 
location over time. The original data contained time stamps of arrival and departure at booths for each user, allowing users 
to be tracked over time. The users enter and leave each exhibition hall at any time step, making aggregated population 
data noisy. In our experiments, we created aggregated incoming and outgoing count data at each booth, where the time 
interval was set to 3 minutes. Since the tendency of people flows, i.e., transition probabilities, could depend on time-of-day, 
the data were divided into two subsets, one from 10:00 a.m. to 2:00 p.m., and the other from 2:00 p.m. to 6:00 p.m.; the 
number of observation time steps T was thus 80. Note that the user tracking information was used only for evaluating the 
estimation performance for transition populations and travel duration probabilities; we did not use the tracking information 
in the inference process. The totals of incoming and outgoing pedestrians at all booths in each hall/time-of-day are shown 
in Table 3.

Traffic data in urban areas. To validate the performance of our model, we used two open datasets, bike trip data2 and 
taxi trip data3 in New York City. These datasets consist of trip records holding Trip id, pickup location, dropoff location, 
pickup date and time, and dropoff date and time. Note that location information was available only when people started 
and finished their trips: The trajectories during the trips were not recorded. In our experiments, we used the data from 
8:00 a.m. to 4:00 p.m. and from 4:00 p.m. to 12:00 p.m. on March 1st and June 1st, and aggregated the data into incoming 
and outgoing people counts at grid cells, the sizes of which in the bike trip data and the taxi trip data were 2 km × 2 km 
(12 × 12 grid cells) and 3 km × 3 km (18 × 18 grid cells), respectively. Here, we omitted grid cells if their incoming and 
outgoing counts were lower than a threshold; the resulting set V of locations for the bike trip data and the taxi trip data 
consisted of 11 and 14 grid cells, respectively. E i was a set of edges assuming a complete graph for all datasets. The time 
interval in both datasets was set to 10 minutes; the number of observation time steps T was thus 48. The totals of incoming 
and outgoing bikes/taxis at overall grid cells on each date/time-of-day are shown in Table 3. In the original data, a pair of 
pickup and dropoff is completely given; however, either pickup or dropoff may be missing near the edges of observation 
periods as the data are divided into the subsets by time-of-day. Then, the resulting aggregated data are noisy.

6.2. Transition population estimation

We evaluated the proposed model, T-CFDM, in terms of the performance in estimating the transition populations M . We 
compared T-CFDM with the collective flow diffusion model (CFDM) [17]. Unlike our model, CFDM does not consider travel 
duration between locations. In addition, we compared our model with the following two baselines: Popularity and Uniform. 
Popularity assumes that people move to other locations in proportion to location popularity regardless of current locations; 
then the estimated transition population M̂ti j at time step t is given by

M̂ti j = Y out
ti ×

∑T
t=1 Y in

t j∑T
t=1

∑
j∈E i

Y in
t j

. (15)

Uniform uses a discrete uniform distribution to estimate transition populations; it assumes that people move to neighbor 
locations with equal probability 1/|E i |, where |E i | is the number of neighbors of location i. In T-CFDM, we used the Weibull 

2 https://www.citibikenyc .com /system -data.
3 http://www.nyc .gov /html /tlc /html /about /trip _record _data .shtml.
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Table 4
Mean normalized absolute errors and standard errors of the estimates of transition populations. The double 
star (

) indicates that the differences between T-CFDM and the other methods are statistically significant (Stu-
dent’s t-test) at the level of P < 0.05. The single star (
) indicates that the differences between T-CFDM and the 
others, except for T-CFDM (validation), are statistically significant.

(a) Pedestrian data (10:00 a.m.–2:00 p.m.)

Hall 1 Hall 2 Hall 3 Hall 4

T-CFDM 1.174 ± 0.016
 0.995 ± 0.013

 0.689 ± 0.014

 0.600 ± 0.022


T-CFDM (validation) 1.190 ± 0.015 1.056 ± 0.013 0.798 ± 0.013 0.624 ± 0.021
CFDM 1.261 ± 0.009 1.127 ± 0.010 0.864 ± 0.013 0.672 ± 0.022
Popularity 1.674 ± 0.008 1.500 ± 0.008 1.106 ± 0.016 0.779 ± 0.020
Uniform 1.767 ± 0.007 1.596 ± 0.007 1.130 ± 0.015 1.165 ± 0.016

(b) Pedestrian data (2:00 p.m.–6:00 p.m.)

Hall 1 Hall 2 Hall 3 Hall 4

T-CFDM 1.439 ± 0.026
 1.436 ± 0.010
 0.908 ± 0.022

 0.743 ± 0.043


T-CFDM (validation) 1.445 ± 0.022 1.476 ± 0.011 0.922 ± 0.029 0.759 ± 0.043
CFDM 1.506 ± 0.025 1.515 ± 0.010 0.995 ± 0.026 0.780 ± 0.045
Popularity 1.825 ± 0.017 1.789 ± 0.010 1.253 ± 0.029 0.924 ± 0.038
Uniform 1.904 ± 0.016 1.857 ± 0.010 1.289 ± 0.029 1.282 ± 0.038

(c) Bike trip data

8:00 a.m.–4:00 p.m. 4:00 p.m.–12:00 p.m.

Mar. 1 Jun. 1 Mar. 1 Jun. 1

T-CFDM 0.561 ± 0.013

 0.630 ± 0.010

 0.628 ± 0.031
 0.590 ± 0.027


T-CFDM (validation) 0.612 ± 0.012 0.677 ± 0.012 0.655 ± 0.029 0.637 ± 0.024
CFDM 0.655 ± 0.012 0.737 ± 0.012 0.706 ± 0.029 0.651 ± 0.027
Popularity 0.691 ± 0.013 0.751 ± 0.012 0.739 ± 0.028 0.671 ± 0.027
Uniform 1.025 ± 0.009 0.953 ± 0.013 1.036 ± 0.025 0.943 ± 0.025

(d) Taxi trip data

8:00 a.m.–4:00 p.m. 4:00 p.m.–12:00 p.m.

Mar. 1 Jun. 1 Mar. 1 Jun. 1

T-CFDM 0.363 ± 0.004

 0.433 ± 0.004

 0.429 ± 0.022
 0.366 ± 0.012



T-CFDM (validation) 0.413 ± 0.004 0.450 ± 0.004 0.431 ± 0.016 0.402 ± 0.012

CFDM 0.472 ± 0.004 0.496 ± 0.004 0.469 ± 0.059 0.448 ± 0.012

Popularity 0.505 ± 0.004 0.520 ± 0.004 0.477 ± 0.016 0.493 ± 0.012

Uniform 1.043 ± 0.005 1.043 ± 0.005 0.923 ± 0.014 0.929 ± 0.010

distribution for modeling travel duration distribution as shown in Section 4. We consider two ways of handling noisy 
observations. The first one is the validation approach described in the fifth paragraph of Section 4, which we call T-CFDM 
(validation). Since the validation procedure is time-consuming, the hyperparameter was shared among all the locations. The 
second one is to use the noisy observation models, which we call T-CFDM. This one is beneficial in that the parameter (i.e., 
the noise variance) for each location can be efficiently obtained by maximum likelihood estimation. The evaluation metric 
is the mean normalized absolute error (MNAE) in transition populations given by:

1

T

T∑
t=1

∑
i∈V

∑
j∈E i

|M̂ti j − M∗
ti j |∑

i∈V
∑

j∈E i
M∗

ti j

, (16)

where M∗
ti j is the true transition population. As described in Section 6.1, the original data actually have the detailed tracking 

information of each user, and that is why we can use the noise-free data M∗
ti j in the evaluation process.

Table 4 shows MNAE and the standard error for T-CFDM, T-CFDM (validation), CFDM, Popularity and Uniform. For all 
datasets, T-CFDM performed better than the other methods. We found similar results using other evaluation metrics (e.g., 
MAE, RMSE). Since the proposed model considers the travel duration distribution between locations, it can more accu-
rately estimate the transition populations than CFDM. We can also see that T-CFDM matched or bettered the estimation 
performance of T-CFDM (validation). These results indicate that the formulation based on the noisy observation models is 
effective for accurately estimating the transition populations. In the following, we present the results of further assessment 
of T-CFDM.
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Table 5
Mean Kullback-Leibler divergence for the estimation of travel duration probability.

(a) Pedestrian data (10:00 a.m.–2:00 p.m.)

Hall 1 Hall 2 Hall 3 Hall 4

T-CFDM 1.567 ± 0.050 1.547 ± 0.050 1.627 ± 0.087 1.669 ± 0.231
CFDM 1.800 ± 0.091 1.695 ± 0.082 1.675 ± 0.122 1.748 ± 0.127

(b) Pedestrian data (2:00 p.m.–6:00 p.m.)

Hall 1 Hall 2 Hall 3 Hall 4

T-CFDM 1.583 ± 0.051 1.560 ± 0.053 1.613 ± 0.071 1.560 ± 0.125
CFDM 1.758 ± 0.078 1.737 ± 0.103 1.670 ± 0.087 1.854 ± 0.082

(c) Bike trip data

8:00 a.m.–4:00 p.m. 4:00 p.m.–12:00 p.m.

Mar. 1 Jun. 1 Mar. 1 Jun. 1

T-CFDM 1.489 ± 0.194 1.353 ± 0.172 1.498 ± 0.218 1.182 ± 3.129
CFDM 2.936 ± 0.048 3.052 ± 0.047 2.942 ± 0.056 3.129 ± 0.043

(d) Taxi trip data

8:00 a.m.–4:00 p.m. 4:00 p.m.–12:00 p.m.

Mar. 1 Jun. 1 Mar. 1 Jun. 1

T-CFDM 1.432 ± 0.142 2.444 ± 0.135 2.060 ± 0.161 2.130 ± 0.102
CFDM 3.123 ± 0.058 3.069 ± 0.049 3.044 ± 0.072 3.062 ± 0.058

6.3. Travel duration probability estimation

We evaluated performance of estimating travel duration probabilities. We used mean Kullback-Leibler (KL) divergence 
between the true and the estimated travel duration probabilities over respective pairs of locations as the evaluation metric:

1

|V |
∑
j∈V

1

|E j|
∑
i∈E j

T −1∑
�=0

P∗
ji(�) log

P∗
ji(�)

F (�; γ̂ ji)
, (17)

where P∗
ji(�) and F (�; γ̂ ji) are the true travel duration probability and its estimate, respectively, for transition from lo-

cation j to location i. Table 5 shows the mean KL divergence and the standard error for T-CFDM and CFDM. In CFDM, the 
travel duration probability equals 1 if � = 0 and 0 otherwise: CFDM assumes that all people who leave a location at a time 
step have always arrived at another location at the same time step. As shown, T-CFDM achieved lower mean KL divergence 
values for all datasets. The results show that T-CFDM accurately estimated the travel duration probabilities. The performance 
improvements of the bike trip data and the taxi trip data were larger than those of the pedestrian data. The results are rea-
sonable because the distances between observed locations are relatively large in the urban traffic data compared with the 
pedestrian data in the exhibition halls; in such cases, introduction of the travel duration probability is more helpful. The 
results of Tables 4 and 5 indicate that the incorporation of the people’s travel durations into the model is important for 
estimating the transition populations accurately.

Fig. 4 illustrates visualization examples of transition matrices and travel duration probabilities estimated by T-CFDM 
for the respective times-of-day in the bike trip data and the taxi trip data. The transition matrix is the total number of 
bikes that moved between each pair of origin location i and destination location j; its elements were calculated as follows: 
Mij = ∑T

t=1 Mtij . As shown in Fig. 4, T-CFDM accurately estimated transition matrix from just aggregated population data. 
T-CFDM also flexibly fitted to the various travel duration distributions. The results show that T-CFDM allows us to capture 
the heterogeneity in travel duration among individuals.

6.4. Visualization of the estimated people flows

In this section, we present qualitative comparisons of the estimated transition populations in the pedestrian data. Fig. 5
visualizes the pedestrian flows in Hall 1 and Hall 2. In Fig. 5, we illustrate the true pedestrian flow on the left, and the es-
timates of T-CFDM, CFDM, Popularity and Uniform on the right. As shown in Fig. 5, T-CFDM better discerned the pedestrian 
flows than the other methods. CFDM tends to output some false flows. This is mainly because CFDM is based on the un-
realistic assumption that all pedestrians who left a location at one time step should arrive at another location at the same 
time step; and thus CFDM misestimates the transition populations between locations. T-CFDM, on the other hand, could 
more accurately estimate the transition populations because it considers travel durations between locations. The visualiza-
tion results are useful for optimizing navigation systems. For example, discovering popular routes of pedestrians yield better
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Fig. 4. Visualization of transition matrices and travel duration probabilities. (Upper part of each figure) Heatmap visualization of the transition matrix. The 
true matrix is shown on the left and the estimate of our model is shown on the right. (Lower part of each figure) Travel duration probability F (�; γ̂ ji)

estimated by T-CFDM for the origin-destination pair specified by the white asterisk (∗) in the corresponding upper heatmap; the left one is the true 
probability and the right one is the estimate of T-CFDM. Red line represents the travel duration distribution f (τ ; γ̂ ji) estimated by T-CFDM.

route recommendations; those that are likely to be chosen by visitors. The results are also useful to marketers when they 
want to optimize the strategies of location-based advertising. For example, analyzing the transition relation between booths 
provide better understanding of the visitors’ interests. This makes it easier for marketers to determine which advertisements 
to serve to the visitors according to their interests and current locations.

7. Conclusion

We have proposed the Time-delayed Collective Flow Diffusion Models (T-CFDM) for inferring latent people flows, i.e., 
transition populations between observed locations, from just aggregated population data. An important characteristic of 
the T-CFDM is the incorporation of the travel duration probabilities into the people flow conservation constraints; the 
advantage of which is that it can accurately infer transition populations in more practical settings where the observation 
range of sensor devices is limited and some people are not observed in any location in some time periods. Since the T-
CFDM adopts the noisy observation model for the numbers of incoming and outgoing people, it remains applicable even 
if the flow conservation constraints do not strictly hold. The approximate expectation-maximization (EM) algorithm that 
we have developed allows us to estimate transition populations and model parameters simultaneously. Experiments on 
real-world datasets confirmed that the T-CFDM can accurately infer transition populations between observed locations.

Although our results are encouraging, our model can be further improved in a number of research directions. First, we 
can extend the model to capture time-varying people flows. One of the approaches to address this issue is to consider a 
mixture of multiple diffusion processes, each of which is shared among the time-of-day on which tendency of people flows 
is similar, as in [14]. On the basis of that idea, we will refine T-CFDM and develop its inference algorithm so that it can take 
account of flows changing over time. Second, a mixture modeling could also be helpful for handling aggregated data that 
mix multiple types of people (e.g., age and gender). In that case, each process corresponds to the flows of the different type 
of people. This approach could distinguish different types of flow patterns without labels of their types; however, it is not 
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Fig. 5. Visualization comparison of pedestrian flows between booths in Hall 1 and Hall 2. The red dots represent the locations of booths, and the directed 
edges represent the pedestrian flows between locations. The edge widths are proportional to the transition populations between the respective booth pairs. 
Note that we omitted those edges whose transition populations were lower than a threshold, and bidirectional edge widths are proportional to the average 
of the transition populations between the pair of locations.

straightforward to determine the mixture coefficients. This problem is one of future works. Third, we plan to incorporate 
the Bayesian approach for estimating transition populations and model parameters; it can be expected to provide better 
results while increasing computations involved (e.g., [26]). Fourth, we will extend the model to utilize external information 
such as the weather condition and the program of events by integrating it with deep neural networks, as in [13]. Fifth, 
we will explore advanced algorithms for MAP estimation of transition populations M , which may be the computational 
bottleneck in large-scale problems. It would be promising to develop an inference method for T-CFDM by utilizing the 
recently published techniques based on message-passing algorithms [31] or minimum convex cost flow algorithms [2]. 
Sixth, our study focuses on the case where aggregated population data are only available, but in practice one might be able 
to use the detailed information of a limited number of people who agreed with location tracking. In that case, we think that 
it would be important to consider a hybrid approach for utilizing both types of data, that is, aggregated data and tracking 
data, to improve the estimation performance. Lastly, we will explore the applicability of our model to other domains. For 
example, our model could be helpful in the biological sciences: It could be used for modeling animal migration on the basis 
of the counts of animals in different locations, as in [27,28]. One of our future works is to use various datasets (e.g., eBird 
data [30]) for further evaluation of the T-CFDM.
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Appendix A. Difference from our conference version

In this appendix, we summarize the main differences from [32]. We extend the model in [32] by adopting the noisy ob-
servation models, as in [28], for handling noisy settings, where people flow conservation does not strictly hold (Section 4), 
and develop an approximate EM algorithm for learning the parameters of the extended model (Section 5). We also conduct 
the extensive experiments: (a) we compare the extended model with the preliminary conference version in terms of the 
performance in estimating the transition populations (Section 6.2); (b) we mention three types of travel duration distribu-
tions (Table 2 and Fig. 3), and conduct the experiments using a more flexible two-parameter distribution, i.e., a Weibull 
distribution (Section 6); (c) we add the experiments using the data that are divided into the subsets by time-of-day since 
the tendency of people flows could vary with time-of-day (Section 6).

Appendix B. Discussion of approximate EM algorithm

In this appendix, we elaborate on the approximate EM algorithm and its validity. Let us start discussion of the exact EM 
algorithm. The aim of the EM algorithm is to maximize the following incomplete-data log-likelihood,
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log p(Y out, Y in | �) = log
∑

M

p(Y out, Y in, M | �), (18)

in which latent variables (i.e., M ) are marginalized. However, it is often difficult to directly evaluate the log-likelihood (18); 
then one can consider the following lower bound,

log p(Y out, Y in | �) ≥
∑

M

q(M) log p(Y out, Y in, M | �) −
∑

M

q(M) log q(M), (19)

which is derived from Jensen’s inequality, where q(Mtij) ≥ 0 and 
∑

j∈E i
q(Mtij) = 1. If we let q(M) = p(M | Y out, Y in, �̂)

(the posterior of the latent variables M evaluated with the current estimate �̂ of the parameter �), one can obtain the 
Q-function as the lower bound of the log-likelihood (18) as follows:

log p(Y out, Y in | �) ≥ Q (�̂,�) + const., (20)

where Q (�̂, �) is given by (18). By maximizing Q (�̂, �) iteratively, one can always obtain the local optima of parameters 
that maximize the incomplete-data log-likelihood (18). Details are described in [23, Section 11.4.7.2].

In the approximate EM algorithm we developed, we replace the posterior expectation in (7) with a plug-in procedure 
of the MAP estimate M̂ represented by (8). This procedure, substituting M = M̂ to p(Y out, Y in, M | �), corresponds to 
the bounding procedure in (19) with the probability distribution q(M) = δM̂,M , obtaining the approximate Q-function 
Q approx(�̂, �) (8). It should be noted that Q approx(�̂, �) is still a lower bound of the log-likelihood (18). Q approx(�̂, �)

becomes equal to the exact Q-function on the condition that the posterior distribution of M in (7) can be written as 
p(M | Y out, Y in, �̂) = δM̂,M . In that case, it is guaranteed to converge to local optima that maximize the incomplete-data 
log-likelihood like the exact EM algorithm. If the above condition is not satisfied, one cannot always obtain local optima 
that are the same estimated by the exact EM algorithm. Nevertheless, a plug-in procedure of the MAP estimate is expected 
to be a good approximation in situations where the posterior distribution of M is concentrated around the MAP estimate 
M̂ . The approximate EM algorithm is also advantageous in that it makes parameter learning efficient by avoiding a posterior 
expectation in (7). Moreover, according to the previous work [28], the effectiveness of the approximation procedure, i.e., a 
plug-in procedure of the MAP estimate M̂ , has been shown experimentally.

In addition, we mention another aspect of the approximate EM algorithm, whose procedure is represented in Algo-
rithm 1. In Algorithm 1, the latent variables M and the model parameters � are updated alternately. This procedure is 
equivalent to a kind of coordinate ascent algorithm [35] using Q approx(�̂, �) as the objective function. Accordingly, Al-
gorithm 1 monotonically increases the objective function Q approx(�̂, �) until it reaches a local optimum as long as the 
objective function is differentiable.

Appendix C. Derivative of the objective function L(M) (10) with respect to Mti j

This appendix describes the first derivative of the objective function L(M) (10) with respect to Mtij , which is required 
for estimating the transition populations M based on the L-BFGS-B method. The derivative is given by

∂L(M)

∂Mtij
= 1

σ̂ 2
i

(
Y out

ti −
∑
j∈E i

Mti j

)
+ 1

λ̂2
j

T∑
s=1

(
Y in

sj −
∑
i∈E j

s∑
t=1

F (�st; γ̂ i j)Mtij

)
F (�st; γ̂ i j)

+ log
(∑

j∈E i

Mti j

)
+ log θi j − log Mtij, (21)

where s is an auxiliary time variable.
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