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Meta-validation of bipartite network projections
Giulio Cimini 1,2✉, Alessandro Carra3, Luca Didomenicantonio3 & Andrea Zaccaria 2,4

Monopartite projections of bipartite networks are useful tools for modeling indirect inter-

actions in complex systems. The standard approach to identify significant links is statistical

validation using a suitable null network model, such as the popular configuration model (CM)

that constrains node degrees and randomizes everything else. However different CM for-

mulations exist, depending on how the constraints are imposed and for which sets of nodes.

Here we systematically investigate the application of these formulations in validating the

same network, showing that they lead to different results even when the same significance

threshold is used. Instead a much better agreement is obtained for the same density of

validated links. We thus propose a meta-validation approach that allows to identify model-

specific significance thresholds for which the signal is strongest, and at the same time to

obtain results independent of the way in which the null hypothesis is formulated. We illus-

trate this procedure using data on scientific production of world countries.
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Networks are simplified yet effective models for a large class
of natural, socio-economic and technological systems
described by complex interaction patterns. Independently

of the nature of the underlying interactions, the network repre-
sentation allows capturing the emergent features of these systems
as well as their dynamical patterns1–5. As such, network science
has gained increasing popularity in the last twenty years6–8.

A network is labeled as bipartite when its elements (the nodes)
can be split in two disjoint sets, such that links can only exist
between nodes of different sets9. Bipartite networks are the nat-
ural representation for several systems, such as: social affiliation
and collaboration networks, where individuals connect to the
groups they are member of10,11; financial and commercial own-
ership networks, where entities are linked to the goods they own
or consume12,13; trade networks, where economies connect to the
products they export14,15; ecological networks, where species
connect to the habitat they live in16,17; biological and medical
networks connecting, e.g., patients and diseases18,19. Mathemati-
cally speaking, a bipartite network is defined as a graph with two
sets L and Γ of nodes, and a ∣L∣ × ∣Γ∣ matrix of connections M
called bi-adjacency matrix. The generic element of this matrix is

Miα ¼
1 if nodes i 2 L and α 2 Γ are connected,

0 otherwise.

�
ð1Þ

The number of connections or degree of a node i ∈ L is then
defined as ki=∑α∈ΓMiα, while the degree of a node α∈ Γ is
κα=∑i∈LMiα. The total number of links in the network is
E=∑i∈Lki=∑α∈Γκα.

The indirect relation between two nodes belonging to the same
set of a bipartite network can be measured through their co-
occurrences (or common neighbors), namely how many nodes of
the other set they are both connected to. For instance the co-
occurrences of nodes i and j of set L are given by

Cij ¼ ∑
α2Γ

MiαMjα: ð2Þ
The L × L square matrix C represents a monopartite network
obtained as the projection of the original bipartite network onto
the set L (L-projection)12. Analogously, one can project the
bipartite network onto the set Γ to obtain the co-occurrences
between nodes of that set (Γ-projection).

The main problem in studying bipartite network projections is
that they are often very dense and thus difficult to handle with the
tools of network theory. This happens because any two nodes are
connected in the projected network as soon as they have a single
co-occurrence. Moreover, co-occurrences can be influenced by
single node variables, thus understanding whether they indicate
an effective interdependence between nodes may be difficult. For
example, nodes that have high degree in the bipartite network
naturally tend to have more co-occurrences than low-degree
nodes (more generally, the degree sequence of the network pro-
jection is highly dependent on the degree sequence of the two sets
from the original bipartite structure20). It is thus useful to extract
representative links of the projected network; this can be achieved
using several filtering techniques, from unconditional threshold-
ing to Minimal Spanning Trees21 and Planar Maximally Filtered
Graphs22. Yet in order to identify the most informative co-
occurrences, the statistically-grounded approach consists in per-
forming link validation using a null network model.

Statistical validation of network patterns is a common
approach in the literature (the classical applications being motifs
expression analysis23,24, network backbone extraction25 and
community detection26–28). The goal is to identify the empirical
patterns that deviate from a benchmark null model, in order to
ensure that those patterns are indeed a salient feature of the
network and not a mere consequence of some of its other

properties (given the potentially strong interdependence between
structural network quantities29–33). Following the prescription of
information theory34, the null model is thus obtained by con-
straining some network properties and randomizing everything
else. In this way, the formulated null hypothesis is that these
constraints are the only explanatory variables for the network
at hand; when the null hypothesis is rejected, we can state that the
observed network patterns are not a mere consequence of the
imposed constraints.

Going back to our context of bipartite network projections, the
statistical significance of each observed co-occurrence value
Cij > 0 can be quantified through its p-value:

p½Cij� ¼ 1� ∑
Cij�1

x¼0
πðxji; jÞ; ð3Þ

where π(⋅ ∣i, j) is the probability distribution of the expected co-
occurrences between i and j under the null model. The right-hand
side of Eq. (3) is the probability that i and j have no less than Cij

co-occurrences in the null model. This quantity can be used to
build a validated (or filtered) projection of the original bipartite
network, containing only the most significant links according to
the null model. For each Cij, if the p-value of Eq. (3) is smaller
than a significance threshold (or confidence level) p*, the link i, j
is placed on the monopartite validated network; otherwise, it is
discarded. In other words, the comparison is deemed statistically
significant if the observed co-occurrences are an unlikely reali-
zation of the null hypothesis according to the significance level p*

(in particular, we are interested in detecting the co-occurrences
that are significantly larger than their null model expectation;
significantly smaller values can be obtained in a similar fashion—
see Supplementary Note 1). In this way the original amount of
links is drastically reduced, and the result is a much sparser
validated network with a clearer meaning.

Naturally, statistical validation has some intrinsic degrees of
freedom: the choice of the null model, its specific formulation,
and the value of the significance level p*. In particular, the choice
of the model is a step that should be handled with care, as a bad
choice may lead to wrong conclusions about the structural and
functional features of the network35,36. For instance, using a
(bipartite) Erdös-Rényi model37, i.e., a random network preser-
ving only the density of the original bipartite graph, leads to an
identical distribution π( ⋅ ∣i, j) for each node pair i, j and thus to
an unconditional global threshold to select the most significant Cij

values38,39. However this choice does not solve the bias problem
for high degree nodes, which is very important in networks given
that degree distributions are typically very broad40. A natural way
to take this aspect into account is given by the popular config-
uration model (CM)41–43, which generates random networks with
a given degree sequence.

In the context of bipartite networks, the first model for-
mulation of this family was obtained by constraining the degrees
of nodes in one set (say L)44. In this case, the co-occurrences
probability can be computed exactly as a hypergeometric
distribution45,46. Yet this model solves the degree bias only
partially, since it assumes nodes of the other set (say Γ) to be
equivalent and interchangeable. The alternative approach is to
model random bipartite networks preserving the degrees of both
node sets L and Γ, and then use these networks to obtain the null
model for the projected network. Degree sequence models follow
this approach, however they either require multiple observations
of the empirical network47 or are based on computational link
swap methods48 that are typically impractical and biased49.
An exception is represented by the recently proposed Curveball
algorithm50–52, a link swap method that is extremely efficient in
generating network configurations and is ergodic (i.e., it can
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sample uniformly over the set of all possible network config-
urations). The alternative route to Monte Carlo sampling
is represented by maximum-entropy models. The Bipartite
Configuration Model (BiCM)53 allows generating an ensemble of
bipartite networks where node degrees of both sets L and Γ are
preserved as ensemble expectations. The null model for the
network projections is then obtained by projecting BiCM-
generated networks54,55. This latter approach allows computing
the co-occurrences distributions both numerically and analyti-
cally, and simplifies as a Bipartite Partial Configuration Model
(BiPCM) when degree constraints are imposed only on one set
of nodes. At last we note that, in principle, the projection of a
bipartite network can be statistically validated also using a
null model for monopartite weighted networks25,33,56. That is,
instead of defining the null model on the bipartite network and
then deriving its formulation for the network projection,
the null model can be directly defined on the monopartite
projection. However this approach discards the information
contained in the original bipartite network, and as such typically
leads to completely different and not significant outcomes (see
Supplementary Note 2).

To sum up, the four main CM-based null models for bipartite
network projections proposed in the literature (Hypergeometric,
Curveball, BiPCM and BICM) can differ under two aspects. The
first aspect concerns which constraints are imposed, whether the
degrees of one set or both sets of the bipartite network. We can
thus speak of “partial” models (Hypergeometric and BiPCM)
and “full” models (Curveball and BiCM). The second aspect
concerns how these constraints are imposed, either exactly (hard
constraints) or as ensemble expectations (soft constraints).
Using the analogy with statistical physics34, we can refer to these
approaches respectively as “microcanonical” models (Hyper-
geometric and Curveball) and “canonical” models (BiPCM and
BiCM). Table 1 summarizes this classification (see the Methods
section for the formal definition of the four null models).
A fundamental point that has not been addressed so far is
whether these formulations lead to different validated networks,
and thus how to interpret and compare results of the various
studies in the literature.

Here we provide, for the first time to our knowledge, a sys-
tematic comparison of validation results obtained with the var-
ious CM formulations for bipartite network projections. We find
that albeit based on very similar null hypothesis, the different
formulations lead to very different filtered networks even for the
same value of validation threshold p*. However we show that a
reconciliation of results is possible within a region of model-
specific thresholds p* such that the densities of links validated by
the null models overlap. In particular we show that a common
community structure may emerge in this region. This criterion
provides a quantitative approach to build a meta-validated net-
work projection that is independent on the specific imple-
mentation of the null model.

Results and discussion
We perform the comparison of validation outcomes in the context
of co-occurrences for country production networks, following the
recent stream of works on economic fitness and complexity44,57–60.
In particular, our empirical bipartite system is defined by two set of
nodes, scientific fields (set L) and world countries (set Γ), and by
links that connect countries with the scientific fields they have a
comparative advantage on. The L-projection of this bipartite net-
work is a monopartite network of scientific fields, whose generic
link Cij is the co-occurrence of fields i and j worldwide. Figure 1
summarizes how the validation procedure is applied to this net-
work. For a description of raw data and pre-processing, see the
Methods section.

We start by recalling the key assumption underlying economic
complexity studies on co-occurrences: if two scientific fields fea-
ture significant co-occurrences (in terms of an appropriate null
model) then we can assume that there is an overlap between the
capabilities required to achieve proficient level (i.e., competitive
advantage) in both fields60. The need for statistical validation
arises in this context since both countries and scientific fields are
heterogeneous (if nothing, by their size): two scientific fields may
happen to co-occur in many countries just because they are
popular worldwide. Therefore, a reasonable baseline choice of
null model is the (bipartite) CM, for which degrees (i.e., the
ubiquity of fields and possibly the diversification of countries)
sum up all the information. The corresponding null hypothesis is
thus that fields are independent and there is no capability
structure behind the network: co-occurrences between scientific
fields happen at random, some more likely than others just
because of their ubiquities or countries’ diversification. Therefore,
any specific observed link i, j for which we can reject such null
hypothesis is interpreted as the signal of some real inter-
dependence between the specific capabilities required to make
proficient scientific research in fields i and j.

Different models, different validated networks. In order to
better understand how the validation procedure works, we begin
by comparing in Fig. 2 the empirical value of the co-occurrences
Cij with the respective null model distribution π( ⋅ ∣i, j) for some
representative pairs i, j of scientific fields. We recall that Cij is
validated if it satisfies the condition p[Cij] ≤ p*, that is, if the area
under the distribution starting from the empirical value is smaller
than the threshold p*. The three example we report are the
co-occurrences of: (a) Mathematical Physics - Geometry and
Topology, which are likely validated, in accordance with our
expectations that the two fields are related by requiring common
skills and capabilities; (b) Mathematical Physics - Aquatic Science,
which are likely not validated, again as we can expect that the two
fields are unrelated; and (c) Finance - Applied Psychology, whose
relatedness is plausible but the outcome of the validation proce-
dure is uncertain, as it strongly depends not only on the choice of
the threshold p* but also on the choice of the null model. This is a
first evidence that different models may lead to different validated
networks.

These plots also highlight some important symmetries between
the various null model distributions (see also Fig. 3). On one
hand, the peaks coincide for the two partial models (Hypergeo-
metric and BiPCM), since they have the same average value
〈Cij〉= kikj/∣Γ∣ (see Eqs. (6) and (14)), but the same also
happens for the two full models (Curveball and BiCM). This
means that the average value of the co-occurrences in the null
model depends on the set(s) on which degree constraints are
imposed. Besides, such average is higher for full models as they
capture the heterogeneity of both sets. This can be readily seen by
taking the sparse limit of the BiCM, for which Eq. (9) becomes

Table 1 Classification of configuration models (CM) for
bipartite network projections by number and type of
constraints.

Partial (1 set) Full (2 sets)

Hard (microcanonical) Hypergeometric44–46 Curveball50,51

Soft (canonical) BiPCM55 BiCM54,55

Partial models only constraints the degrees of nodes belonging to the projection set, while Full
models constraints the degrees of nodes in both sets. Hard or microcanonical models impose
exact constraints, while Soft or canonical models impose them as ensemble averages. BiPCM
stands for Bipartite Partial CM and BICM for Bipartite CM.
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Fig. 1 Schematic illustration of the validation procedure for the bipartite
network of scientific fields and world countries. We start from the
bipartite network M of scientific fields (in this example: Earth Sciences,
Medicine, Biology, Chemistry and Physics111) and word countries (here: India,
Italy, Japan, United States112). In this network, links connect countries with
the scientific fields they have a comparative advantage on. From this
bipartite structure we create a monopartite projected network C of
scientific fields, whose weighted links represent the co-occurrences of field
pairs in the various countries. Finally we assess the statistical significance
of each observed co-occurrence against its null model expectation: we
place a link on the validated network only when the p-value is smaller than
the significance threshold p*. Note that this procedure is general and applies
to any bipartite network.

Fig. 2 Comparison of empirical co-occurrences and their null model
distributions for representative scientific field pairs. a Mathematical
Physics - Geometry and Topology, b Mathematical Physics - Aquatic
Science, c Finance - Applied Psychology. For each pair (i, j) of scientific
fields we report the empirical value of the (normalized) co-
occurrences Cij/∣Γ∣ and the respective null model distributions π( ⋅ ∣i, j).
The p-value is given by the area under the distribution starting from
the empirical value, hence the outcome of the validation procedure
strongly depends both on the significance threshold p* and the choice of
the null model.
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piα ’ e�θiþtα ¼ kiκα=E. Inserting this expression into Eq. (11) we
get hCiji ’ kikj∑ακ

2
α=E

2, which is greater than 〈Cij〉= kikj/∣Γ∣
of the BiPCM (and equal only when set Γ has no heterogeneity,
that is, κα= E/∣Γ∣ ∀ α). On the other hand, the width of the
distribution looks similar for microcanonical models (Hypergeo-
metric and Curveball) and for canonical models (BiPCM and
BiCM), implying that the standard deviation of the co-
occurrences depends on the types of constraints. As expected,
the choice of hard constraints leads to a narrower distribution
while the choice of soft constraints leads to a broader distribution.
This is easily seen by taking the ratio of variances for the BiPCM
(Binomial) and Hypergeometric model, which after some simple
algebra can be written as (∣Γ∣2− kikj)/[(∣Γ∣− ki)(∣Γ∣− kj)] > 1.
Further insights on model comparison are provided in Supple-
mentary Note 3. Overall, these differences between the null model

distributions are likely to produce strong disagreement between
the validated networks.

After focusing on individual co-occurrences, we ask in general
how many co-occurrences are validated by each null model. We
thus measure the link density ρ(p*) of the validated network,
defined as the fraction of i, j pairs such that p[Cij] ≤ p*, as a
function of the significance threshold p*. Results for the various
null models, reported in Fig. 4, show patterns that are consistent
with the above observations. The width of the null model
distributions sets the slope of the curves, so that BiCM is the
model that validates the least by having longer tails and higher
mean, whereas Hypergeometric validates the most by having
shorter tails and lower mean. Note also that the Hypergeometric ρ
does not tend to 0 for p*→ 0: this is due to the distribution not
vanishing within its finite support, whereas the effective support
of the canonical models distribution is much larger due to the
softness of the imposed constraints. Upstream of these con-
siderations, we observe a very large difference in density between
the various null models, even of one order of magnitude for the
same p* values. We can thus conclude that the different null
models unavoidably lead to different filtered network structures,
even when correcting for multiple hypothesis testing (see
Supplementary Note 4).

Null models reconciliation. We now discuss a general metho-
dology to reconcile the four validation schemes. The idea is to
find a coherence area in the space of parameters where the filtered
networks show a relatively good agreement. We start by assessing
the structural similarity of the validated networks using three
popular metrics of graph distance61. The first one is the simple
Jaccard coefficient, which measures the number of links in
common between two graphs. Jaccard is a known node-
correspondence method, i.e., it requires that the two graphs
have the same node set and the pairwise correspondence between
nodes is known (our validated networks satisfy this requirement).
We further consider: DeltaCon62, another known node-
correspondence method based on the comparison of l-length
paths connecting each node pair (we use the approximated ver-
sion of the algorithm, which restricts the computation to ran-
domly chosen pairs); and Portrait Divergence63, an unknown
node-correspondence method that compares the distribution of
the shortest-path lengths between graphs. Any of these methods
takes as input the adjacency matrices V and V0 of two networks,
each validated by a different null model, and returns a measure of
their similarity sV V0 2 ½0; 1�, where sV V0 ¼ 0 means the two

Fig. 4 Density ρ of links validated by the various null models as a
function of the significance threshold p*. The dashed bisector denotes the
noise level, namely the probability to statistically validate a link generated
by the null model. The four null models leads to different results even for
the same p* value.

Fig. 3 Comparison of null model features. a Ratio of mean co-
occurrences 〈Cij〉 for BiCM and BiPCM, and b ratio of variances σ2(Cij) for
BiPCM and Hypergeometric, as a function of the normalized degrees ki/∣Γ∣
and kj/∣Γ∣ of the corresponding nodes. Both quantities are strongly dependent
on the specific model formulations, especially for high values of the degrees.
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networks are maximally different while sV V0 ¼ 1 that they are
identical. We can then obtain a mean similarity score by aver-
aging over the six possible choices of null model pairs. A key issue
in this comparison is how to choose the validated networks to
match. The simplest choice is to compare networks obtained with
the same significance threshold p*, and study the average simi-
larity as a function of p* (Fig. 5, magenta triangles). We see that

the average similarity is rather low, especially for Portrait
Divergence. In order to recover some compatibility between the
results of the different models, we can repeat the operations
described above by taking validated networks with the same value
of the link density ρ (that is, we adjust p* for each network in
order to obtain the match of ρ values). The resulting curves (green
stars in Fig. 5) show that the average similarity of networks at
equal ρ is always much higher than for networks at equal p*.

We further study whether the validated networks are similar in
terms of mesoscale or community structure. We choose this
benchmark because statistical validation on networks is precisely
meant to highlight the emergence of multiple-nodes patterns like
motifs and communities. Broadly speaking, a community
structure is defined by (typically non-overlapping) sets of nodes,
characterized by having many more internal links—connecting
nodes belonging to the same community—than external links—
which connect nodes of different communities26. In order to find
the best partition of the network nodes, a number of community
detection algorithms have been proposed in the literature (we
remand to26 for a recent review of the field). Here we use the
popular Louvain method64, which is based on maximizing the
quality function known as Modularity65, defined as the observed
fraction of links internal to communities with respect to a
random benchmark. As there is no community detection method
that performs best in all situations66,67, in the Supplementary
Note 5 we repeat the same analysis using community inference
with Bayesian stochastic blockmodeling68 (finding qualitatively
similar results).

Figure 6 shows the results of the Louvain algorithm applied on
the networks validated by the various null models. Given the
previous analysis on structural similarity, we use ρ rather than p*

as independent variable with the aim of achieving a better
compatibility between the results of the different models. In each
plot, full circles represent the modularity of the best network
partition, which increases as the network becomes more sparse,
whereas the solid line marks the number of communities, which
also increases for decreasing density due to the appearance of
more disconnected components. A nontrivial feature that is
common to all plots is the presence of a plateau at 4 communities
for 0.1≲ ρ≲ 0.3. Additionally, modularity tends to stabilize at the
lower extreme of this plateau. In order to understand whether a
community structure common to all null models emerges in this
region, we show in Fig. 7 the modularity as a function of the
number of detected communities. Using this visualization we get
rid of the trivial dependence of modularity and number of
communities on ρ, and we observe a clear collapse of the curves
corresponding to the four models. Additionally we see that
modularity, after a fast increase, practically stops to grow after 4
communities are reached (the growth resumes only for a much
larger number of communities). This observation points in the
direction of a shared community structure. However we still do
not know if the partitions identified in each null model setup are
actually similar to each other.

To quantify the similarity between different partitions we use
the Adjusted Mutual Information (AMI)69. We choose this

Fig. 5 Average structural similarity of the networks validated by the
various null models. Error bars (not visible) represent standard deviations
over choices of null model pairs. Similarity values measured through
a Jaccard; b DeltaCon; c Portrait are plotted for filtered networks obtained
with the same significance threshold p* (magenta triangles) or of equal
density (green stars). The latter option reveals a higher concordance among
the null models. Note how similarity has a baseline dependence on the
network density: a change of a link has more impact in lower density graphs.
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metrics as it discounts the agreement between partitions solely
due to chance, and it is also relatively stable with respect to the
presence of disconnected components70. Given two network
partitions U1 and U2, their AMI is defined as

AMIðU1;U2Þ ¼
MI ðU1;U2Þ � EfMI ðU1;U2Þg

maxfHðU1Þ;H ðU2Þg � EfMI ðU1;U2Þg
ð4Þ

where MI(U1,U2) is the mutual information between U1 and U2
71

while H(U1) and H(U2) is the Shannon entropy associated
with U1 and U2, respectively. The adjustment consists in
discounting the expected value EfMI ðU1;U2Þg of the mutual
information between two random partitions with the same
number of nodes per community as U1 and U2. This correction is
needed since the baseline value of mutual information between

two random partitions is not constant but grows with the number
of communities69. AMI varies between 0 (if the observed
partitions are consistent with a random labeling) and 1 (if the
two partitions coincide).

We can thus take a pair of networks each validated using a
given null model, extract the respective best partitions (of highest
modularity) and compute their AMI. In analogy to what we did
for structural similarity metrics, we compare networks that are
either validated with the same significance threshold p*, or have
the same density (that is, we adjust p* for each network in order to
obtain the match of ρ values). We perform this operation for the
six possible choices of null model pairs to obtain an average AMI
value. Results as a function of p* or ρ (Fig. 8, magenta triangles or
green stars, respectively) confirm that the density ρ, and not p*, is
the right knob to turn for finding an agreement among the
models. Indeed the average AMI computed for networks at equal ρ
is almost always higher than AMI for networks at equal p*—the
only exception being the region around ρ≃ 0.3 where the number
of detected communities switches from 4 to 3 but not
simultaneously for all models. We can also identify a maximum
AMI for ρ ~ 0.2, corresponding to the shared community structure
illustrated in Fig. 9. Hence the four filtering techniques, which in
general produce very different statistically validated networks, can
be reconciled by choosing model-specific p* such that the resulting
densities of the validated networks are approximately equal and
the AMI is maximum. This strategy is rather general and, in
principle, can be applied to any bipartite to monopartite
projection in order to produce a “meta-validated” filtered network
that maximizes the agreement between the different filtering
techniques. Even more importantly, it can resolve the arbitrariness
in the choice of the significance threshold p*.

To further support the general applicability of our framework,
we show in the Supplementary Note 6 the same analysis
performed to several other bipartite networks belonging to totally

Fig. 6 Modularity and number of communities for the best partition obtained by the Louvain method on the validated network, as a function of the
density ρ of validated links. Each point corresponds to the partition of highest modularity obtained in 100 runs of the algorithm with random initialization
(hence it has no associated error). While modularity monotonically decreases with the density, we observe that the number of communities has a plateau
at 4 for 0.1≲ ρ≲ 0.3, suggesting the presence of a region where an agreement between the four approaches is recovered.

Fig. 7 Modularity vs number of communities for the best partition
obtained on the validated networks. Note how the curves of the various
models collapse onto each other. Besides, the growth of modularity
suddenly stops at 4 communities, suggesting the presence of a robust
partition shared between all null models.
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different contexts. In all cases we find that both the structural
similarity and the AMI of the network partition are consistently
higher when computed at equal ρ than when obtained at equal
p*. Additionally, when modularity is high enough, a robust
community structure shared among the null models emerges.

Conclusions
The increasing availability of complex data we are experiencing
nowadays calls for techniques to extract meaningful information
from large-scale networks of interactions. The statistical valida-
tion of networks is based on comparing empirically observed
patterns with their distributional expectation under a null net-
work model. This allows performing a statistical test of whether
empirical data is explained by the model or represent additional
information. A statistically validated network is built by retaining

only the structurally relevant interactions for which the null
hypothesis is rejected. This can be of crucial importance to obtain
simpler and clearer descriptions of complex systems34.

For instance, statistical validation of bipartite network projec-
tions has been used to detect important patterns in financial
markets, such as preferential or avoided relationships72,73, clus-
ters of investors characterized by the same investment
profile74–76, and overlapping portfolios bearing the highest ris-
kiness for fire sales liquidation54. In the context of economic and
innovation systems, validated network projections have been used
to detect modules of countries with similar industrial profile and
the hierarchical structure of products and services55,77, traces of
specializations emerging from the baseline diversification strategy
of countries78, and predictive innovation patterns involving the
interplay of scientific, technological and economic activities60. In
the context of mobile communications, validated networks were
shown to be more resilient than ordinary networks to errors79.

Naturally, any null model hinges on a definition of what type of
information represents a signal as opposed to noise. As a result,
the validated networks obtained through different filtering tech-
niques carry different meanings and highlight different proper-
ties. Even different constructions of the same null model may
yield different outcomes. This latter issue has been recently
shown in the context of nestedness in ecological systems17:
whether the degree sequence is responsible for the nestedness of a
bipartite network80,81 depends on the choice of the CM-based
null model ensemble (microcanonical or canonical)82. The non-
equivalence between the microcanonical and canonical ensembles
is due to the extensive number of constraints (one for each net-
work node) and holds also in the thermodynamic limit83–85.

In this work we have reviewed (using a unified notation) the
CM-based null model formulations for bipartite network pro-
jections, and performed a systematic comparison in terms of null
model characteristics and validation outcomes within the same
contexts. We showed that the different model formulations lead
to different validation results, both at the level of individual links
and of macroscale network properties (see also this recent
preprint86). However we do provide a recipe to reconcile the

Fig. 8 Average Adjusted Mutual Information (AMI) between the best
partitions of the network validated by the various null models. Error bars
represent standard deviations over choices of null model pairs. Values are
plotted for filtered networks obtained with the same significance threshold
p* (magenta triangles) or of equal density (green stars). The latter option
reveals a higher concordance among the null models.

Fig. 9 Community structure of the network of co-occurrence between scientific fields, validated by the Hypergeometric null model. The link density is
ρ= 0.2, corresponding to the maximum adjusted mutual information (AMI) value of Fig. 8. a Each color identifies a community (hand-labeled by us as in
the legend) shared among the four validated networks, whereas the few black nodes denote the mismatches. The network is represented using a force
atlas layout. b As a comparison, we report the same network with scientific fields labeled according to their ASJC (All Science Journal Classification)
subject area assigned by Scopus' in-house experts. Visually, the community structure defined by such classification is not much coherent with the network
partition induced by our meta-validation approach based on significant co-occurrences, which we recall links two scientific fields when they require
common capabilities.
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validation outcomes, by comparing networks obtained with
model-specific significance thresholds such that the density of
validated links becomes comparable. Additionally this compar-
ison may allow to identify the region of density values where the
agreement between models is maximum. On one hand this solves
the arbitrariness in the choice of the significance threshold. On
the other hand, it offers a meta-validation approach to identify
the filtered configurations with the highest signal-to-noise ratio.

We have included in our comparative study CM-based null
models defined on one or both sets of the bipartite network, as well
as those defined directly on the monopartite projection, considering
in all cases both hard and soft constraints. Note that, in principle,
“softer” constraints could be imposed by fixing the functional form
of the degree distribution rather than the degree sequence, as in the
hypersoft CM87–89. This approach may be more adequate in the case
of dynamic networks, in which degree sequences are never fixed but
their distributions are often stable. Developing a hypersoft CM for
bipartite networks and projections, and adding it to our meta-
validation framework represents a promising research direction.
Additional challenges for future research are represented by the
development of suitable models for weighted bipartite networks and
their projections90,91, as well as the extension of validation methods
beyond pairwise interactions92,93.

As long-term goal we plan to investigate whether the pro-
posed meta-validation approach allows not only to capture the
most relevant structural properties of the network projection,
but also to help in predicting its evolution – namely, which
links will appear in the future. This could be important in
various contexts, from link prediction for recommender sys-
tems based on collaborative filtering12,94 to assessing prices
trend and systemic risk in financial networks of portfolios and
assets54,95 and forecasting development patterns in economic
and innovation systems60,96,97.

Methods
Null models of bipartite network projections. Here we provide the mathematical
definitions of the null models used in our analysis.

Microcanonical partial model: Hypergeometric. For the projection of a bipartite
network on set L, an analytic null hypothesis can be formulated by assuming
random connections between nodes of the two sets L and Γ that preserve the degree
heterogeneity of set L44,46. Under this hypothesis, the probability that nodes i and j
have x co-occurrences is given by the hypergeometric distribution

πðxji; jÞ ¼ ki
x

� � jΓj � ki
kj � x

 !� jΓj
kj

 !
ð5Þ

and the mean value of the co-occurrences is

hCiji ¼ kikj=jΓj: ð6Þ
This probability is exact only when nodes of set Γ have the same degree. A tentative
extension to deal with the degree heterogeneity of set Γ consists in splitting the
original bipartite network into subnetworks each consisting of set Γ nodes with the
same degree and of all set L nodes linked to them, so that the null hypothesis can be
properly cast for each subnetwork46. However, when set Γ is highly heterogeneous
these subnetworks are many in number and very sparse, causing severe resolution
issues (see the discussion in54).

Microcanonical full model: Curveball. Building a null bipartite network model
where only configurations with a given degree sequence for both sets of nodes are
allowed has not been tackled analytically up to now (exact results exist only in the
thermodynamic limit concerning the count of bipartite graphs with given degree
sequences98). This model is hard to deal with because, differently from the cano-
nical case (see below), link probabilities are not pairwise independent. Therefore
the model must be defined through an ensemble of bipartite network configura-
tions that are generated numerically by swapping links iteratively so to preserve
degrees exactly. The Curveball algorithm50–52 works as follows: Starting from the
empirical bipartite network M, these steps are repeated n times:

1. Select at random a pair of nodes i, j in set L;
2. Check that the neighborhoods of the nodes are not perfectly overlapping

(otherwise start again);

3. Take the set of uncommon neighbors δ(i, j)= {α∈ Γ ∣Miα⊕Mjα= 1} and
remove them from the neighborhood of both;

4. Assign ki−∑αMiαMjα new neighbors to node i, chosen at random from
δ(i, j), and the rest of the nodes in δ(i, j) to node j.

The result is a randomized bipartite network configuration ~M (here and in what
follows we use the tilde symbol to denote matrix configurations of the null model).

This procedure is repeated iteratively to generate an ensemble f ~Mqg
Q

q¼1
of Q

independent randomizations of the bipartite network. The null model ensemble

f~Crg
R
r¼ 1 of projected networks is then obtained by projecting pairs of different

instances of bipartite randomizations (that is, a generic configuration is obtained as
~Cr ¼ ~Mq

~M
T
q0 with q ≠ q0). The null model distributions π( ⋅ ∣i, j) ∀ i, j are then

computed numerically by sampling from such an ensemble. Here we use n ¼
5minfj L j; jΓjg and Q= R= 10000. Note that for a numerically-generated
ensemble of R network configurations, the minimum p-value that can be used for
statistical testing is 1/R.

Canonical full model: BiCM. Generally speaking, canonical models of
networks43,99–101 (also known as exponential random graphs102–104) define an
ensemble Ω of networks using a constrained entropy maximization procedure,
which leads to assuming the utmost ignorance about the unconstrained degrees of
freedom of the system34,105. The Bipartite Configuration Model (BiCM)53 applies
to bipartite networks by constraining the ensemble average of the degree sequence
for both node sets. The ensemble probability distribution that maximizes the
Shannon entropy under these constraints is

Pð ~Mjfθig; ftαgÞ ¼ e�Hð ~M;fθig;ftαgÞ=Zðfθig; ftαgÞ ð7Þ
where {θi} and {tα} are the sets of Lagrange multipliers associated to the constraints
{ki} and {κα} respectively, Zðfθig; ftαgÞ ¼ ∑M2Ωe

�Hð ~M;fθig;ftαgÞ is the partition
function and the Hamiltonian Hð ~M; fθig; ftαgÞ ¼ ∑i2Lθikið ~MÞ þ∑α2Γtακαð ~MÞ
sums up the imposed constraints. Note that Pð ~Mjfθig; ftαgÞ depends on ~M only
through kið ~MÞ and καð ~MÞ: network configurations with the same value of the
constraints are equiprobable, which implies that the canonical ensemble is maxi-
mally non-committal (or the least biased) with respect to the properties that are not
enforced on the system. Since degrees are linear constraints the partition function
can be computed analytically, so the ensemble probability factorizes as

Pð ~Mjfθig; ftαgÞ ¼
Y
i;α

p
~Miα
iα ð1� piαÞ1�

~Miα ð8Þ

where piα is the existence probability of the link connecting nodes i and α:

piα ¼ ðeθiþtα þ 1Þ�1
: ð9Þ

The numerical values of the link probabilities (i.e., of the Lagrange multipliers) are
determined by maximizing the likelihood of the empirical bipartite network M in
the ensemble, which implies solving the constraints equations

ki ¼ ∑
α2Γ

piα i 2 L

κα ¼ ∑
i2L

piα α 2 Γ

8<
: ð10Þ

Once link probabilities have been found, the expected co-occurrences between any
two nodes i ≠ j are

hCiji ¼ ∑
α2Γ

piαpjα; ð11Þ

and the probability distribution π( ⋅ ∣i, j) of this quantity is the distribution of the
sum of Γ independent Bernoulli trials, each with success probability piαpjα. This is a
Poisson-Binomial distribution, which can be computed numerically54 or
analytically55 as

πðxji; jÞ ¼ ∑
γx

Y
α2γx

piαpjα
Y
β=2γx

ð1� piβpjβÞ
2
4

3
5 ð12Þ

where γx denotes all possible x-tuples of nodes in set Γ.

Canonical partial model: BiPCM. The “partial” version of the BiCM, named BiPCM
in ref. 55, is defined as the canonical model that constrains only the degree sequence
of set L. As such, it is a special case of the BICM described above where all
Lagrange multipliers {tα} associated with degrees of set Γ are “switched off” (i.e., set
equal to zero). The Hamiltonian is thus Hð ~M; fθigÞ ¼ ∑i2Lθikið ~MÞ and the link

probability of generic link (i, α) becomes piα ¼ ðeθi þ 1Þ�1
. Using the constraint

equations ki=∑α∈Γpiα ∀ i∈ L we get the explicit expression

piα ¼ ki=jΓj 8i 2 L : ð13Þ
Therefore the expected value of the co-occurrence between any two nodes i and j is

hCiji ¼ kikj=jΓj ð14Þ
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and its distribution has a simple Binomial form

πðxji; jÞ ¼ jΓj
x

� �
kikj
jΓj2
� �x

1� kikj
jΓj2

� �jΓj�x

ð15Þ

Data, RCA filter and projection. To build the bipartite network of countries and
scientific fields, we use data on scientific productivity and impact of countries
collected from the SCIMAGO platform (based on Scopus). The database contains
the corpus of scientific publications in journals, book series, conference proceed-
ings, and books in the various scientific fields, covering the time interval from 1996
to 2018. Data are then aggregated at the level of countries and scientific fields (in
total there are ∣L∣= 307 scientific fields and ∣Γ∣= 239 countries), so that Wiα is the
total number of scientific documents produced by country α in scientific field i
during the time span of the data.

In order to determine whether a given country α shows a comparative
advantage in field i, both with respect to other countries as well as to other
fields, the revealed comparative advantage (RCA)106 filter comes at hand.
While originally developed in the economic context, this metric has also found
use in studies of scientific production60,107,108. RCA is an intensive indicator
computed as the ratio between the weight of field i in the scientific basket of
country α and the weight of field i in the total world science. As a comparative
advantage is revealed if RCA > 1, we binarize the raw matrices to obtain new
matrices

Miα ¼ 1 if Wiα
∑jWjα

� ∑βWiβ

∑jβWjβ
≥ 1;

0 otherwise.

(
ð16Þ

Note that the RCA filter is properly normalized by making quantities related to
different countries and fields comparable109.

Once the binary bipartite matrix is defined, we build the projected network of
co-occurrences between scientific fields, whose generic connection between fields i
and j is Cij=∑αMiαMjα. Note that for the sake of having a a clearer picture and
more analytical insights on the various null models, we do not employ here more
refined formulations of co-occurrences that use additional normalization by
degrees57,59,60.

Data availability
The dataset about scientific productivity of countries analyzed during the current study
can be obtained from SCImago, (n.d.). SJR - SCImago Journal & Country Rank [Portal],
which can be retrieved at https://www.scimagojr.com/countryrank.php. The other
datasets analyzed in the Supplementary Note 6 are available at the web addresses
indicated in the same document.

Code availability
The code to run the Curveball algorithm can be retrieved from51, while the code to run
BiCM is available at https://github.com/tsakim/bicm(Hypergeometric and BiPCM have
analytic formulas). Codes for computing network distance metrics can be retrieved
from61 while the code for computing Modularity and AMI are available respectively at
https://github.com/taynaud/python-louvain and https://scikit-learn.org/stable/modules/
clustering.html#mutual-info-score110. Network visualizations have been generated using
Gephi https://gephi.org.
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