
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

This study wants to propose a fuzzy model able to describe the inherent uncertainties related to a laser-assisted bending process and it is aimed 
at controlling of the springback phenomena, for a different set of laser process parameters. The process maps obtained are used to select the 
operational parameters in order to obtain the desired process output, providing as additional information how much the uncertainty of the model 
and the process varies by changing those operational parameters. The fuzzy model has also been used to assess the optimal parameters in order 
to satisfy the requirement of the least-cost.
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1. Introduction

Manufacturing technologies have experienced gradual but 
revolutionary changes in the last decades, passing from the 
introduction of numerical controlled machines, as well as 
robotics, to rapid prototyping, environmentally sustainable 
technologies, etc.  At the same time, there has been the 
development and the need of new materials and products, 
giving rise to new concepts and targets: attributes like quality, 
reliability, cost, life-cycle prediction, delivery and service, 
have come more and more into focus. In fact, the evolution of 
new materials and the request for more precise processing 
operations have made traditional manufacturing processes 
unsuitable for modern engineering [1]. For this reason, 
innovative and advanced production processes have been 
introduced to address the needs of modern industry especially 
when dealing with technological frontiers. In this light, lasers 
are considered a valuable alternative, thanks to their ability in 
providing an elevated level of accuracy, consistency, control, 

and flexibility in almost every manufacturing sector. In this 
context, research in lasers development, process optimisation 
and modelling/simulation plays a critical role in advancing 
laser materials processing science and technology.

In order to keep up with the new challenges, laser 
manufacturing industries must be able to select appropriate 
strategies, processes, product designs, materials, equipment, 
etc. However, the decisions to be made to set-up the process 
are complex, since in a laser manufacturing process a wide 
range of alternative options must be evaluated, and the choice 
of the best one is frequently made on a set of conflicting 
criteria [2,3]. There are very different decision-making 
situations in the manufacturing environment and the 
evaluation of alternative process designs in order to meet the 
productivity and final quality requirements is one of the most 
relevant. In fact, both these aspects are governed by a complex 
interaction of many process parameters, ranging from those 
connected with the laser source, to those concerning the 
thermal and mechanical properties of the processed material. 
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In order to enhance the decision-making process, very 
detailed knowledge of the laser manufacturing process itself is 
required. In order to improve such knowledge, we have two 
possible alternatives: performing experiments and/or 
modelling. In the first case, laser parameters are usually 
adjusted and tuned one by one to provide the quality desired
[4–8], but this consumes exhaustive amounts of resources, 
both in terms of time and money, and on the same time, laser 
quality cannot be easily predicted. In this light, modelling 
appears to be very helpful and surely the only solution in order 
to speed up the characterization of the processes and therefore 
their optimization. In particular, the aim should be the 
development of a physical model able to simulate in a very 
precise way the entire process, starting from the generation of 
the laser, to the interaction between the laser and the material 
and hence on the quality obtained. However, in most cases, 
this is not possible because of the strong dynamic nature of the 
laser process. For this reason, empirical modelling can be 
considered a valuable solution, and very often the only 
available tool able to make researchers and manufacturers 
capable of predicting and controlling the final quality of the 
laser process. It is worth to state here that these empirical 
models exist only thanks to the experiments and are valid only 
within the “space” that is tested. In fact, they are exclusively 
built and then validated on the basis of the experimental 
findings, within the intervals of the investigated parameters.

The use of empirical models introduces, however, a new 
source of uncertainty related to the simplification and the 
inherent lack of knowledge led from the adoption of empirical 
models themselves. For this reason, there is a need for 
mathematical tools able to guide the decision-making process 
in environments characterized by high uncertainty. Therefore, 
decision-making has moved from the concept of probability to
the concept of possibility, in which the most important aspect 
is the meaning of the information that is measured [2]. The 
inherent attitude of fuzzy logic to perform decision-making 
and deduce control actions has led to the study of a new field 
of decision analysis, the fuzzy decision-making, which 
consists in making decisions under complex and uncertain 
environments where the information can be assessed with 
fuzzy sets and systems [9,10]. In particular, the fuzzy 
technique is able to take into account both the random error, 
e.g. that is associated to the variability of the process, and the 
systematic error, e.g. that is due to the inability to physically 
replicate in a precise way the process itself or simplification 
introduced in the model. The fuzzy model is, therefore, able to 
propagate all the sources of uncertainty at the input level to 
the output quantities [11–14]. 

During a conventional bending process, the material is 
stressed beyond the yield strength but below the ultimate 
tensile strength going against a plastic deformation, which 
leads to a change in the shape of the material [15]. In general, 
it is a flexible process by which many different shapes can be 
produced. However, achievement of sharp bending angles 
with small fillet radius requires sophisticated devices
involving customized expensive moulds and huge presses, 
resulting in long processing time and thus in high costs [16]. 
Application of laser in bending processes of metal sheets helps 
to overcome some of these limitations: it is flexible and easy 

to control; precise and small bend angle can be obtained [17]; 
at elevated temperatures, material’s formability increases. 
Heat affected zone is small as the laser beam has a narrow, 
concentrated and controlled area of irradiation. Therefore,
negligible springback occurs in the cooling phase, and a 
higher working accuracy can be achieved [18]. However, 
managing of springback is known to be very difficult since it 
depends on multiple concurrent variables such as the material 
properties of workpiece, its interaction with the mould and the 
design of the loading device [19,20]. On the contrary, properly 
tuning the laser parameters, the thermal flux radiated to the 
workpiece can be accurately managed [21,22].

In this context, the present work was divided into two main 
activities: performing experiments and developing fuzzy 
models. For the first one, the study, the definition, the design 
and the analysis of a laser-assisted bending manufacturing 
process was carried out. Then, based on the experimental 
findings, an innovative fuzzy uncertain model was developed 
and successfully applied. In particular, the Transformation 
Method is used to propagate these uncertainties to the delta 
angle [23,24] in order to find the optimal laser operational 
parameters able to satisfy the requirement of a nil springback 
effect.

2. Materials and Methods

The bending process was performed on two substrates of 
AA 6082 T6 aluminium alloy of 19 mm, 69 mm and 2 mm in 
length, width and thickness respectively, through two 
subsequent steps: first, the substrates were mechanically bent
by means of built-ad-hoc equipment. Then, the surface was 
laser treated while maintaining the substrates constrained in 
order to minimize the springback phenomena. Table 1 reports 
the properties of the substrates.

Table 1. Mechanical properties of AA 6082 T6 aluminium alloy.

Property Value Unit

Density 2.70 g·cm-3

Hardness 95 Vickers
Ultimate Tensile Strength 290 MPa
Yield Strength 250 MPa
Thermal conductivity 170 W·m-1·K-1

The mechanical bending was performed through a three-
point loading system able to induce a pre-scheduled initial
deflection in the plastic range on the aluminium substrates (2, 
4 and 8 mm), as shown in Fig. 1. For the laser treatment, a 1.5 
kW high-power diode laser source (ROFIN-SINAR DL015) 
with 940±10 nm wavelength was used. During this step, a
constant argon flux of 25 L/h was flushed on the substrate 
surface for protection and isolation purposes. Initial 
deflection, laser power, scan speed, number of passes and 
defocusing distance were the experimental factors 
investigated according to the developed full factorial plan 
based on Design of Experiment (DoE), which is reported in 
Table 2, for a total of 324 tests including the three replications 
performed.
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Table 2. Full factorial plan: 3 terms of Id ∙ 2 terms of P ∙ 2 terms of Ss ∙ 3 
terms of R ∙ 3 terms of Fd = 3∙2·2·3·3 = 108 experimental conditions. Each 
test was replicated 3 times: 108 ∙ 3 = 324 tests.

Parameter Value Unit

Initial deflection (Id) 2 4 8 mm
Laser power (P) 500 - 800 W
Scan Speed (Ss) 3 - 5 mm/s
Number of passes (R) 1 2 4 -
Defocusing distance (Fd) 0 2 4 mm

It is worth to note here that an increase in the working 
distance between the laser head and the substrate surface (i.e. 
increasing of the defocusing distance) leads to an increase in 
the spot area and to a corresponding decrease in the power 
intensity the laser beam delivers on the substrate surface. 
Table 3 reports the values of the spot area and the power 
density for the different configurations.

Table 3. Spot area and power intensity for the different defocusing distances 
and laser powers.

Defocusing distance (mm) Spot area (mm2)
Power Intensity (W/mm2)

P = 500 W P = 800 W

0 3.58 139.66 223.46
2 4.33 115.47 184.76
4 5.08 98.43 157.48

After laser treatments, the substrates were taken away from 
the die and submitted to the characterisation process. The 
profiles of the bent substrates were measured by surface 
profiler in contact mode (inductive gauge, Taylor Hobson 
Surface Topography System CLI 2000). For each sample, 1 
surface profile 20 mm long taken along the direction normal 
to the bending axis was stored. The profile of the substrates 
was measured twice: (i) after the mechanical bending, when 
the substrates were still clamped on the die; (ii) after the laser 
treatment, when the substrates were removed from the die. 
Finally, the bending angles were evaluated from the stored 
profiles (Fig. 2). In particular, the residual springback, i.e., the 
delta angle Δα between the angle achieved by mechanical 
bending of the constrained samples and the angle achieved by 
laser-assisted bending, with all constraints removed, was 
considered the experimental output of major interest. In fact, 
when Δα = 0, a perfect compensation of the springback is 
observed.

         

3. Results and Discussion

3.1. Experimental and Statistical Analysis

The analysis of the experimental results was carried out by 
means of the ANOVA test, shown in Table 4, in which are 
listed only the significant effects for sake of briefness (p-value 
< 0.05, Π > 1%, F-value > 3.87 for 1-DoF and F-value > 3.03 
for 2-DoF). These results are also graphically represented by 
means of the mean effects and interaction plots (see Fig. 3 and
Fig. 4). In particular, within this condition of significance, the 
results indicate that Δα is affected by all the control factors 
except for the Fd term. While, among the interaction terms, 
the delta angle is influenced by only the Id*P and Id*R terms. 
Although other interactions among experimental factors could 
be technically influential, their contribution percentage is
largely lower than 1% and they can be considered negligible 
in the determination of Δα.    

Table 4. ANOVA table for the bending angle.

Source DoF Adj.SS Adj.MS F-value p-value Π (%)

Id 2 14.93 7.466 13.01 0.000 1.232
P 1 500.91 500.914 872.58 0.000 41.345
Ss 1 27.18 27.179 47.35 0.000 2.243
R 2 419.47 209.734 365.35 0.000 34.623
Id*P 2 20.41 10.207 17.78 0.000 1.685
Id*R 4 22.13 5.532 9.64 0.000 1.827
Error 290 166.48 0.574 - - 13.741
Total 323 1211.53 - - - -

Fig. 1. Experimental set-up. The aluminium specimen is highlighted in gold,
while the laser beam in red. Fig. 2. Evaluation of the bending angles from a typical bending profile.

Fig. 3. Main effects plot for Δα.
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the delta angle is influenced by only the Id*P and Id*R terms. 
Although other interactions among experimental factors could 
be technically influential, their contribution percentage is
largely lower than 1% and they can be considered negligible 
in the determination of Δα.    

Table 4. ANOVA table for the bending angle.

Source DoF Adj.SS Adj.MS F-value p-value Π (%)

Id 2 14.93 7.466 13.01 0.000 1.232
P 1 500.91 500.914 872.58 0.000 41.345
Ss 1 27.18 27.179 47.35 0.000 2.243
R 2 419.47 209.734 365.35 0.000 34.623
Id*P 2 20.41 10.207 17.78 0.000 1.685
Id*R 4 22.13 5.532 9.64 0.000 1.827
Error 290 166.48 0.574 - - 13.741
Total 323 1211.53 - - - -

Fig. 1. Experimental set-up. The aluminium specimen is highlighted in gold,
while the laser beam in red. Fig. 2. Evaluation of the bending angles from a typical bending profile.

Fig. 3. Main effects plot for Δα.
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The phenomena related to the shape correction by laser 
treatment of the substrate after mechanical bending when still 
constrained on the die can be explained considering two main 
effects: (i) inhibition of springback by selective heating and 
simultaneous annealing of the outermost layers of the 
substrate still under constrains [25]; (ii) extra-bending of the 
still constrained metallic substrate induced by thermal 
gradients inside the pre-bent material during the laser 
treatment [26]. In particular, the first effect can be considered 
to be due to the change in the material properties of the 
aluminium alloys during heating because of the change in the 
residual stress distribution inside the metallic substrate [27].

3.2. Fuzzy Uncertain Modelling

The results of the ANOVA test have shown that the laser-
assisted bending process is characterized by a high variability 
due to the unpredictable factors which contribute more than 
13% to the total Adj.SS (see Error in Table 4), thus conferring 
a certain degree of uncertainty to the experimental data 
processed. Moreover, the regression model is responsible for 
a systematic error between data and model results. In this 
context, the fuzzy model can be used to select the operational 
parameters in order to achieve a given value of the residual 
springback, taking into account both the variability of the
process and the inherent inaccuracy related to the model.

Based on the results of the ANOVA test, an empirical 
model of the laser-assisted bending process has been 
proposed. It only considers the experimental parameters and 
their interactions whose calculated p-values are greater than 
0.05, Fisher’s factors are bigger than corresponding Fisher’s 
factors tabulated and characterized by a percentage of 
contribution of, at least, 1%, i.e. Id, P, Ss, R, Id*P and Id*R.

Basically, the numerical formulation of the empirical 
model can be drawn as follows:
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The empirical coefficients k0, k1, k2, k3, k4, k5 and k6 are the 
calibration coefficients of the model, which were determined 
by nonlinear multiple regression analysis based on the whole 
experimental data set. Table 5 reports the values of the 
coefficients for the delta angle.

Table 5. Calibration coefficients for the delta angle.

Calibration coefficient Value

k0 -1.160845
k1 -0.078028
k2 0.001675
k3 -0.071162
k4 0.128883
k5 0.000078
k6 0.017459

Then, the regression model described by Equation 1 was 
considered as the starting model for the development of the 
related fuzzy regression model, which is written as follows:
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In the latter equation, all the coefficients are expressed as 
triangular fuzzy numbers and they are described by 8 α-cuts 
and the interval at each α-level is discretized with 2 points. 
For each α-cut, the transformation method requires, in a 
combinatorial scheme, the evaluation of the number of points 
within the α-cut to the power of the number of fuzzy 
parameters, 7 in this case, leading to 128 evaluations. Then, 
the transformation method requires that, for each α-cut, all 
these models are evaluated obtaining for each of them the 
hypersurface of the output quantity, i.e. delta angle, as a 
function of the process parameters, i.e. initial deflection, laser 
power, laser scan speed and number of repetitions. The fuzzy 
result for the given α-cut is then obtained by computing the 
envelope of these hypersurfaces. The results are presented in 
Fig. 5, in which the samples are ordered for increasing values 
of Δα provided by the starting regression model (blue line).

From the inspection of the fuzzy results reported in Fig. 5, 
several statements can be done: (i) the experimental results 
show a large data dispersion, in fact the variation between 
residual springback obtained by using the same operational 
parameters can be quite different; (ii) the fuzzy model does 
not include about 10% of the data points; (iii) the starting 
regression model does not provide a useful indication of the 
resulting springback; (iv) the uncertainty level related to the 
fuzzy model is not constant with respect to the parameter 
combination used during the experimental test and it is not 
centred on the specific data point (red asterisks). In fact, the 
extent of the input uncertainty in the model, due to the choice 
of a specific fuzzy confidence interval, is not only related to 
the accuracy of the regression model adopted but also to the 
variability of the process. This effect can be therefore 
considered the reason for a non-constant level of uncertainty. 
This is a new information that tells us how much faithful the 
model is in representing such experimental result. In other 
words, the wider the fuzzy bands and the higher the distance 
of the experimental finding from the black area, the higher the 
uncertainty and therefore the lower the representative 
capability of the model. 

Fig. 4. Interaction plot for Δα.
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It is important to notice here that the large variability of the 
process is highlighted by the fuzzy model through a large 
band of uncertainty. This information is not available by 
considering just the regression model, nor directly obtained 
from the values of the confidence interval. Moreover, for this 
case study, the fuzzy results warn the analyst on the high level 
of uncertainty that is inherent with the technological process.

The proposed model can be also inverted in order to obtain 
the most suitable combination of the operational parameters 
leading to the desired output, which in this case is the highest 
productivity in terms of the least-time and therefore of least-
cost. Therefore, it is possible to obtain the link between the 
optimal operational time (top), defined in the following 
equation, and the laser power, leading to a zero residual 
springback:

                                                                        (3)

In the latter equation, L represents the distance travelled by 
the laser beam, which in this case is coincident with the length 
of the substrates (i.e. 19 mm).

In order to obtain two-dimensional maps, it is necessary to 
fix the other parameters thus obtaining different maps for each 
parameter combinations (see Fig. 6).

As expected from the physics of the process, the number of 
repetitions has a direct influence on the process time and the 
corresponding power of the laser necessary to obtain a zero 
residual springback. The maps highlight that for R = 1 (Fig. 
6A) laser power above 700 W is necessary to obtain the 
desired result. By increasing R to 2 and to 4, a larger range of 
P can be used. However, while changing laser power does not 
affect the uncertainty of the fuzzy model, increasing the 
number of repetitions has a negative effect on the uncertainty. 
Each of these maps provides a relation between top and P, so 
each can be used to select the optimal laser power level 
considering both time and uncertainty. In this case, it is 
therefore convenient to reduce the number of passes to R = 1 
and use the necessary laser power P = 800 W. It is also 
important to notice that if one should do more than one 
repetition, the indirect fuzzy results point out that the 
uncertainty is lower when using higher laser power, i.e. P =
800 W for R = 2, and P = 700 W for R = 4.

           

4. Conclusions

Probabilistic analysis can provide a quantitative way to 
account for the uncertainties in input parameters. However, in 
many practical conditions, the amount of data is frequently 
limited, and the distribution type of the uncertain variable 
may not be known. This situation makes the application of the 
probabilistic approach difficult. Moreover, some uncertainties 
relating to measured parameters in a generic process may, in 
fact, be non-stochastic but rather cognitive, arising from 
incomplete knowledge. The lack of information is generally 
reflected by the lack of a physical model of the process, and 
often an empirical model is used. Under such conditions, it 
appears to be reasonable to adopt fuzzy set theory because of 
the inherent ability of fuzzy logic to make a decision and 
deduce control actions under complex and uncertain 
environments only requiring mean, minimum, and maximum 
values of the uncertain parameters.

This work presents a methodology to obtain such a fuzzy 
model from the experimental data available from an 
experimental campaign and its application to a case study 
dealing with laser assisted bending process. In particular, the 
use of this fuzzy model is aimed at evaluating the best input 
parameters combination in order to obtain a nil residual 
springback.

The input parameters were considered as triangular fuzzy 
numbers, and the Transformation Method was used to handle 
uncertainty propagation to the residual springback.

Fig. 5. Fuzzy map for the residual springback in terms of Δα.

Fig. 6. Fuzzy uncertainty maps for Id = 2 mm, A) R = 1; B) R = 2; C) R = 4.
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The phenomena related to the shape correction by laser 
treatment of the substrate after mechanical bending when still 
constrained on the die can be explained considering two main 
effects: (i) inhibition of springback by selective heating and 
simultaneous annealing of the outermost layers of the 
substrate still under constrains [25]; (ii) extra-bending of the 
still constrained metallic substrate induced by thermal 
gradients inside the pre-bent material during the laser 
treatment [26]. In particular, the first effect can be considered 
to be due to the change in the material properties of the 
aluminium alloys during heating because of the change in the 
residual stress distribution inside the metallic substrate [27].

3.2. Fuzzy Uncertain Modelling

The results of the ANOVA test have shown that the laser-
assisted bending process is characterized by a high variability 
due to the unpredictable factors which contribute more than 
13% to the total Adj.SS (see Error in Table 4), thus conferring 
a certain degree of uncertainty to the experimental data 
processed. Moreover, the regression model is responsible for 
a systematic error between data and model results. In this 
context, the fuzzy model can be used to select the operational 
parameters in order to achieve a given value of the residual 
springback, taking into account both the variability of the
process and the inherent inaccuracy related to the model.

Based on the results of the ANOVA test, an empirical 
model of the laser-assisted bending process has been 
proposed. It only considers the experimental parameters and 
their interactions whose calculated p-values are greater than 
0.05, Fisher’s factors are bigger than corresponding Fisher’s 
factors tabulated and characterized by a percentage of 
contribution of, at least, 1%, i.e. Id, P, Ss, R, Id*P and Id*R.

Basically, the numerical formulation of the empirical 
model can be drawn as follows:
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The empirical coefficients k0, k1, k2, k3, k4, k5 and k6 are the 
calibration coefficients of the model, which were determined 
by nonlinear multiple regression analysis based on the whole 
experimental data set. Table 5 reports the values of the 
coefficients for the delta angle.

Table 5. Calibration coefficients for the delta angle.

Calibration coefficient Value

k0 -1.160845
k1 -0.078028
k2 0.001675
k3 -0.071162
k4 0.128883
k5 0.000078
k6 0.017459

Then, the regression model described by Equation 1 was 
considered as the starting model for the development of the 
related fuzzy regression model, which is written as follows:
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In the latter equation, all the coefficients are expressed as 
triangular fuzzy numbers and they are described by 8 α-cuts 
and the interval at each α-level is discretized with 2 points. 
For each α-cut, the transformation method requires, in a 
combinatorial scheme, the evaluation of the number of points 
within the α-cut to the power of the number of fuzzy 
parameters, 7 in this case, leading to 128 evaluations. Then, 
the transformation method requires that, for each α-cut, all 
these models are evaluated obtaining for each of them the 
hypersurface of the output quantity, i.e. delta angle, as a 
function of the process parameters, i.e. initial deflection, laser 
power, laser scan speed and number of repetitions. The fuzzy 
result for the given α-cut is then obtained by computing the 
envelope of these hypersurfaces. The results are presented in 
Fig. 5, in which the samples are ordered for increasing values 
of Δα provided by the starting regression model (blue line).

From the inspection of the fuzzy results reported in Fig. 5, 
several statements can be done: (i) the experimental results 
show a large data dispersion, in fact the variation between 
residual springback obtained by using the same operational 
parameters can be quite different; (ii) the fuzzy model does 
not include about 10% of the data points; (iii) the starting 
regression model does not provide a useful indication of the 
resulting springback; (iv) the uncertainty level related to the 
fuzzy model is not constant with respect to the parameter 
combination used during the experimental test and it is not 
centred on the specific data point (red asterisks). In fact, the 
extent of the input uncertainty in the model, due to the choice 
of a specific fuzzy confidence interval, is not only related to 
the accuracy of the regression model adopted but also to the 
variability of the process. This effect can be therefore 
considered the reason for a non-constant level of uncertainty. 
This is a new information that tells us how much faithful the 
model is in representing such experimental result. In other 
words, the wider the fuzzy bands and the higher the distance 
of the experimental finding from the black area, the higher the 
uncertainty and therefore the lower the representative 
capability of the model. 

Fig. 4. Interaction plot for Δα.
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It is important to notice here that the large variability of the 
process is highlighted by the fuzzy model through a large 
band of uncertainty. This information is not available by 
considering just the regression model, nor directly obtained 
from the values of the confidence interval. Moreover, for this 
case study, the fuzzy results warn the analyst on the high level 
of uncertainty that is inherent with the technological process.

The proposed model can be also inverted in order to obtain 
the most suitable combination of the operational parameters 
leading to the desired output, which in this case is the highest 
productivity in terms of the least-time and therefore of least-
cost. Therefore, it is possible to obtain the link between the 
optimal operational time (top), defined in the following 
equation, and the laser power, leading to a zero residual 
springback:
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In the latter equation, L represents the distance travelled by 
the laser beam, which in this case is coincident with the length 
of the substrates (i.e. 19 mm).

In order to obtain two-dimensional maps, it is necessary to 
fix the other parameters thus obtaining different maps for each 
parameter combinations (see Fig. 6).

As expected from the physics of the process, the number of 
repetitions has a direct influence on the process time and the 
corresponding power of the laser necessary to obtain a zero 
residual springback. The maps highlight that for R = 1 (Fig. 
6A) laser power above 700 W is necessary to obtain the 
desired result. By increasing R to 2 and to 4, a larger range of 
P can be used. However, while changing laser power does not 
affect the uncertainty of the fuzzy model, increasing the 
number of repetitions has a negative effect on the uncertainty. 
Each of these maps provides a relation between top and P, so 
each can be used to select the optimal laser power level 
considering both time and uncertainty. In this case, it is 
therefore convenient to reduce the number of passes to R = 1 
and use the necessary laser power P = 800 W. It is also 
important to notice that if one should do more than one 
repetition, the indirect fuzzy results point out that the 
uncertainty is lower when using higher laser power, i.e. P =
800 W for R = 2, and P = 700 W for R = 4.

           

4. Conclusions

Probabilistic analysis can provide a quantitative way to 
account for the uncertainties in input parameters. However, in 
many practical conditions, the amount of data is frequently 
limited, and the distribution type of the uncertain variable 
may not be known. This situation makes the application of the 
probabilistic approach difficult. Moreover, some uncertainties 
relating to measured parameters in a generic process may, in 
fact, be non-stochastic but rather cognitive, arising from 
incomplete knowledge. The lack of information is generally 
reflected by the lack of a physical model of the process, and 
often an empirical model is used. Under such conditions, it 
appears to be reasonable to adopt fuzzy set theory because of 
the inherent ability of fuzzy logic to make a decision and 
deduce control actions under complex and uncertain 
environments only requiring mean, minimum, and maximum 
values of the uncertain parameters.

This work presents a methodology to obtain such a fuzzy 
model from the experimental data available from an 
experimental campaign and its application to a case study 
dealing with laser assisted bending process. In particular, the 
use of this fuzzy model is aimed at evaluating the best input 
parameters combination in order to obtain a nil residual 
springback.

The input parameters were considered as triangular fuzzy 
numbers, and the Transformation Method was used to handle 
uncertainty propagation to the residual springback.

Fig. 5. Fuzzy map for the residual springback in terms of Δα.

Fig. 6. Fuzzy uncertainty maps for Id = 2 mm, A) R = 1; B) R = 2; C) R = 4.
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The phenomena related to the shape correction by laser 
treatment of the substrate after mechanical bending when still 
constrained on the die are essentially ascribable to two 
different reasons: (i) inhibition of springback by selective 
heating and concurrent annealing of the outermost layers of 
the substrates still under constraints; (ii) extra-bending of the 
still constrained metallic substrate induced by thermal 
gradients inside the pre-bent material during the laser 
treatment.

The large variability of the process is highlighted by the 
fuzzy model through a large band of uncertainty that occurs in
all the process maps generated. This information is not 
available by considering just the nominal regression model, 
nor directly obtained from the values of the confidence 
interval.

Since one of the main targets of a manufacturing process is 
to obtain the desired result in the shortest possible time, the 
fuzzy model was inverted in order to assess the optimal 
parameters needed for this purpose, imposing a nil residual 
springback as output. By applying a single laser scan and the 
highest laser power of 800 W gives the best result in terms of 
operating time and uncertainty level. In particular, with such 
level of input parameters, it is possible to ensure the inhibition 
of the springback phenomenon with an operating time of 20 s.

Fuzzy solutions can be very helpful in predicting, 
controlling and managing springback in V-shaping of thin 
aluminium sheets. Expert systems can be therefore a viable 
alternative to analytical and finite element models. It can 
allow the definition of practical tools for automation and 
process monitoring as well as facilitate the development of 
first approximation modulus very useful to the practitioners 
for the control of bending process of workpiece with simple 
geometry.
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