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Abstract: The intestinal mucosal barrier, also referred to as intestinal barrier, is widely recognized
as a critical player in gut homeostasis maintenance as it ensures the complex crosstalk between
gut microbes (both commensals and pathogens) and the host immune system. Highly specialized
epithelial cells constantly cope with several protective and harmful agents to maintain the multiple
physiological functions of the barrier as well as its integrity. However, both genetic defects and
environmental factors can break such equilibrium, thus promoting gut dysbiosis, dysregulated
immune-inflammatory responses, and even the development of chronic pathological conditions.
Here, we review and discuss the molecular and cellular pathways underlying intestinal barrier
structural and functional homeostasis, focusing on potential alterations that may undermine this
fine balance.

Keywords: intestinal epithelial cells; mucosal barrier; microbiota; inflammatory bowel diseases; diet;
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1. Introduction

The intestinal mucosal barrier, also referred to as intestinal barrier, is a selectively
permeable structure that grants the absorption of water, electrolytes, and essential dietary
nutrients from the intestinal lumen into the circulation [1,2]. Apart from this role, the
intestinal barrier mediates the crosstalk between commensal gut microbes and the host
immunity and constitutes a first line of defence against intraluminal pathogenic antigens
and potentially harmful microorganisms [1,2]. The intestinal barrier is composed of several
elements that aid in its function as a physical and immunological defence boundary. These
mainly include: (i) the outer mucus layer, encompassing the commensal gut microbiota,
antimicrobial proteins (AMPs), and secretory immunoglobulin A (SIgA) molecules; (ii) the
central single layer of specialized epithelial cells, derived from a pool of pluripotent stem
cells at the base of the crypts that can be ultimately committed to goblet cells (which secrete
mucins), Paneth cells (which synthesize antimicrobial peptides such as lysozyme and
defensins), enteroendocrine cells (producing enteric hormones), enterocytes (absorbing
water and nutrients), and Microfold cells, also referred to as M cells, (which are specialized
for antigen sampling), following the up- or down-regulation of specific transcription factors;
(iii) the inner lamina propria where cells from both innate (e.g., natural killer, neutrophils)
and adaptive (e.g., T cells, B cells) immunity reside (Figure 1).

The ability to regulate the physiological processes occurring in the gut to keep in-
ternal states steady and balanced, also referred to as intestinal homeostasis, depends on
complex interactions between the microbiota, the intestinal epithelium, and the host im-
mune system. In particular, intestinal epithelial cells (IECs) act as frontline sensors for
microbial encounters, and their hyporesponsiveness is ensured by the host innate immune
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system that can discriminate between signals derived from either commensal bacteria or
pathogens [3–5]. Increasing evidence in germ-free mice highlighted the importance of
commensal microbiome in maintaining gut homeostasis by providing protective, structural,
and metabolic effects on the host mucosal surfaces [6,7]. For instance, commensals can
release anti-microbial peptides, synthetize vitamins, contribute to ion adsorption and fer-
mentation of non-digestible dietary residues, control epithelial cell differentiation, induce
IgA secretion, and favour the immune system development [8,9]. Maintenance of such
intestinal homeostasis also requires the structural integrity of the intestinal epithelium,
which is ensured by junctional protein complexes (i.e., tight junctions, adherens junctions
and desmosomes) that finely regulate intestinal permeability and seal adjacent epithelial
cells [10] (Figure 1).
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Figure 1. Gut homeostasis is established and maintained by the intestinal mucosal barrier. Alterations
in its integrity and function, characterized by: (A) dysregulated junctional complexes, (B) thinner
mucus layer, (C,D) reduced AMP and IgA production, and (E) pathogen overgrowth and penetration
across the epithelial barrier, may perturb this fine balance and lead to gut dysbiosis. SIgA: Secretory
Immunoglobulin A; AMP: antimicrobial peptide; IEC: intestinal epithelial cell; IESC: intestinal
epithelial stem cell.

Dysfunction of the barrier physical integrity and/or an impaired function of the
highly specialized cells composing the epithelial layer may lead to pathogen invasion
and mucosal dysbiosis, resulting in a disruption of gut homeostasis that may ultimately
trigger pathologic conditions, such as inflammatory bowel diseases (IBD), celiac disease,
Clostridioides difficile infection (CDI), irritable bowel syndrome, colorectal cancer, type 1
diabetes, and obesity (Table 1) [11–14].

Here, we review and discuss the available experimental evidence about defects in
epithelial barrier integrity and function and how they can compromise gut homeostasis,
thus favouring microbial dysbiosis and disease development.
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Table 1. Intestinal barrier alterations and related pathological conditions.

Disease Observation Ref.

IBD

• Impaired mucus production and secretion
• Altered expression and distribution of epithelial junctional complexes
• Increased intestinal permeability and bacterial translocation
• Modulation of intestinal permeability by inflammatory cytokines

[15–19]

Celiac disease

• Gliadin-induced zonulin secretion and increased intestinal permeability by a
MyD88-dependent mechanism mediated by the CXCR3 receptor

• Altered expression and distribution of epithelial junctional complexes
• Inflammatory cytokine-driven impairment of tight junction assembly and distribution

[20–24]

CDI
• Antibiotic therapy reduces colonization resistance against Clostridioides difficile by

altering the microbiota-related protective barrier, as well as the microbial metabolism
in the intestine

[25–27]

IBS
• Increased intestinal permeability and molecular alterations in the tight junction

expression and signalling pathways
• Correction of visceral hypersensitivity and pain by restoration of barrier dysfunction

[28–34]

CRC

• Dysregulated expression of junctional complexes induces altered intestinal
permeability and contributes to tumorigenesis and colonic epithelial cell invasiveness

• Gut dysbiosis resulting from altered intestinal permeability triggers and sustains
chronic inflammation and genotoxic stress

[35–40]

Obesity

• High-fat diet triggers gut dysbiosis and increases intestinal permeability in obese
individuals

• Hyperglycemia negatively impacts on the expression and integrity of epithelial
junctional complexes

[41–44]

Type 1 diabetes

• Increased intestinal permeability can precede disease development
• Zonulin upregulation modulates the expression of epithelial junctional complexes and

associates with increased gut permeability in subjects with type 1 diabetes and their
relatives

• Restoration of barrier function can prevent diabetes development in disease-prone
animals Hyperglycemia increases intestinal barrier permeability by altering tight and
adherence junction integrity

[44–50]

Abbreviations: IBD: Inflammatory Bowel Diseases; MyD88: Myeloid differentiation primary response 88; CXCR3:
C-X-C Motif Chemokine Receptor 3; CDI: Clostridioides difficile infection; IBS: Irritable Bowel Syndrome; CRC:
Colorectal cancer.

2. Breaking the Balance: Intestinal Barrier Dysfunction and Gut Dysbiosis

Both genetic defects and specific environmental factors are known to contribute to
break the intestinal barrier balance and promote gut dysbiosis. In particular, impaired ex-
pression of genes related to cell commitment, junctional complexes, mucus production and
secretion, Paneth cell activity, pathogen sensing, reactive oxygen species (ROS) production,
xenobiotic response, and IgA secretion dramatically compromise intestinal epithelial barrier
integrity and protective function (Table 2). Similarly, environmental factors—including bac-
terial infections; medication exposure (e.g., antibiotics) subsequent to pathogen infections
or other diseases; and increased intake of high-fat compounds, sugars, and ethanol at the
expense of fruits and vegetables—were reported to affect host microbiota composition and
metabolic activities, leading to loss of commensals and overgrowth of pathogens (Table 3).
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Table 2. Genetic defects affecting intestinal barrier homeostasis.

Category Gene Effects on Intestinal Barrier Ref.

Cell commitment Hes1
Reduced production of AMPs and mucus, gut dysbiosis, and

inflammation. Precocious differentiation of Paneth cells. Impaired
specification of IECs into enterocytes.

[51–53]

Math1 Decreased frequency of goblet cells. [54]

Stk11 Impaired released of AMPs and IL-18. Colitogenic bacteria
overgrowth. [55]

Cdx2 Altered mucus production and increased intestinal permeability and
susceptibility to DSS-induced colitis. [15,56]

Gata6

Impaired stem cell proliferation, reduction in villus length, Paneth
cell, and enterocyte and enteroendocrine cell frequency. Increased

number of goblet-like cells. Decreased levels of ZO-1 and increased
intestinal permeability and susceptibility to experimental colitis and

ileitis. Gut dysbiosis.

[57–59]

Sox9 Lack of differentiated Paneth cells, crypt enlargement, gut dysbiosis. [60,61]

Junctional Complexes Jam-A/F11R Increased intestinal permeability, low-grade intestinal inflammation,
and increased susceptibility to DSS-induced colitis. [62]

Cldn-2 and Cldn-15
double-KO Impaired paracellular Na+ flow and malnutrition. [63]

Tjp1
Apical surface brush border membrane and crevasses at intercellular

junctions between enterocytes. Increased susceptibility to
experimental colitis, delayed cell division, and mucosal healing.

[64,65]

Ptpn2 Increased claudin-2 expression, intestinal permeability, and
inflammatory cytokine production. [66]

Mucus layer Muc2
ER stress and decreased frequency of goblet cells, altered mucus
production, increased intestinal permeability, gut dysbiosis, and

chronic intestinal inflammation.
[16,67,68]

Gfi1 Accumulation of secretory progenitors, decrease in mucus and AMPs
release. [69]

Foxo1
Impaired mucus layer formation, overgrowth of mucin-degrading

bacteria, and decrease of short-chain fatty acid-producing microbial
species. Enhanced susceptibility to infection and inflammation.

[70]

Paneth cells Nod2 Impaired α-defensins secretion. [71,72]

Atg16l1 Impaired autophagy in response to viral infection and decreased
AMPs release. [73,74]

Xbp1 Chronic ER stress in response to viral infection and decreased AMP
release. [75]

Tcf4 Reduced α-defensins secretion and CD development. [76,77]
PRRs MyD88 Increased stem cell proliferation. [78]

Nod2
Impaired pathogen sensing and clearance, and gut dysbiosis. No

protection against oxidative stress-mediated cell death, and impaired
epithelial regeneration.

[79–83]

Oxidative Burst Duox2 Enhanced pathogen translocation to host lymphatic tissues. [84]
Cyba Decreased DUOX2 activity in response to Citrobacter rodentium. [85]

Xenobiotic Receptors Pxr-Nr1I2
Dysregulated TLR4-NF-κB signalling pathway, reduced ZO-1 and

E-cadherin expression, increase in Claudin-2 levels. Higher
susceptibility to IBD development.

[86–88]

AhR
Increased susceptibility to intestinal infection (Citrobacter rodentium),

reduced mucus production, impaired tight junctions, and crypt
hyperplasia.

[89–91]

Secretory IgA IgA Gut dysbiosis. [92]
pIgR Impaired SIgA transcytosis across epithelial cells and gut dysbiosis. [93,94]

Abbreviations: Hes1: Hairy and enhancer of split 1; Math1: Mouse atonal homolog 1; Stk11: Serine threonine
kinase 11; IL-18: Interleukin-18; Cdx2: Caudal type homeobox 2; DSS: Dextran Sodium Sulfate; Gata6: GATA bind-
ing factor 6; ZO1: Zonula Occludens-1; Sox9: SRY-Box Transcription Factor 9; Jam-A/F11R: Junctional adhesion
molecules/F11 receptor; Cldn: claudin; Tjp1: Tight junction protein-1; Ptpn2: Protein tyrosine phosphatase non-
receptor type 2; Muc2 Mucin-2; ER: Endoplasmic Reticulum; Gfi1: Growth factor independent 1; Foxo1: Forkhead
box protein O1; Nod2: Nucleotide Binding Oligomerization Domain Containing 2; Atg16l1: Autophagy Related
16 Like 1; Xbp1: X-Box Binding Protein 1; Tcf4: transcription factor 4; CD: Crohn’s disease; MyD88: Myeloid
differentiation primary response 88; Duox2: Dual oxidase 2; Cyba: Cytochrome B-245 Alpha Chain; Pxr/Nr1I2:
Pregnane X receptor/Nuclear receptor subfamily 1 group I member 2; TLR4: Toll-like receptor-4; NF-kB: nuclear
factor kappa-light-chain-enhancer of activated B cells; AhR: Aryl Hydrocarbon Receptor; IgA: Immunoglobulin A;
pIgR: poly immunoglobulin receptor; AMP: Antimicrobial peptides; ZO-1: Zonula Occludens-1; ER: Endoplasmic
reticulum; SIgA: Secretory immunoglobulin A.
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Table 3. Environmental factors affecting intestinal barrier homeostasis.

Category Diet Effects on Intestinal Barrier Ref.

Junctional
Complexes Gluten

Alterations in adherent junctions and desmosomes and increased
intestinal permeability and susceptibility to experimental colitis.

Disassembly of ZO-1 from the tight junctional complex.
[20,95]

Glucose/Fructose
TJ and AJ proteins dysfunction, increased susceptibility to

pathogen infection, gut dysbiosis, metabolic syndrome, oxidative
stress, and chronic inflammation

[44,96]

High-fat diet
ER stress in IECs, impairment of Claudin-1 expression and mucus

barrier, and increased endotoxin serum levels. Increased
taurocholic bile acid production and gut dysbiosis.

[97,98]

Ethanol Altered ZO-1 and occludin localization and impaired paracellular
permeability. [99,100]

Mucus Layer Fiber-deprived diet Thinner mucus layer, gut dysbiosis, and chronic intestinal
inflammation. [67,101]

Paneth cells Vitamin D deficiency and
exposure to high-fat diet

Impaired expression of α-defensins, MMP7, and tight
junction-related proteins; increased intestinal permeability; gut
dysbiosis; and metabolic syndrome. Indiction of ER stress and

secretion of misfolded α-defensins.

[102,103]

High fat diet Decreased AMP expression, ER stress and autophagy induction,
and gut dysbiosis. [104]

Western diet (deoxycholic
acid)

Excessive activation of the farnesoid X receptor and type I
interferon signalling pathways. [105]

Xenobiotic
receptors AhR ligand-free diet Higher susceptibility to experimental colitis and gut dysbiosis. [106,107]

Category Bacterial infection Effects on intestinal barrier Ref.

Junctional
Complexes

Infection by Salmonella
typhimurium Increased claudin-2 expression and bacterial invasion. [108]

Infection by Vibrio cholerae Zonula occludes toxin production and altered paracellular
permeability. [109,110]

PRRs LPS Increased intestinal permeability. [111]

Category Medication exposure Effects on intestinal barrier Ref.

Junctional
Complexes Antibiotic treatment

Decreased production of microbial-derived short-chain fatty
acids. Gut dysbiosis. Reduced ZO-1, occludin, and claudin-1

expression, and increased intestinal permeability. Altered
microvilli morphology and reduced rate of intestinal epithelial

cell turnover.

[112,113]

Abbreviations: ZO-1: Zonula Occludens-1; TJ: Tight junction; AJ: Adherent junction; ER: Endoplasmic Reticu-
lum; IECs: Intestinal Epithelial Cells; MMP: Matrix Metallopeptidase; AMP: Antimicrobial peptide; AhR: aryl
hydrocarbon receptor; PRR: Pattern recognition receptors; LPS: lipopolysaccharide; IECs: intestinal epithelial
cells.

Such defects and factors, summarized in Tables 2 and 3 respectively, are discussed
below.

2.1. Impairment of Cell Commitment

As previously anticipated, the intestinal barrier is characterized by a self-renewing
epithelium, organized in crypts and villi, including both stem cells and differentiated cells.
As the epithelial barrier has to deal with multiple physiologic activities, it requires different
specialized cells, some of which are able to produce and secrete several molecules—such
as antimicrobial peptides, mucins and hormones—and others that are able to adsorb water
and nutrients. To achieve this goal, stem cells, after multiple transit-amplifying (TA)
divisions, terminally differentiate into either secretory or absorptive lineages depending on
the tightly regulated expression/inhibition of specific transcription factors [114,115]. For
instance, the cell surface receptor Notch drives the cell commitment process by binding
to the Notch ligands Deltalike (Dll) and Jagged families [116]. A cell expressing the
Notch ligands will differentiate into a secretory cell (e.g., goblet cell, Paneth cell) upon
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expression of the Atonal BHLH Transcription Factor 1 (Atoh1), whereas a neighbour cell
expressing the activated Notch receptor will induce the expression of the target gene hairy
and enhancer of split 1 (Hes1)—a Atoh1 inhibitor—and will differentiate into an absorptive
cell (e.g., enterocyte) [54]. Obviously, a dysregulated expression of the above-mentioned
proteins definitely compromises the intestinal epithelial cell commitment and, in turn, the
intestinal barrier integrity and function, as demonstrated by the association of several
polymorphisms in genes encoding commitment-related transcription factors with intestinal
barrier dysfunctions and intestinal inflammatory diseases (Figure 2) [51–55]. In this context,
by employing genetically engineered mouse models, Guo and colleagues demonstrated that
deficiency of the Hes1 gene in IECs negatively affected antimicrobial peptides and mucus
production, thus resulting in gut dysbiosis and inflammation [51]. Along the same line
was the demonstration that mice deficient for Math1 (also referred to as Atoh1) displayed
complete abrogation of goblet cells in the intestine [54]. Similar results were observed in
mice with conditional deletion of the serine threonine kinase 11 (Stk11) gene, involved in the
differentiation of stem cells into the secretory lineage cell types (e.g., goblet cells and Paneth
cells), in IECs [55]. These animals displayed increased susceptibility to gut inflammation
in association with reduced production of antimicrobial peptides and IL-18, as well as an
uncontrolled expansion of colitogenic bacteria [55].
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promises epithelial cell differentiation and intestinal barrier function. Boxes enclose the effect/s of
the knockdown of the genes depicted in red on the indicated cell commitment. Abbreviations: Sox9:
SRY-Box Transcription Factor 9; Hes1: Hairy and enhancer of split 1; Stk11: Serine threonine kinase
11; Math1: Mouse atonal homolog 1; Cdx2: Caudal type homeobox 2; Gata6: GATA binding factor 6;
Muc2: Mucin 2; TFF3: Trefoil factor 3; ZO-1: Zonula Occludens-1; AMPs: Antimicrobial peptides;
IESC: Intestinal epithelial stem cells.

Another important transcription factor involved in the commitment of IECs is the
caudal type homeobox 2 (Cdx2) gene [117]. Indeed, CDX2 is a positive regulator of the Muc2
and Trefoil Factor 3 (TFF3) genes [56,118] involved in the production and stabilization of the
mucus layer, respectively, and whose deficiency induces hypersensitivity to chemically-
induced colitis (such as that induced by dextran sulfate sodium (DSS)) [15,56]. In addition,
CDX2 controls cell-cell interactions and the expression of cadherins, which are important in
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the formation of the adherens junctions [119–121]. In support of this view is the evidence
that mice bearing one non-functional Cdx2 allele (Cdx2+/− mice) displayed increased
intestinal permeability and were more susceptible to the abrasive effect of DSS [117].

The GATA binding factor 6 (GATA6) is a zinc finger transcription factor that regu-
lates cell proliferation, differentiation, and gene expression in several tissues [122]. For
instance, GATA6 is involved in cell proliferation and differentiation along the gastrointesti-
nal tract [57,58]. In particular, conditional deletion of Gata6 in IECs resulted in impaired cell
proliferation of the crypts, reduction in villus length, decreased frequency of Paneth cells
and enteroendocrine cells, increased number of goblet-like cells, and dysregulated expres-
sion of enterocyte-related genes in the ileum [57]. Similar alterations were observed in the
colon, where Gata6 deficiency affected stem cell proliferation and differentiation into Paneth
cells, enteroendocrine cells, and enterocytes [58]. Our study has recently demonstrated
that conditional deletion of Gata6 in the gut epithelium significantly affected intestinal
barrier integrity, leading to decreased expression of the tight junction-related protein zonula
occludens-1 (ZO-1), and resulting in increased paracellular permeability, microbial dysbio-
sis, and susceptibility to gut inflammation [59]. Interestingly, we also reported a decreased
expression of GATA6 in the intestinal epithelium of IBD patients, thus suggesting that a
reduced expression of this transcription factor may contribute to intestinal barrier dysfunc-
tion in these subjects [59]. In the intestinal epithelium, defects in Paneth cell function—and
the consequent decrease in the antimicrobial peptide production—may also result from the
deletion of Sox9 [60]. Indeed, by generating mice that harbored a conditional Sox9 gene
and a Villin-Cre transgene, Mori-Akiyama et al. reported that lack of Sox9 expression in
the intestinal epithelium of Sox9fl/fl Villin-Cre+ mice resulted in the complete absence of
differentiated Paneth cells, although the differentiation of other intestinal epithelial cell
subsets (e.g., goblet cells, enterocytes) was not affected. Moreover, Sox9 deficiency also
lead to crypt enlargement, a marked increase in cell proliferation throughout the crypts, as
well as a replacement of the Paneth cells by proliferating epithelial cells [60]. More recently,
by employing the same conditional mouse model, Riba and colleagues showed that Sox9
deletion in the intestinal epithelium reduced lysozyme production. This effect resulted in
significant microbial dysbiosis, characterized by E. coli overgrowth and ultimately leading
to visceral hypersensitivity [61].

2.2. Impairment of Epithelial Junctional Complexes

The intestinal epithelial barrier’s main function is to protect the host from luminal anti-
gens, pathogens, and toxins, while allowing selective permeability to water, nutrients, and
electrolytes. In particular, transcellular permeability, involved in solute transport through
the epithelial cells, is mediated by selective transporters for amino acids, electrolytes, short
chain fatty acids, and sugars [123]. Paracellular permeability, instead, occurs through inter-
cellular junctional complexes encompassing adherens junctions (AJs), tight junctions (TJs),
and desmosomes [124,125]. These transmembrane proteins, localized both at the apical-
lateral membrane junction and along the lateral membrane, mediate the contact between
adjacent IECs, thus sealing the intracellular spaces. The AJs (e.g., catenins, cadherins) and
desmosomes (e.g., desmoglein, desmocollins) regulate the mechanical linkage of adjacent
cells, while the TJs (e.g., ZO-1, claudin-2, occludins, Junctional Adhesion Molecule) form
an apical junctional complex that seals the intercellular space and modulates selective
paracellular permeability [124–128].

Alterations in the formation/distribution of the intercellular junctional complexes,
which may occur in men with specific genetic susceptibilities, as well as in response to
dietary factors and bacterial infections, may result in intestinal epithelial barrier break-
down and translocation of the luminal content into the lamina propria, leading to gut
dysbiosis, uncontrolled immune/inflammatory responses, and, ultimately, pathological
conditions [10].

For instance, gliadin (a glycoprotein representing the major component of wheat
gluten) has been reported to deeply affect the expression and distribution of several junc-



Biomedicines 2022, 10, 289 8 of 27

tional complexes in the small intestine of celiac patients by binding to CXC motif receptor 3
(CXCR3) on epithelial cells [20]. This interaction induces the release of zonulin, a human
protein analogue of the Zonula occludens toxin (ZOT) from Vibrio cholerae, through the
recruitment of Myeloid differentiation primary response (MyD)-88 [20,21,129,130]. In-
creased levels of zonulin were detected in the intestinal tissues taken from celiac disease
patients during the acute phase compared to those taken from healthy controls. Once
released, Zonulin leads to transactivation of EGF receptor (EGFR) via proteinase-activated
receptor 2 (PAR2) activation in the intestinal epithelium and subsequent tight junction
disassembly [20,21,129,130].

The impairment of the epithelial junctional complexes importantly contributes to
the development of other chronic inflammatory conditions, such as IBD. For example,
increased expression of claudin-2, as well as impaired expression and redistribution of
claudin-5, -8 and occludin were reported in Crohn’s disease patients, leading to increased
intestinal permeability and bacterial translocation [131]. A similar severe condition was
described also in the colonic mucosa of patients with ulcerative colitis, in association with
the dysregulated expression of occludin, ZO-1, claudin-1, JAM, beta-catenin, E-cadherin,
and the consequent transepithelial migration of neutrophils [132].

The above-mentioned chronic inflammatory conditions importantly contribute to
the development and progress of colorectal carcinogenesis. Interestingly, increased ex-
pression of claudin-1 and claudin-2 was found to correlate with inflammatory activity,
IBD-associated dysplasia, and sporadic adenomas [36]. Similarly, Dhawan et al. observed
that claudin-1 expression was increased in colon carcinomas and metastatic lesions and
played a key role for tumorigenesis and invasiveness of colonic epithelial cells [35]. Claudin-
2 was also reported to be increased in tissues taken from CRC and IBD-associated CRC
patients and to promote and sustain cell proliferation and tumor growth in cultured cells
and experimental models [133].

Dysfunctions of the epithelial junctional complexes and the consequent increase of
intestinal permeability and gut dysbiosis correlate with the development and progression
of other pathological conditions. In particular, increased intestinal permeability was seen
to precede and/or to be an early biomarker of diabetes development in patients, as well as
in experimental models of the disease [45,134,135]. Moreover, increased serum levels of
zonulin, in association with altered intestinal permeability, were described in a subgroup
of patients with type 1 diabetes and their first-degree relatives, suggesting this molecule as
a valid early biomarker of disease development [49].

Animal models employing genetically engineered mice have helped to better under-
stand the link between junctional complex dysregulation and the development of dysbiosis
and pathologic conditions. In this context, Laukoetter et al. reported a role for Junc-
tional Adhesion Molecule (JAM)-A, a TJ component contributing to the control of barrier
function and leukocyte migration, in regulating intestinal permeability and inflammation
in vivo [62]. Indeed, despite showing normal epithelial architecture, JAM-A knockout mice
developed low-grade colonic inflammation (characterized by enhanced polymorphonuclear
leukocyte infiltration and large lymphoid aggregates not seen in sham mice) [62]. Barrier
function experiments revealed increased mucosal permeability, as indicated by enhanced
dextran flux, and decreased transepithelial electrical resistance in JAM-A knockout mice
compared to wild-type control mice [62]. Consistently, JAM-A deficiency increased the
permeability of in vitro monolayers derived from the human colonic epithelial cell line
SK-CO15 compared with control. Moreover, JAM-A deficient mice were more susceptible
to the DSS-driven experimental colitis compared to controls, although the colonic mucosa
showed less injury and increased epithelial proliferation [62]. Analyses of other TJ-related
proteins showed increased expression of claudin-10 and -15, both of which tune TJ barrier
function by the formation of ion-selective pores, following JAM-A knockdown in the colonic
mucosa of mice and in SK-CO15 cell monolayers [62].
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In a later article, Wada and colleagues reported that mice with the double knockdown
of claudin-2 (Cldn-2) and claudin-15 (Cldn-15) genes had impaired paracellular Na+ flow and
subsequent malnutrition, leading to infant death [63].

By employing cultured epithelial cells and an intestinal epithelial-specific knockout
mouse (that is, Tjp1fl/fl Villin-Cre+ mouse), Odenwald and co-workers showed that the TJ
scaffolding protein ZO-1 was essential for development of unified apical surfaces in vitro
and in vivo. In detail, conditional deletion of ZO-1 in IECs of Tjp1fl/fl Villin-Cre+ mice did
not significantly alter crypt-villus architecture, whereas it affected apical tissue continuity,
which is by characterized apical surface brush border membrane, and the presence of
crevasses at intercellular junctions between enterocytes, likely by modulating actomyosin
contraction and membrane traffic [64]. Recently, Kuo and colleagues reported decreased
ZO-1 expression, both at RNA and protein level, in intestinal mucosal biopsies isolated
from IBD patients as compared with those isolated from healthy controls [65]. Loss of
ZO-1 expression in epithelial cells in Tjp1fl/fl Villin-Cre+ mice did not promote spontaneous
disease, but it exacerbated tissue damage and weight loss during experimental colitis, as
well as delayed the mucosal healing [65]. The authors also reported that ZO-1 is critically
involved in the cell division phase upon damage. In particular, by associating with the
centriole and mitotic spindle, ZO-1 contributed to both Wnt–β-catenin signaling and mitotic
spindle orientation, suggesting that ZO-1 may actively contribute to the intestinal epithelial
barrier restoration [65]. In line with these observations, we recently found that loss of
Gata6 expression in IECs of genetically engineered mice resulted in increased intestinal
permeability, gut dysbiosis, and microbial-driven intestinal inflammation. These effects
were associated with decreased ZO-1 expression and epithelial damage both in the ileum
and colon. Experiments in cultured cells suggested that ZO-1 expression could be directly
modulated by GATA6 [59]. Recently, Marchelletta and colleagues reported that the impaired
function of T cell protein tyrosine phosphatase (TCPTP), encoded by the protein tyrosine
phosphatase non-receptor type 2 (PTPN2) gene, contributed to the epithelial tight junction
protein remodeling and increased intestinal permeability [66]. In particular, Tcptp-deficient
mice showed increased claudin-2 expression, intestinal permeability, and inflammatory
cytokine production [66]. In detail, TCPTP was able to maintain the localization of ZO-1
and occludin at apical tight junctions, as well as to modulate the turn-over of claudin-2, a
cation pore-forming transmembrane protein, by upregulating the serine metalloproteinase
matriptase, which promoted claudin-2 proteosomal degradation [66].

Apart from defects in the above-mentioned epithelial junction-related molecules, sev-
eral dietary factors may contribute to increase intestinal permeability and trigger/amplify
pathologic conditions [136]. A good example in this regard is given by gluten, which, in
addition to its well-known detrimental effects on barrier integrity and TJ protein activity
in celiac disease, can actively promote dysregulation of intestinal barrier function in non-
celiac patients. Of note, mice exposed to a gluten-rich diet showed alterations in adherent
junctions and desmosomes, resulting in increased intestinal permeability and susceptibility
to DSS-driven experimental colitis [95].

Glucose and fructose are additional macronutrients found to trigger TJ and AJ protein
dysfunction, thus promoting changes in microbiota composition, increased susceptibility
to pathogen infection, as well as metabolic syndrome [44]. In mouse experimental models,
uncontrolled metabolism of fructose in the liver and in the small intestine, due to the
excessive delivery of this sugar (15% in water for 3 weeks), induced the transcriptional
expression of fructokinase (a protein involved in fructose metabolism), TJ alterations,
energy depletion, oxidative stress, and chronic inflammation [96]. On the other hand, mice
deficient of the fructokinase isoforms A and C (KHK-A, KHK-C) were protected from such
detrimental effects. Notably, loss of KHK-A function only did not prevent alterations in
TJs, thus suggesting that intestinal barrier impairment was mainly mediated by KHK-C
activity [96].

Detrimental effects of dietary fats on the epithelial junctional complexes have been
also reported by several studies. In particular, mice exposed to a high-fat diet for 3, 11,



Biomedicines 2022, 10, 289 10 of 27

and 22 weeks showed induction of endoplasmic reticulum (ER) stress in IECs, as well as
an impairment of Claudin-1 expression and mucus barrier, with the consequent increase
of endotoxin serum levels and gut dysbiosis [97]. Similarly, Devkota and colleagues
demonstrated that the increased availability of taurocholic bile acid, due to the consumption
of a diet high in saturated (milk derived)-fat, promoted the expansion of the low abundance
pathobiont Bilophila wadsworthia (a member of the Deltaproteobacteria), which, in turn, was
able to impair intestinal barrier integrity in genetically susceptible Il-10−/− mice due to its
sulphite-reducing activity [98]. Another dietary habit found to affect TJ activity is ethanol
consumption. Exposure to non-cytotoxic doses of ethanol (as those detected in the blood of
moderate drinkers) impaired paracellular permeability in vitro due to alterations in ZO-1
and occludin localization [99,100].

Both localization and activity of epithelial junctional complexes can also be affected by
pathogen invasion and toxin secretion. For instance, Salmonella typhimurium was found to
up-regulate the colonic expression of the leaky protein claudin-2, which plays an opposite
role in the modulation of intestinal permeability compared to other TJ proteins involved
in barrier maintenance, thus facilitating bacterial invasion [108]. Vibrio cholerae, instead,
was reported to target the intestinal epithelial barrier by producing the zonula occludens
toxin (ZOT), which transiently affects the paracellular permeability in the small intestine
by opening TJs through a protein kinase C-dependent actin reorganization [109,110].

On its side, antibiotic treatment dramatically influences intestinal permeability by
compromising host microbial ecology. In particular, mice exposed to antibiotics for 2 weeks
developed mucosal dysbiosis characterized by decreased production of short-chain fatty
acids, such as butyrate (known to sustain barrier function and integrity), by commen-
sals [112]. Moreover, antibiotic treatment hampered intestinal TJ function and increased
intestinal permeability by reducing the expression of ZO-1, occluding, and claudin-1 [112].
Similar results were obtained in antibiotic-treated germ-free mice, which presented altered
microvilli morphology and reduced rate of intestinal epithelial cell turnover compared to
sham mice [113]. Altogether, these results indicate a key role for commensal microbiota in
preserving epithelial junctional complexes and gut barrier integrity, highlighting a possible
detrimental effect of antibiotic exposure on such a fine balance.

2.3. Thinning/Depletion of the Mucus Layer

Goblet cells are specialized IECs able to synthetize and secrete mucin proteins into
the lumen. Mucin proteins are pivotal in creating a protective mucus layer acting against
pathogens, chemicals, and mechanical stress in order to maintain gut homeostasis and
protect the inner mucosal surface [137]. The mucus layer, mainly composed of water, elec-
trolytes, lipids, and glycosylated mucins [138], represents an important source of antimicro-
bial peptides and immunoglobulins and can directly interact with commensals, providing
nutrients and attachment sites depending on the mucin glycosylation profile [139].

Mucolytic bacteria (e.g., Akkermansia muciniphila, Bacteroides thetaiotaomicron, Ruminococ-
cus gnavus, Ruminococcus torques) represent an important class of commensals as they are
able to digest glycans (from dietary fibers) and mucins through glycosidase enzymes, and
to produce, in turn, short chain fatty acids (such as acetate and butyrate) acting as energy
source for colonocytes and contributing to protect the intestinal barrier integrity [139].
However, the fine balance between goblet cell-mediated replenishment of mucus and its
degradation by commensals can be affected by a fiber-deprived diet, as indicated by the
fact that mice subjected to intermittent dietary fiber deprivation presented a thinner mucus
layer due to O-linked glycan digestion by the fiber-deprived microbiota [101]. Thus, enrich-
ment in mucus-degrading bacteria may impair the mucus layer thickness and viscosity and
promote enteric pathogens adherence and penetration, ultimately causing gut dysbiosis
and chronic intestinal inflammation [67,101]. These pathological alterations were observed
in the Winnie murine model of spontaneous colitis, characterized by a missense mutation in
the Muc2 gene [16,67]. The phenotype of Winnie mice was characterized by altered mucus
production as early as 4 weeks of age, with ensuing intestinal barrier dysfunction, gut
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dysbiosis, and inflammation [16,67]. In particular, impaired Muc2 expression affected the
number of goblet cells, which underwent unresolved ER stress and accumulation of mucin
precursors [16,67]. All these processes were associated with apoptotic cell death, increased
intestinal permeability, pathogen penetration into the inner mucus layer, and adherence
to epithelial cells, as well as bacterial translocation into the lamina propria [16,67]. The
subsequent uncontrolled immune response towards pathogens (e.g., enhanced dendritic
cell activation, T-helper cytokine production) promoted chronic intestinal inflammation
and gut dysbiosis, characterized by the outgrowth of Bacteroidetes and Verrucomicrobia (such
as Akkermansia muciniphila) [67,68].

Impaired mucus layer integrity can also depend on mutations in the Gfi1 gene. Gfi1
functions downstream of Math1 in the intestinal epithelium and encodes molecules involved
in the stem cell differentiation into the different secretory cell lineages [69]. In particular,
Gfi1-deficient mice displayed alterations in terminal differentiation and morphology of
goblet cells and Paneth cells, together with accumulation of immature secretory progenitors,
as well as a decrease in mucin and antimicrobial peptide release [69]. Recently, the Foxo1
trascription factor was described to be critically involved in mucin granule release through
autophagy [70]. In particular, Foxo1fl/fl Villin-Cre+ mice showed impaired mucus layer
formation and subsequent dysbiosis, resulting in disrupted intestinal barrier integrity and
enhanced susceptibility to infection and tissue inflammation. Moreover, Foxo1 deficiency
in IECs resulted in the overgrowth of mucin-degrading bacteria and a decrease of short-
chain fatty acid-producing microbial species, which further affected the intestinal barrier
function [70].

In addition to mucus production and degradation, gut microbiota composition is able
to influence the mucus properties. In this regard, Jakobsson and colleagues reported that
the mucus layer of germ-free mice was characterized by a higher mucus penetrability as
compared to conventional mice [111]. Moreover, mice with identical genetic background,
but hosted in two rooms of the same specific pathogen-free animal facility, showed different
mucus properties, evidenced by the fact that one colony had an impenetrable inner mucus
layer, whereas the other showed opposite features [111]. The authors suggested that these
differences relied on changes in the gut microbiota composition as the different mucus
phenotypes were acquired by germ-free mice upon faecal microbiota transplantation [111].
In particular, mice with an impenetrable inner mucus layer showed increased frequency
of the Erysipelotrichi class, whereas Proteobacteria and TM7 expanded in mice with more
penetrable mucus [111]. Hence, even genetically identical animals housed in the same
facility may have distinct microbiotas and barrier structures [111].

Taken together, these results highlight the mutualistic effects between the gut microbial
community and the mucus layer and their consequences on intestinal barrier integrity and
function.

2.4. Paneth Cell Dysfunction

Intestinal epithelial cells include Paneth cells, a particular group of secretory cells lo-
cated at the base of the crypts of Lieberkühn in the small intestine. As previously described,
Paneth cells, together with goblet cells and enteroendocrine cells, originate from a common
progenitor that expresses the Math1 gene [54]. Further differentiation of the secretory
lineage into Paneth cells and goblet cells requires additional key transcription factors, such
as: (1) Gfi1, a zinc-finger protein family member that functions downstream of Math1;
(2) Sox9, which controls an early step of Paneth cell differentiation; (3) Fz5, which is crucial
for the late step of cell commitment toward the Paneth cell phenotype; and (4) Cdk5rap3,
which is involved in both fate decision and cell development [60]. Once differentiated,
Paneth cells migrate to the base of crypts, instead of out of crypts onto adjacent villi. These
specialized epithelial cells are able to produce and secrete granules enclosing AMPs (e.g.,
α-defensin, Reg3 lectins, lysozyme, and secretory phospholipase A2 isotype II) that shape
the composition of commensals and protect the host from pathogen colonization [140,141].
Interestingly, mice with deficiency for vitamin D and exposed to high-fat diet showed de-
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creased expression of Paneth cell-specific alpha-defensins, including α-defensin 5 (DEFA5),
Matrix metalloproteinase 7 (MMP7), and tight junction genes [102]. Such defects resulted in
enhanced gut permeability, microbial translocation, and consequent gut dysbiosis, as well
as chronic inflammation and metabolic syndrome [102]. In addition, an increased fraction
of abnormal Paneth cells that exhibit ER stress and accumulate reduced-form α-defensins
were observed in SAMP1/YitFc mice, representing an animal model of Crohn’s disease-like
ileitis [103]. In particular, secretion of misfolded α-defensins resulted in mucosal dysbiosis
characterized by loss of Lachnospiraceae and Ruminococcaceae and increased abundance
of Bacteroidaceae and Rikenellaceae [103]. Interestingly, administration of reduced-form α-
defensins to wild-type mice induced similar microbial alterations, thus suggesting that
Paneth cell activity was crucial to keep/ensure gut homeostasis [103].

Paneth cell dysfunction and consequent intestinal dysbiosis may also derive from the
presence of risk alleles that commonly associate with chronic inflammatory pathologies,
such as Crohn’s disease. In particular, the Nod2 gene encodes the nucleotide-binding
oligomerization domain 2 (NOD2), a cytoplasmic muramyl dipeptide receptor able to
recognize both Gram-positive and negative pathogens. NOD2 is highly expressed by
Paneth cells and impaired NOD2 expression compromises α-defensins secretion, affect-
ing gut homeostasis and promoting increased susceptibility to infections [71,72]. Other
genetic polymorphisms associated with Paneth cell dysfunction (such as Xbp1 and Atg16l1
polymorphisms) are related to chronic ER stress and impaired autophagy in response
to viral infection, leading to decreased AMP secretion [73–75]. Moreover, susceptibility
polymorphisms in the promoter region of the Tcf4 gene also associate with Paneth cell
dysfunction and Crohn’s disease development [76,77].

Paneth cell activity can also be hampered by dietary compounds. For instance, a high-
fat diet is able to enhance the secretion of bile acids which, in turn, promote the upregulation
of the G protein-coupled bile acid receptor (TGR5) on Paneth cell membrane [104]. The
interaction between bile acids and TGR5 resulted in decreased expression of anti-microbial
peptide-related genes (such as α-defensin 5 and 6) and induction of ER stress, autophagy,
and DNA damage. Moreover, gut microbiota composition was significantly affected,
with reduced abundance in Firmicutes and Lactobacillaceae, whereas Verrucomicrobiaceae,
Akkermansia muciniphila, Clostridium XIVa, Ruminococcaceae, and Lachnospiraceae resulted to
be increased [104]. Mice exposed to high-fat diet and orally treated with Cholestyramine
(a bile acid sequestrant) or 4-Phenylbutyric acid (a ER stress inhibitor) prevented these
changes as both molecules reduced serum bile acid levels and decreased TGR5 expression
on Paneth cells without altering microbiota composition [104]. Finally, a Western diet
has been suggested to indirectly impact on Paneth cell activity through the Clostridium-
mediated conversion of the secondary bile acid deoxycholic acid. In detail, increased level
of deoxycholic acid in the ileum induced excessive activation of the farnesoid X receptor
(FXR) and type I interferon (IFN) signalling pathways, ultimately leading to Paneth cell
defects [105].

Thus, impaired Paneth cell activity, induced by bile acid toxicity following a high-fat
diet or other triggers, can deeply impact on host microbial composition and gut homeostasis,
ultimately leading to the onset and development of gut dysbiosis and several chronic
pathologic conditions.

2.5. Impairment of Microbial Sensing by Pattern Recognition Receptors (PRRs)

The efficient interaction/crosstalk between host and commensals across the intestinal
epithelial barrier involves several inducible mechanisms that are able to discriminate
endogenous and exogenous luminal antigens and to modulate the host immune response
accordingly. These mechanisms require the presence on epithelial cells of specific receptors
termed “pattern recognition receptors” (PRRs), which drive the sensing of pathogens and
the consequent initiation of innate inflammatory immune responses, while maintaining an
immune tolerance towards resident gut microbiota [142].
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Toll-like receptors (TLRs) represent an important class of microbial-induced pro-
teins expressed in different cell compartments including cells of the intestinal lining (e.g.,
stem cells, enterocytes), which are able to recognize microbial-related molecules—such
as flagellin and lipopolysaccharide (LPS)—as well as single- and double-stranded RNAs.
Once activated, TLRs trigger specific signalling pathways, ultimately inducing the expres-
sion/activation of transcription factors (e.g., NF-kB, AP-1, IRF3) involved in the orchestra-
tion of pro-inflammatory responses [143].

TLR-mediated pathways play an important role in the regulation of intestinal barrier
function and integrity. For instance, the activation of the TLR4/MyD88 signal transduction
pathway by LPS was seen to increase the intestinal permeability by promoting IL-1 receptor-
associated kinase (IRAK)-4 function and the phosphorylation of transforming growth
factor-β–activating kinase (TAK)-1, followed by the activation of the canonical NF-kB
pathway and the up-regulation of myosin light chain kinase (MLCK) [144]. Deficiency in
MyD88 signalling increased intestinal epithelial cell proliferation, whereas activation of
TLR4 by LPS triggered apoptotic cell death in murine intestinal organoids [78]. Further,
TLRs actively contribute to the secretion of both mucus and antimicrobial peptides, IgA
class switching, the expression of polymeric immunoglobulin receptor, translocation of ZO-
1 and occludin to the tight junctions, as well as to the expression of nicotinamide-adenine
dinucleotide phosphate (NADPH) oxidase and release of ROS [145–148].

Increasing evidence suggests that TLR function may be critically involved in the intesti-
nal epithelial restitution. Indeed, TLR activity in enterocytes, goblet cells, and mesenchymal
stem cells induces the expression of molecules (e.g., trefoil factor 3, prostaglandin E2) and
downstream pathways (e.g., Wnt–β-catenin), promoting the proliferation of enterocytes
in the crypts adjacent to the wound [149]. On the other hand, TLR function is regulated
by specific molecules (e.g., IRAK3, SIGIRR), and impairment of this control system results
in excessive TLR activity and consequent gut dysbiosis and detrimental inflammatory
response [150]. Thus, it is clear that TLR activation has to be tightly regulated in order to
prevent excessive/impaired epithelial TLR signalling, which could compromise microbial–
host interaction and lead to inefficient pathogen clearance, increased intestinal permeability,
gut dysbiosis, and chronic inflammation. Another PRR significantly contributing to gut
homeostasis is NOD2, a cytosolic receptor expressed by both epithelial (e.g., Paneth cells,
stem cells) and immune cells. Loss-of-function mutations in Nod2 gene associate with
increased susceptibility to Crohn’s disease due to impaired pathogen clearance by den-
dritic cells [79–81]. However, NOD2 function in epithelial cells is also crucial in order to
maintain microbial ecology. In particular, upon sensing the bacterial muramyl dipeptide,
N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) present in Gram-positive and -negative
bacteria, NOD2 is able to trigger host defences through the production of antimicrobial pep-
tides, cytokines, mucins, and the activation of immune responses, thus ensuring a balanced
host-microbial crosstalk [151,152]. Given that, Nod2-deficient mice showed a decreased
antimicrobial activity of Paneth cells and enhanced intestinal colonization by pathogens
that could easily penetrate through the intestinal barrier and induce gut dysbiosis [82].
In addition to the above-mentioned functions, NOD2 exerts a protective effect against
oxidative stress-mediated cell death on stem cells and sustains epithelial regeneration [83],
thus contributing to the intestinal barrier integrity.

2.6. Modulation of Epithelial Oxidative Burst

TLR ligands are critical actors in the defence system against luminal pathogens as they
promote the transcription of NADPH oxidase-related genes and the production/release
of ROS by phagocytes in the lamina propria. In addition, ROS can be produced by IECs
through the activity of the NADPH oxidases DUOX2 and NOX1 [153,154]. The former,
in particular, is expressed at the apical membrane of enterocytes and dimerizes with
DUOXA2 for maturation and cell membrane trafficking [153,154]. The main function of
DUOX2 is to protect the host mucosal surfaces by releasing hydrogen peroxide in response
to pathogens (e.g., Salmonella typhimurium, Listeria monocytogenes, Campylobacter jejun),
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thus contributing to the maintenance of gut homeostasis [153,155–157]. Given that, loss
of DUOX2 activity results in enhanced pathogen translocation to host lymphatic tissue
and activation of compensatory defence mechanisms [84]. Interestingly, Grasberger and
colleagues identified a significant association between DUOX2 loss-of-function variants
and IL-17C induction in IBD mucosal biopsies in response to Gram-negative bacteria,
suggesting that DUOX2 variants may increase the risk of developing IBD [84]. However,
it is worth underlining that chronic activation of DUOX2 in the inflamed tissues of IBD
patients may sustain harmful inflammatory responses [158,159]. In this context, DUOX2
expression was not limited to apical surface of epithelial cells, but widely expressed along
the crypt epithelium of IBD patients [158]. Moreover, enhanced DUOX2 expression in
inflamed intestinal tissue associated with gut dysbiosis is characterized by Proteobacteria
expansion in Crohn’s disease patients [160]. Altogether, these evidences suggest that a
dysregulated DUOX2 function may be considered a sensitive marker of gut dysbiosis and
intestinal inflammation in IBD patients [161].

During an infection process, DUOX2 activity can be modulated by another intestinal
epithelium NADPH oxidase, namely NADPH Oxidase 1 (NOX1) [85]. In particular, lack
of Cyba protein, which normally dimerizes with NOX1 to form a superoxide-generating
NADPH oxidase, was seen to compromise DUOX2 activity in response to intestinal infec-
tion by Citrobacter rodentium in mice [85]. Interestingly, loss of mucosal NOX1 function
did not exacerbate intestinal inflammation by Citrobacter rodentium as several commensal,
including Lactobacilli such as Lactobacillus leuteri and Lactobacillus murinus, started producing
hydrogen peroxide and downregulating C. rodentium-related virulence factors to ensure
host protection and gut homeostasis [85]. Both NOX1 and DUOX2 function can be also
triggered by TLR-4 expressed on IECs [145]. In this regard, using Tlr-4fl/fl-Villin-Cre+

mice, Burgueño and colleagues observed that dysregulated TLR-4 signalling in IECs led
to NOX1 and DUOX2 overexpression [145]. Further, dysregulated hydrogen peroxide
synthesis altered gut microbiota and induced increased susceptibility to dysplasia and
colon tumorigenesis once transplanted into recipient germ-free mice [145]. Hence, NOX1
and DUOX2 activity have to be tightly regulated in order to ensure pathogen clearance and
prevent mucosal dysbiosis, as well as harmful intestinal inflammatory responses.

2.7. Modulation of Xenobiotic Receptors

Among their functions, IECs can also provide protection against xenobiotic substances
(e.g., environmental pollutants, chemicals, drugs) thanks to a detoxification system en-
compassing specific enzymes involved in the elimination of toxic compounds from the
host [162]. These detoxification enzymes are regulated by specific transcription factors, such
as the nuclear receptor pregnane X receptor (PXR) and the drug receptor aryl hydrocarbon
receptor (AhR), which are mainly expressed in the liver, small intestine, and colon [163,164].
Accumulating evidence suggests that these receptors are actively involved in the mod-
ulation of several physiologic functions (e.g., cell proliferation, cell death, inflammatory
immune response) by recognizing food components and endogenous ligands [165,166]. In
particular, PXR can regulate the expression of drug-metabolizing and drug-transporter
enzymes, such as UDP glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs),
the cytochrome P450 (CYP) family, the multidrug resistance protein 1 (MDR1), and the
multidrug-resistant associated proteins (MRPs) [167]. PXR is also a critical regulator of
mucosal surfaces, known to recognize several endobiotic compounds (e.g., bilirubin, bile
acids) [168]. PXR was seen to exert anti-inflammatory functions by preventing Iκ-Bα
degradation, thus limiting the activity of the transcription factor NF-κB [169,170]. More-
over, PXR actively contributes to the intestinal barrier integrity and function. Indeed,
Pxr-deficient mice showed increased intestinal permeability due to a reduction in ZO-1 and
E-cadherin expression, as well as an increase in claudin-2 levels [86]. The dysregulated
TLR4-NF-κB signalling pathway derived from the absence of PXR expression resulted in
TNF-α over-production that further contributed to the increased paracellular transport
across the epithelial barrier [86]. In detail, TNF-α induced ZO-1 relocalization through the
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upregulation of Myosin Light Chain Kinase (MLCK) expression, which, in turn, phosphory-
lates myosin II regulatory light chain (MLC), a protein involved in the junctional complex
arrangement. PXR, instead, was seen to limit the MLCK upregulation by targeting NF-κB
activation [165].

Moreover, PXR is also able to limit the phosphorylation and activation of C-jun N-
terminal kinase (JNK) 1/2 by inducing the expression of the JNK1/2 inhibitory molecule
GADD45β (growth arrest and DNA damage inducible 45β) [171]. Terc and colleagues
also reported that PXR activation can mediate the intestinal epithelial cell migration and
proliferation, as well as the repair of the intestinal barrier by inducing p38 mitogen-activated
protein kinase (MAPK) activation following experimental colitis [165]. Decreased levels
of PXR were observed in the inflamed tissue of IBD patients and polymorphisms of the
PXR-encoding gene Nr1I2, which is significantly associated with increased susceptibility to
disease [87,88].

In conclusion, PXR is a critical player in gut homeostasis maintenance and, for this
reason, it should be considered a potential therapeutic target to manage chronic intestinal
inflammation, gut dysbiosis, and epithelial damage.

Aryl hydrocarbon receptor (AhR) is a member of the basic helix–loop–helix (bHLH)–
PAS family of transcription factors that act as environmental sensors (e.g., circadian rhythm,
hypoxia, xenobiotic response) [172,173]. Aryl hydrocarbon receptor expression was origi-
nally characterized in the intestinal immune cells (e.g., Th17 cells, intraepithelial lympho-
cytes) where AhR-dependent signalling was crucial for immune cell survival and functional
activity [174]. However, increasing evidence confirmed that AhR is also widely expressed in
the intestinal microenvironment by non-hematopoietic cells (e.g., IECs) and its activation by
natural ligands, such as dietary and microbial metabolites, results in the maintenance of gut
homeostasis at the barrier sites (e.g., lung and gut) [175,176]. In particular, AhR deficiency
in IECs causes increased susceptibility to the intestinal infection despite a normal immune
compartment. Moreover, mice with dysregulated AhR expression in the epithelium showed
dysfunctional barrier, characterized by reduced mucus production and impaired TJs, as
well as chronic low-grade inflammation and crypt hyperplasia [89–91]. AhR was also seen
to take part in the modulation of crypt stem cell proliferation, wound healing processes,
and cell commitment. In particular, Ahrfl/fl-Villin-Cre+ mice showed impaired resistance
against Citrobacter rodentium infection characterized by bacterial dissemination in the liver
and in the spleen, increased epithelial damage, and decreased expression of Muc2 and Car4
genes, thus confirming a crucial role of AhR in the maintenance of gut homeostasis [90].
Furthermore, mice exposed to AhR ligand-free diet (e.g., high fat diet) developed gut
dysbiosis, characterized by higher susceptibility to experimental colitis and overgrowth
of Erysipelotrichaceae family compared to mice receiving the dietary AhR ligand indole-3-
carbinol (I3C) [106,107]. Another important source of AhR natural ligands is represented
by commensal microbiota. For example, the induction of AhR transcriptional targets was
observed in IECs upon challenge with butyrate derived from Proteobacteria, Firmicutes, and
Fusobacteria, and in part from Actinobacteria [177]. Overall, these observations indicate AhR
activation in IECs by either xenobiotic compounds or natural ligands as a crucial step to
ensure barrier integrity and host microbial ecology.

2.8. Impairment of Secretory IgA

Immunoglobulin A (IgA), the major immunoglobulin isotype secreted at the mucosal
surfaces, provides the first line of defence against pathogens and toxins [178]. Maternal
milk-derived secretory immunoglobulin A (SIgA) can mediate the protection at mucosal
surfaces in neonates [179]. Moreover, SIgA is crucial in the regulation of host immune
homeostasis as it can shape the composition and function of gut microbiota and promote
bacteria–mucus and bacteria–bacteria interactions, leading to the release of metabolites
enforcing mucosal barrier functions [180,181]. SIgA is mainly produced by plasma cells
in the lamina propria, transported across the IECs through a transcytosis mechanism
mediated by poly Ig receptor (pIgR), and released into the lumen in order to neutralize



Biomedicines 2022, 10, 289 16 of 27

invading pathogens and related products via different mechanisms [182,183]. SIgA can
modulate gut homeostasis by binding and excluding invading pathogens from the mucosal
surface through a process called “agglutination”, thus preventing them from breaching
the epithelial barrier and limiting consequent unwanted immune responses (immune
exclusion) [184]. Moreover, SIgA are able to intercept incoming antigens intracellulary,
thus generating immune complexes that are then transported by pIgR across the epithelial
cells in order to be cleared [179,184]. Finally, SIgA immune complexes can be internalized
by microfold cells (M cells) in the mucosal-associated lymphoid tissue and recognized
by tolerogenic DCs, which, in turn, may secrete IL-10 and TGF-β cytokines and promote
Foxp3+ regulatory T cells expansion, thus limiting potential detrimental inflammatory
immune responses [185,186].

Given the above-mentioned functions, it is clear that impaired SIgA production and
release can deeply impact on gut homeostasis, leading to decreased microbial diversity
and mucosal dysbiosis [92]. Even though secretory IgM (SIgM) can be released into the
gut lumen in response to IgA deficiency, this counteracting mechanism can only partially
compensate such a defect. In particular, subjects with selective IgA deficiency exhibited
alterations of microbial ecology with reduced alpha diversity [187,188]. Similar results
have been reported in mice lacking pIgR, where SIgA levels were decreased at the mucosal
surfaces due to impaired transcytosis across epithelial cells [93,94]. Again, microbial
community was significantly altered in these mice, though compensatory mechanisms
occurred to limit potential detrimental effects (e.g., increase of serum IgA levels and B
cells, and increase of the frequency of macrophages, dendritic cells, and intraepithelial
lymphocytes) [189–192].

3. Discussion and Therapeutic Perspectives

The maintenance of the intestinal barrier integrity and functions requires a fine-tuned
balance among different specialized cells in order to ensure the physiological and protec-
tive crosstalk between intestinal microbes and host immune response, protection against
xenobiotic substances, as well as nutrient absorption.

Nowadays, much effort has been made to explore the mechanisms underlying an
altered intestinal barrier and gut dysbiosis in subjects carrying genetic polymorphisms
or exposed to infections, medications and specific diets. In this regard, the recent advent
of integrative multi-omic analyses has become a valid and promising means to better
characterize the pivotal contribution of genetic defects and environmental factors in the
impairment of gut homeostasis. For instance, metataxonomic and metagenomic data have
helped to characterize microbiota profiles in different pathological conditions (such as IBD)
and, in addition, highly contributed to uncover the dynamics and functional interactions
among bacteria, metabolite pools, and host genetics [193–195]. Similarly, transcriptomic,
proteomic, and metabolomic techniques have strongly helped to better define the impact
of gut dysbiosis in IBD pathogenesis as well as in the development and progression of
other chronic diseases [196–200]. Altogether, these approaches have definitely provided
important knowledge to predict the onset and progression of pathological conditions, as
well as their response to treatments, thus representing a key tool for the development of
new diagnostic, prognostic, and therapeutic strategies [197,198,201–203].

Restoring the intestinal barrier physiological functions following a perturbation has
always been considered a fascinating and promising approach to treat chronic inflammatory
diseases such as IBD, and, indeed, multiple attempts have been made in this direction.

Over the past decades, it was found that flavonoids, which are phytochemicals with
biological activity ubiquitously distributed in edible plants, can directly treat IBD through
various mechanisms, including anti-inflammatory and antioxidant actions, which pre-
serve the epithelial barrier; immunomodulatory functions in the intestine, which shape
the composition and function of the microbiota; and the modulation of specific enterohor-
mones (such as glucagon-like peptide 1 and dipeptidyl peptidase-4 inhibitors) [204–206].
Taken together, these observations suggest that the maintenance of gut homeostasis can be
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modulated by such bioactive compounds. Further studies on the basic functional role of
flavonoids in IBD could contribute to establish new effective therapeutic options for the
treatment of this disease in the future.

Accumulating evidence has shown the importance of the JAK-STAT signaling pathway
in the pathogenesis of IBD by inducing, both directly and via the modulation of inflamma-
tory cytokines, changes in intestinal paracellular permeability through the regulation of
tight junction protein expression and localization. Given that, inhibitors of the JAK-STAT
pathway are currently a therapeutic option for IBD patients. However, these compounds
may present potential risks, including non-specificity and toxicity [207].

As decreased microbial diversity, overgrowth of pathogens, and uncontrolled im-
mune/inflammatory response characterizing IBD were seen to further sustain defective
barrier function (although most often these events are just a direct consequence of barrier
impairment), other curative possibilities aim at treating these aspects.

In this context, change in dietary habits is one of the most powerful ways to alter the
gut microbiome [208,209]. For instance, high-fiber diets (e.g., vegetarian, vegan, Mediter-
ranean), which are low in red meat and higher in unsaturated fatty acids, are associated
with a more beneficial microbiome composition, an increased microbial diversity, and more
health-promoting bacteria (e.g., Bifidobacteria, Lactobacillus), as well as higher levels of small
chain fatty acids (especially butyrate) [210–213]. These modulations result in a more thick
mucus layer and an improved function of the intestinal barrier. Nevertheless, although
dietary interventions aimed at reducing inflammatory chronic diseases and improving the
microbiome are promising, the field is still evolving and, due to a large heterogeneity of
the studies, drawing definitive conclusions has proved difficult in the past.

Finally, it should be mentioned that some IBD medications (e.g., steroids, aminosalicy-
lates, and anti-TNF-α agents), as well as the use of probiotics/prebiotics have been reported
to positively affect either the composition/metabolism of gut microbiota or the metabolic
status of intestinal cells by altering the intestinal biota [214]. These drugs/strategies may
thus represent valid therapeutic options.

A different and more fascinating approach is aimed at targeting the primary genetic
defects undermining the intestinal barrier homeostasis with the delivery of therapeutic
genetic information through viral vectors (e.g., lentiviruses, adenoviruses). However, it is
worth underlining that, in this regard, no therapies have been validated in clinical studies
so far, due to a number of drawbacks. For instance, the viral access to transduce intestinal
epithelial cells with the gene of interest can be damped by the mucosal barrier itself as the
mucus layer and/or the tight junctions may interfere with this process [215–221].

In addition, as enterocytes are characterized by a high turnover, this precludes their
long-term transduction [222,223]. Finally, multiple treatments with viral vectors may trigger
unwanted host immune responses that could compromise the efficacy of this therapeutic
approach [224].

4. Conclusions

In conclusion, targeting intestinal barrier dysfunctions, and in particular those related
to primary genetic defects, represents a very interesting and challenging approach to
treat gut-related diseases. However, further efforts are necessary to transfer experimental
findings on this complex topic into clinical practice.
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