
> Paper ID: T-SP-01515-2003.R2 < 

 

1 

 

Abstract—In this paper, we consider the problem of designing a 

set of nonuniform near allpass complementary FIR filters. This 

problem can be formulated as a quadratic semi-infinite 

programming problem, where the objective is to minimize the sum 

of the ripple energy for the individual filters, subject to the 

passband and stopband specifications as well as to the allpass 

complementary specification. The dual parameterization method 

is used for solving the linear quadratic semi-infinite programming 

problem. 

 
Index Terms—allpass complementary FIR filters, nonuniform 

frequency bands, semi-infinite programming, dual 

parameterization. 

 

I. INTRODUCTION 

T is well known that perfect signal reconstruction can be 

achieved simply by adding all subband signals, if a set of 

allpass complementary filters is employed in the analysis 

procedure [1]. Thus, the use of these filters can save substantial 

implementation cost (see, [1], [4]-[9]). For this reason, it has 

found many applications in different engineering disciplines, 

such as in sigma-delta A/D converter designs [2], audio coders 

[3], speech scramblers [3] and loudspeaker crossovers [5]-[6]. 

The most common existing design methods of 

complementary filters are based on the interconnections of 

some allpass functions [4]-[9]. Although the designed filters are 

robust to coefficient quantization, these methods are developed 

 
Manuscript received August 7, 2003; revised November 26, 2003. This 

work was substantially supported by a research grant (project number G-YD26) 

from the Hong Kong Polytechnic University, the Centre for Multimedia Signal 

Processing, The Hong Kong Polytechnic University, the CRGC grant (project 

number PolyU 5101\01E) from the Research Grants Council of Hong Kong, as 

well as a research grant from Australian Research Council. The associate editor 

coordinating the review of this manuscript and approving it for publication was 

Dr. Henrique Malvar. 

Charlotte Yuk-Fan Ho is with the Department of Electronic Engineering, 

Queen Mary, University of London, Bingo Wing-Kuen Ling is with the 

Department of Electronic Engineering, King’s College London, Yan-Qun Liu 

is with the Department of Mathematics and Statistics, Royal Melbourne 

Institute of Technology, Peter Kong-Shun Tam is with the Department of 

Electronic and Information Engineering, and Kok-Lay Teo is with the 

Department of Applied Mathematics and Centre for Multimedia Signal 

Processing, Department of Electronic and Information Engineering. (e-mail: 

wing-kuen.ling@kcl.ac.uk). 

Publisher Item Identifier  

based on the uniform or tree-structured complementary filters. 

Moreover, these methods are still relying on some 

unconstrained optimization routines [4]-[5] or incorporating 

some standard filters [6]-[9], such as elliptic filters, Chebyshev 

filters and Butterworth filters in a somewhat adhoc manner; so 

they cannot be applied to minimize the overall passband and 

stopband ripples. 

Since the uniform complementary filters sometimes cannot 

satisfy certain specifications (see, for example, in audio 

applications [3]), in these cases, a set of nonuniform allpass 

complementary filters is preferred. To address these problems, a 

cosine modulation approach [15] was proposed. Although the 

formulation in [15] could control the amount of passband and 

stopband ripples of the prototype filter, the allpass 

complementary specification for the overall structure may not 

be satisfied. Moreover, as the optimization problem formulated 

in [15] is not a convex problem, the quasi Netwon algorithm 

only gives the local optimal solution, which depends on the 

initial condition selected. 

To address this problem, in this paper, the exact allpass 

complementary requirement is relaxed to a near allpass 

complementary requirement. This near allpass complementary 

specification as well as the passband and stopband 

specifications for the individual filters are together expressed as 

inequality continuous constraints in the frequency domain. Our 

objective is to minimize the sum of the ripple energy for the 

individual filters, subject to those inequality continuous 

constraints. The optimal near allpass complementary filter 

design problem is formulated as a quadratic semi-infinite 

programming problem. Two common approaches to tackle this 

problem are the discretization method followed by the 

semi-definite programming [10] and the application of the 

Remez-exchange algorithm [11]. However, these methods are 

not effective for the nonuniform near allpass complementary 

FIR filter design. For the discretization method followed by the 

semi-definite programming, it is not guaranteed that the 

constraints will be satisfied in between the discretization points; 

although the deviation from the constraints can be reduced by 

increasing the number of discretization points, increasing the 

number of constraints will aggravate the complexity of the 

problem. For the Remez-exchange algorithm, the solution 

obtained converges to the global optimal solution if and only if 
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there are N+1 local extrema with alternating signs (N is the 

order of the filters) and these local extrema are all equal in 

absolute value [11]; although this necessary and sufficient 

condition is satisfied for the equiripple filter design problem, 

this is not satisfied for the nonuniform near allpass 

complementary FIR filter design problem, and so the overall 

performance of the filter banks would not be optimized, and 

hence, we cannot guarantee the existence of the optimal 

solution. On the other hand, for the dual parameterization 

approach [12]-[14], the semi-infinite programming problem is 

reduced to a sequence of approximating sub-problems followed 

by a non-linear finite programming problem. Each of the 

approximating sub-problems can be readily solved using 

quadratic programming. The finite non-linear program’s global 

solution can then be obtained from the approximate solution. If 

the feasible set is nonempty, then an optimal solution is 

guaranteed no matter what the initial condition is. Besides, as 

the constraint is expressed as a matrix inequality, it is very 

flexible to include the nonuniform near allpass complementary 

constraint or other constraints in the design problem by 

increasing the number of rows in the corresponding matrix and 

vector. Furthermore, as we have developed an efficient 

algorithm for implementing this dual parameterization method 

[12]-[14], in which the algorithm only involves initialization, 

computing the local minimum and computing the global 

minimum, so it is simple to use. 

The rest of the paper is organized as follows. In Section II, we 

formulate the design problem as a linear quadratic semi-infinite 

programming problem. In Section III, design examples are 

presented and solved. Section IV concludes the paper. 

 

II. PROBLEM FORMULATION 

To avoid phase distortions, we assume that the frequency 

responses of the filters are symmetric and can be expressed as: 
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where the superscript 
T

 denotes the transpose. The sum of the 

ripple energy for the individual filter in the passband and 

stopband can be expressed as: 

   





1

0

2

)()(
N

i BB

di
s
i

p
i

i
dHHJ



x . (4) 

Using an argument similar to that given in Appendix B of [14], 

we can show that there exist a positive definite matrix Q , a 

vector b  and a scalar p  such that: 

  pJ TT  xbxQxx
2

1 . (5) 

For details, see Appendix B of [14]. 

Next, we consider the specifications, expressed as a set of the 

continuous inequality constraints, to be imposed. Let the bounds 

on the passband and stopband ripples of the filter be, 

respectively, 
ip  and 

is , for 1,,1,0  Ni  . Then the 

continuous inequality constraints are: 

ii pdi HH   )()( , for p

iB  and for 1,,1,0  Ni  , (6) 

and 

ii sdi HH   )()( , for s

iB  and for 1,,1,0  Ni  . (7) 

By shifting and scaling the frequency bands, all the filters with 

different bandwidths can be transformed into a lowpass filter 

with the same bandwidth. Hence, by combining those 

constraints in a matrix formulation, the constraints can be 

further expressed as: 
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which )(iA  and 
iδ  consist of respectively, cosine functions 

and the specifications for the passband and stopband ripples. 

Now define the allpass complementary constraint as: 
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where  A  is an allpass function and 
a  is the upper bound 

for the absolute difference between the sum of the filter 

responses and the allpass function. Similarly, the constraint 

defined in (9) can be expressed as: 
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)(ξ , 
N  and 

N  are respectively, the kernels of the filters, 

the amount of frequency shift and the scaling factor for the 

bandwidth. Hence, the near allpass complementary FIR filter 

design problem can be formulated as the following linear 

quadratic semi-infinite programming problem: 
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For a fixed set of upper bound values for the passband and 

stopband ripples, as well as the allpass complementary error, the 

design procedure based on the dual parameterization given in 



> Paper ID: T-SP-01515-2003.R2 < 

 

3 

[12]-[13] is used. The first part of the design procedure is to 

formulate the design problem as a semi-infinite programming 

problem, referred to as Problem (P), as described above. Since 

the algorithm for obtaining the solution of Problem (P) is stated 

in [12], the next part of the design procedure follows the steps 

stated in [12]. That is, first initialize a set of parameters, then 

compute the local minimum of the finite problem. Finally, 

compute the global minimum by implementing a local search 

for the finite dual problem, and this global minimum 

corresponds to the optimal solution of Problem (P). 

The nonuniform near allpass complementary FIR filter design 

problem is formulated as a semi-infinite programming problem, 

referred to as Problem (P), and we have shown in [12]-[14] that 

the solution for Problem (P) will converge to an exact optimal 

solution satisfying all the required specifications if the KKT 

conditions are satisfied. Thus, the convergence of the dual 

parameterization method [12]-[14] to an exact optimal solution 

is guaranteed once the KKT conditions are satisfied. In order to 

satisfy the KKT conditions, we need to guarantee that the 

feasible set is nonempty. It is well known in the filter design 

theory [16] that the magnitude specifications on the passband 

and stopband will be satisfied if the filter length is long enough. 

Hence, the feasible solution is nonempty and KKT conditions 

are satisfied if the filter lengths of the filter are long enough. As 

a result, the requirement for our algorithm to obtain an exact 

optimal solution is the sufficiently long filter lengths. 

 

III. SIMULATION RESULTS 

For comparison, consider the design example shown in [9]. 

The specifications of the filters are as follows: (i) the cutoff 

frequency of the lowpass filter is 0.2, that of the bandpass filter 

are 0.2 and 0.7, and that of the highpass filter is 0.7; (ii) the 

passband and stopband ripples of all the filters are bounded by 

the values of -0.00043dB and -40dB, respectively. Assume the 

transition bandwidths of all the filters be 0.05 and the allpass 

function be   1A  for   , . Let the maximum 

allowable allpass complementary error be 0151.0a . We 

start the design of the filters with the filter length 70iN  for 

2,1,0i . The responses of the filters and the allpass 

complementary error designed via our approach are, 

respectively, plotted as solid lines in Figure 1 and Figure 2. The 

stopband ripple of the filters is just bounded by -42dB for the 

case considered in [9], while it is about -100dB for our case. In 

order to illustrate the effectiveness of formulating the design 

problem as a semi-infinite programming problem with the 

continuous constraint, the responses of the filters and the allpass 

complementary error designed with the same cost function but 

without the constraint are also plotted as dotted lines in, 

respectively, Figure 1 and Figure 2. Although the ripple energy 

of the filters designed via our approach is higher than that of the 

unconstrained design, the allpass complementary error of our 

design is bounded by -36.4258dB, and that of the unconstrained 

design is just bounded by -34.4933dB, which does not satisfy 

the required specification. By using our design, the specification 

is met and there is 1.9325dB improvement. 

Consider another design example with the specifications 

defined as follows: (i) the cutoff frequency of the lowpass filter 

is 0.5, that of the bandpass filter are 0.5 and 
6

5 , and that of 

the highpass filter is 
6

5 ; (ii) the passband and stopband ripples 

of the lowpass filter are bounded by the values of, respectively, 

0.0331 and 0.0330, that of the bandpass are, respectively, 

0.0378 and 0.0404, and that of the highpass filter are, 

respectively, 0.0313 and 0.0366; (iii) the transition bandwidths 

of all the filters are 0.15 and the allpass function is   1A  for 

  , ; (iv) the maximum allowable allpass 

complementary error is 0189.0a . We start the design of the 

filters with the filter length 20iN  for 2,1,0i . The 

responses of the filters and the allpass complementary error 

designed via our approach and the unconstrained approach are 

plotted as, respectively, solid lines and dotted lines in Figure 3 

and Figure 4. By magnifying the band edges of the filters and the 

allpass complement error as shown in Figure 4, it can be seen 

clearly that the unconstrained case does not satisfy some of the 

passband and stopband specifications as well as the allpass 

complementary specification. On the other hand, the filters 

designed by our proposed method satisfy all the specifications. 

The maximum allpass complementary error designed by our 

proposed method is bounded by -34.4904dB, which is 

1.0797dB lower than that obtained using the unconstrained 

optimization method. 

 

IV. CONCLUSION 

The main contribution of this paper is the formulation of a 

nonuniform near allpass complementary FIR filters design 

problem as a linear quadratic semi-infinite programming 

problem. The dual parameterization algorithm was used to solve 

this problem. The algorithm can find an exact optimal solution 

that satisfies the passband and stopband specifications and 

meets the allpass complementary specification if the solution 

exists.  
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Figure 1: (a)-(c) The filter responses obtained using the unconstrained 

technique and our proposed constrained method. (d) The allpass 

complementary errors obtained using the unconstrained technique and our 

proposed constrained method. 
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Figure 2: Zoom-in for the allpass complementary errors obtained using the 

unconstrained technique and our proposed constrained method. 
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Figure 3: (a)-(c) The filter responses obtained using the unconstrained 

technique and our proposed constrained method. (d) The allpass 

complementary errors obtained using the unconstrained technique and our 

proposed constrained method. 
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Figure 4: (a)-(c) Zoom-in for the filter responses obtained using the 

unconstrained technique and our proposed constrained method. (d) Zoom-in 

for the allpass complementary errors obtained using the unconstrained 

technique and our proposed constrained method. 


