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Angiogenesis is the process of blood vessel growth. The angiogenic switch

consists of new blood vessel formation that, in carcinogenesis, can lead to

the transition from a harmless cluster of dormant cells to a large tumori-

genic mass with metastatic potential. Hypoxia, that is, the scarcity of oxy-

gen, is a hallmark of solid tumors to which they adapt by activating

hypoxia-inducible factor-1 (HIF-1), a transcription factor triggering

de novo angiogenesis. HIF-1 and the angiogenic molecules that are

expressed upon its activation are modulated by redox status. Modulations

of the redox environment can influence the angiogenesis signaling at differ-

ent levels, thereby impinging on the angiogenic switch. This review pro-

vides a molecular overview of the redox-sensitive steps in angiogenic

signaling, the main molecular players involved, and their crosstalk with the

unfolded protein response. New classes of inhibitors of these modulators

which might act as antiangiogenic drugs in cancer are also discussed.

Introduction

Angiogenesis refers to the process of de novo formation

of blood vessels, which takes place from already existing

vessels. It is required for correct delivery of nutrients

and oxygen to—as well as removal of waste products of

aerobic metabolism from—newly generated cells, such

as physiologically, during tissue growth, embryogenesis,

wound healing and, pathologically, in age-related macu-

lar degeneration, arthritis, and cancer [1].

In tumors, the angiogenic switch, that is, de novo

vessel formation, is a rate-limiting process triggered at

the initial stages of tumorigenesis, when tumor mass

reaches about 1–2 mm in diameter. This leads tumor

to develop from a dormant cluster of cells to a large

defined entity with metastatic potential [2].

Angiogenesis is a complex multistep process regu-

lated by the equilibrium between angiogenic factors,
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whose activity is tightly modulated by their gene

dosage, and antiangiogenic factors [1]. Stressful condi-

tions, such as hypoxia or nutrient deprivation, can

trigger angiogenic factors that enable the angiogenic

switch to take place. Many growth factors [epithelial

grow factor (EGF), Transforming growth factor

(TGF)a, vascular growth factor (VEGF), nitric oxide

synthase (NOS), Platelet-derived growth factor

(PDGF)] are also angiogenic and regulate this process.

Oxygen levels range from 3.1% to 8.7% in normal

cells; however, it can decrease up to 0.01% in tumor

cells, making hypoxia a common hallmark of many

solid tumors. Under low-oxygen tensions, hypoxia-

inducible factor-1 (HIF-1) is activated and promotes

the transcription of angiogenic factors (i.e., VEGF,

PDGF, TGF-a) by recognizing a consensus hypoxia

response element in their promoter regions, which is a

prerequisite for tumor angiogenesis [3].

Given the importance of angiogenesis in tumor

growth and spread, Judah Folkman already in 1970

proposed that tumor development could be tackled by

antiangiogenic therapy [4]. However, initial enthusiasm

clashed against the evidence that selectively targeting a

single angiogenic factor—mostly VEGF and its recep-

tor—gave only limited clinical benefits, highlighting

the need for a better understanding of the signaling

underlying angiogenesis [5] (Fig. 1).

In this framework, it has become evident that

changes in the redox state of tumor cells and related

micro-environment (e.g., due to the production of

reactive oxygen species, ROS) regulate HIF-1-

mediated transcriptional control of angiogenic factors

and also influence downstream angiogenesis signaling

where receptor-competent isoforms of angiogenic fac-

tors act on tumor angiogenesis. Understanding the full

spectrum of redox regulations of tumor angiogenesis

Fig. 1. VEGF targeting antiangiogenic therapy. Schematic representation of the VEGF inhibitors. From left to right: Bevacizumab is a

recombinant humanized monoclonal antibody which directly binds soluble VEGFA, preventing receptor binding. Bevacizumab has been

approved by Food and Drug administration (FDA) and European Medicines Agency (EMA) for therapeutic use in metastatic tumors.

Ranibizumab is a monoclonal antibody fragment (Fab) against all isoforms of soluble VEGF. Ranibizumab has been approved by FDA and

EMA for the treatment of macular degeneration and macular edema. Aflibercept is a recombinant fusion protein consisting of the Fc portion

of IgG linked to the extracellular domains of human VEGFR1 and 2. Aflibercept’s therapeutic use includes wet macular degeneration and

metastatic colorectal cancer. Pegaptanib, a pegylated aptamer that binds VEGF, is approved for the treatment of age-related macular

degeneration. Ramucirumab is a monoclonal anti-VEGFR2 antibody which prevents VEGF/VEGFR2 signaling activation and has been

approved by FDA and EMA for the treatment of solid tumors. Sunitinib, Sorafenib, and Vatalanib are small molecules inhibiting the protein

kinase domains including those of VEGFR1 and 2, employed in the treatment of solid tumors. Of note, Vatalanib is still under investigation

in clinical trials and has not been officially approved by EMA or FDA.
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signaling and their mediators is, therefore, crucial for

an optimal design of angiogenesis-targeted therapies.

This review aims at providing a general picture of

basic principles and emerging concepts underlying

redox regulation of angiogenesis in cancer, pointing to

the effects that redox modifications can induce to

molecular modulators and pharmacological inhibitors

used in the clinics.

ROS and tumor micro-environment
crosstalk

The central role of transformed cells (parenchyma) in

the biology of cancer has been changing during the

last decades, and nowadays, it is commonly accepted

that the stroma, usually referred to as the tumor

micro-environment (TME) contributes significantly to

the development of a wide variety of tumors. TME

constitutes the surrounding support of the tumor mass,

which contains extracellular matrix along with blood

vessels, several cell types, and subtypes enabling tumor

growth and progression. Consistently, it has been

reported that the expression profile of genes involved

in angiogenic and hypoxic response reveals a strong

prognostic capacity in predicting breast cancer out-

come [6].

Fibroblasts are a common type of stromal cells

extracted from invasive carcinomas and referred to as

carcinoma-associated fibroblasts (CAFs). At variance

with normal fibroblasts derived from nontumor areas,

active CAFs can promote the growth of mammary

carcinoma cells and enhance tumor angiogenesis [7]. In

this context, ROS play a primary role as they func-

tionally interact with CAFs in a complex crosstalk that

sustains tumor growth. If, indeed, from one side,

fibroblasts are induced by ROS, which are generated

by the activity of a plethora of enzymes (see below), to

turn into active CAFs via HIF-1a signaling (with the

consequent angiogenesis), from another side CAFs

promote ROS production and aggressiveness of cancer

[8,9].

In this regard, it is emblematic the role of the tran-

scription factor Nuclear factor erythroid 2-related fac-

tor 2 (Nrf2), which is a master regulator of the cellular

response to oxidative stress, whose ROS-dependent

activation in cancer cells promotes cancer progression

whereas in TME has onco-suppressor effects [10,11].

ROS in TME affect also the oxidative status of Treg

cells enhancing their immunosuppressive function and

promoting resistance to PD-L1 blockade therapy [12].

Since increased ROS production is associated with

cancer development and resistance to therapy, pharma-

cological research aims to modulate the oxidative

landscape of tumor and TME by acting at different

levels on HIF-1 signaling, ROS-generating enzymes

and the crosstalk between ROS and HIF-1 signaling.

Redox regulation of HIF-1 signaling

HIF-1 is a heterodimer composed of an a and b sub-

unit, the former being the O2-regulated and the latter

the constitutively active. In the presence of oxygen,

HIF-1a is hydroxylated on conserved proline (Pro402,

Pro564) and asparagine (Asn803) residues by Fe(II)- and

2-oxoglutarate-dependent dioxygenases (also called

prolyl hydroxylases, PHDs and asparaginyl hydroxy-

lase, respectively) [13]. HIF-2a shows 48% amino acid

sequence homology with HIF-1a, and it has a similar

domain arrangement [14].

Once hydroxylated, HIF-1a is ubiquitinated and

directed to proteolysis by binding to the von Hippel-

Lindau protein (pVHL)-E3 ubiquitin ligase complex,

which in turn targets HIF-1a to degradation via the

ubiquitin-proteasome pathway. In hypoxic conditions

(i.e., when oxygen is scarce and not available to

PHDs), the rate of prolyl hydroxylation is reduced,

thus preventing HIF-1a degradation [15]. Thus, stabi-

lized HIF-1a accumulates in the nucleus and binds to

HIF-1b to induce the expression of a large number of

proangiogenic factors including vascular endothelial

growth factor (VEGF); VEGF receptors (VEGFR);

PDGF-B; plasminogen activator mitogen 1; angiopoi-

etin (ANG-1 and ANG-2); ANG-1 receptor TIE-2 (ty-

rosine kinase with immunoglobulin-like and EGF-like

domains), and some members of the matrix metallo-

proteinase family (MMP-2 and MMP-9) [3,16].

Although both HIF-1a and HIF-2a have the abilities

to heterodimerize with HIF-1b and bind to hypoxia-

inducible genes bearing hypoxia response elements

motif, they show a different specificity for their tran-

scriptional targets: HIF-1a induces the expression of

glycolytic enzymes, such as lactate dehydrogenase-A

and carbonic anhydrase. In contrast, HIF-2a acts

more effectively on EPO gene and genes involved in

iron metabolism, whereas VEGF and GLUT-1 are reg-

ulated by both HIF-1a and HIF-2a [17].

The endothelial mitogen VEGFA is the most note-

worthy of all of these HIF-1/2 targets, as it is consid-

ered the master regulator of angiogenesis in tumors.

Prolyl hydroxylases catalyze HIF-1a hydroxylation

by inserting one atom of the molecular oxygen into

the proline (or arginine) residue of the protein, and the

other into the cosubstrate a-ketoglutarate, which is

thus converted in succinate [18,19]. Dimethyloxalyl-

glycine, a competitive antagonist of a-ketoglutarate,
inhibits PHD activity and induces HIF-1-dependent
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transcription of angiogenic factors. Similarly, HIF-1

activity is potentiated by iron chelators and cobalt

chloride (CoCl2), which inhibit PHD by displacing Fe

(II) from the catalytic center [15,20].

Hypoxia-inducible factor-1 activity is indirectly

tuned by redox active molecules that modulate PHDs.

Ascorbate represents a prototype of this class of mole-

cules. Indeed, it interacts with iron in PHDs by reduc-

ing insoluble ferric iron Fe (III) complexes to stable,

soluble, ferrous Fe (II) chelates. This supports a speci-

fic role played by ascorbate in both chelating and

reducing PHD-bound Fe (III) during hydroxylation to

maintain enzyme cycling [21].

In vitro studies have shown that ascorbate sup-

presses hypoxia- or CoCl2-induced HIF-1a activity as

it acts as a cofactor of PHDs in oncogenic activated

cells, suggesting that it may enhance the HIF-1-

hydroxylase activity of PHDs [22–24].
Ascorbate supplementation in ascorbate-deficient

Gulo�/� mice has been shown to reduce tumor metas-

tases and necrosis, together with the expression of the

HIF-1 targets MMP-9 and VEGF, supporting the

hypothesis that ascorbate may inhibit tumor progres-

sion via HIF-1 inhibition [25].

In normal conditions, cellular antioxidant systems

keep ROS in a physiological range required for a cor-

rect cell signaling. Upon excessive ROS production, or

as a consequence of a defective antioxidant defense,

ROS levels can rise dramatically (as observed in sev-

eral tumor types) and affect HIF-1 signaling. Indeed,

ROS can mediate iron oxidation, thus leading to PHD

inactivation and HIF-1a stabilization [15].

Besides hydroxylation, other redox post-

translational modifications have been identified to

modulate HIF-1a turnover. In particular, several stud-

ies reported that HIF-1a is targeted by nitric oxide

(NO) via S-nitrosylation (SNO) at Cys533, a critical

cysteine which localizes in the oxygen-dependent

degradation domain of HIF-1a. HIF-1a SNO has been

demonstrated to stabilize the protein and inhibit the

association with VHL even under normoxia, in such a

way mimicking pseudo-hypoxic conditions [26,27].

However, the activatory role of NO in HIF-1 signaling

is not always direct. Indeed, it has been reported that

hypoxia induces HIF-1a stabilization indirectly via the

nitrosylation of Fe(II) located in the catalytic site of

PHDs, which results in the inhibition of PHDs

hydroxylase activity [28].

Given its well-established role in tumor angiogene-

sis, HIF-1 has been considered an attractive therapeu-

tic target for cancer therapy. Direct HIF-1 inhibitors,

which affect the expression or function of HIF-1, and

indirect HIF-1 inhibitors, which act on other molecules

in related pathways, have been identified. The former

class of inhibitors targets HIF via different mecha-

nisms, for example, by inhibiting mRNA expression;

protein synthesis; dimerization; DNA binding, and

transcriptional activity. However, only few of them are

in clinical trials, probably due to their pleiotropic

(side)effects. One of these, BAY 87–2243, is a mito-

chondrial complex I inhibitor that reduces HIF-1a sta-

bilization [29]; PX-478 has been reported to inhibit

HIF-1 translation [30] and KCN-1 acts on the interac-

tion between HIF-1a and its transcriptional coactiva-

tor p300 [31] (Fig. 2).

Modulators of the redox signaling

Reactive oxygen species (including among others H2O2

and NO) are generated as nonfutile or side products of

the catalysis of many cellular enzymes, such as endoplas-

mic oxidoreduction 1 (ERO1), nicotinamide adenine

dinucleotide phosphate (NADPH) oxidases (NOXs), the

complex I and III of mitochondrial electron transport

chain (ETC), and nitric oxide synthase (NOS), have

been documented to exert direct effects on the levels/

activity of angiogenic mediators. Therefore, in this sec-

tion we will analyze the regulation and the role in angio-

genesis of some ROS-generating enzymes; how their

activity is correlated to HIF-1; and whether they may

act as ideal target for antiangiogenic therapy in cancer.

ERO1

ERO1 is an endoplasmic reticulum (ER)-resident pro-

tein disulfide oxidase. It is a flavin adenine dinucleotide

(FAD)-containing protein which takes part in disulfide

bond formation of a number of client proteins. In par-

ticular, ERO1 restores the oxidized state of protein

disulfide isomerase (PDI) once this has introduced disul-

fide bonds in new ER-resident client proteins, by cou-

pling this reaction with two-electron reduction in O2 to

H2O2 [32,33]. A rough calculation estimates that, for

each disulfide introduced in proteins, ERO1 generates

one molecule of H2O2, suggesting that ERO1 is one of

the main sources of H2O2, accounting for about the

25% generally produced in the cells [34].

Saccharomyces cerevisiae contains only ERO1p

whereas, in mammals, there are two ERO1 paralogs,

ERO1 a and ERO1 b. Human and yeast Ero1s modu-

late their oxidative activity differently: Human ERO1

a exploits Cys104 and Cys131 to regulate its overall

activity, indeed the mutant of Cys131 is hyperactive

and generates more H2O2 [33,35].

In vitro, ERO1 a and ERO1 b show comparable

activity in accepting electrons from PDI and
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generating H2O2. The main difference between them is

related to their expression: ERO1a is ubiquitously

expressed in most cells, whereas ERO1b is selectively

expressed in pancreatic cells and enterocytes. At vari-

ance with yeast (in which ERO1p deficiency is lethal)

in higher eukaryotes, ERO1’s protein disulfide oxidase

activity is compensated by other enzymes, such as per-

oxiredoxin (PRDX4) and Glutathione peroxidase 8

(GPx8), that participate in the disulfide bond forma-

tion while metabolizing H2O2. Therefore, mice lacking

(knock-out, KO) for both ERO1 isoforms show only a

delay in disulfide bond formation and a subtle patho-

logical phenotype [36–39].
ERO1a (henceforth, ERO1) is regulated by hypoxia

and ER stress, a condition elicited by unfolded pro-

teins. Given its role in protein folding, ERO1 takes

part to the homeostatic unfolded protein response

(UPR), a plethora of corrective measures that, through

the activation of signaling pathways mediated by pro-

tein kinase R-like ER kinase (PERK), inositol-

requiring enzyme 1, and activating transcription factor

6 (ATF6), promote the attenuation of protein transla-

tion, chaperone activity, and protein degradation in

order to restore ER homeostasis [40].

Mounting evidence suggests that UPR, in general,

and the PERK branch, in particular, exert

cytoprotective effects and promote tumor progression

[41]. PERK activation attenuates global protein

expression through eIF2a phosphorylation, but selec-

tively enhances ATF4 translation, which regulates the

transcription of CCAAT/enhancer-binding protein

homology protein and ERO1 [42]. The PERK/ATF4

arm of the UPR is also involved in the angiogenic

switch in tumors, and ATF4 has been proposed to

promote transcription of the VEGFA [43]. Strikingly,

ERO1 is induced in hypoxia, this being distinctive of

solid tumors and associated with a negative outcome

[44]. Analyses of mRNA expression profiles of human

breast cancers from The Cancer Genome Atlas indi-

cate that ERO1 is highly expressed in the most aggres-

sive basal breast cancer and less in the luminal ones.

Moreover, analysis from the Metastatic Breast Cancer

project indicates an inverse correlation between ERO1

levels in the primary aggressive triple negative tumor

and the time at which distant metastases are detected,

arguing for a pivotal role of ERO1 in conferring

aggressive phenotype [45]. This evidence gives support

to other observations indicating that ERO1 overex-

pression is associated with other different forms of

cancer and poor prognosis of some of them [46–49].
Previous studies report that a modest reduction in

ERO1 expression is sufficient to limit VEGF secretion

Fig. 2. HIF-1-dependent angiogenic switch

in cancer cells. Schematic representation of

HIF-1 signaling pathway under normoxic

and hypoxic conditions. In normoxic

conditions (left panel), HIF-1a is

hydroxylated by PHD, which leads to the

binding with VHL, part of a E3 ubiquitin

ligase complex. This interaction results in

the polyubiquitination and proteasomal

degradation of HIF-1a. In hypoxia (right

panel), the lack of oxygen and increased

levels of ROS (including H2O2 and NO)

inhibit PHD activity, preventing HIF-1a

degradation. Thus, HIF-1a accumulates in

the cytoplasm and subsequently

translocates in the nucleus, where it binds

to HIF-1b forming a transcriptionally active

HIF-1 complex. The HIF-1 complex

recognizes and binds to the hypoxia

response element (HRE) sequence,

promoting the transcription of HIF-1 targets,

among which those involved in

angiogenesis.
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[44]. More recent secretomic analyses indicate that lack

of ERO1 in breast cancer cells has no major impact in

normoxia, but impairs HIF-1-dependent angiogenic

factors in hypoxia, suggesting some selective effect of

ERO1 on angiogenesis in hypoxic conditions.

Although in ERO1-deficient breast cancer cells ERO1

disulfide oxidase activity is compensated by other

chaperones, the increase in VEGFA secretion was

completely blunted in hypoxic conditions. Further-

more, the disulfide-containing dimer of VEGF121A

(which contains a hand-tail intermolecular disulfide

bond bridging Cys60 and Cys51) is also the receptor-

competent isoform of VEGF121A and was selectively

impaired in the conditioned media of ERO1-deficient

breast cancer cells [50]. This evidence suggests that,

despite the induction of other chaperones, ERO1 activ-

ity on VEGF is not fully compensated in ERO1-

deficient breast cancer cells under hypoxic conditions.

ERO1-deficient breast cancer cells exhibit low levels

of VEGFA mRNA. Reasonably, this might depend on

the attenuation of ATF4 signaling pathway, or the

reduction in ERO1-mediated H2O2 fluxes that stabilize

HIF-1a by inactivating PHD. However, the last

hypothesis would imply that despite the abundance of

the H2O2-metabolizing enzyme PRDX4 in the ER,

H2O2 generated by ERO1 in the ER freely diffuses in

the cytoplasm inducing HIF-1a stabilization (through

inhibition of PHD) [51]. To conclude the aforemen-

tioned results on VEGF allow speculating that ERO1

loss is associated with decreased angiogenesis in breast

cancer cells as effect of the general reduction in

VEGFA and inability to generate a receptor-

competent VEGFA121. Consistent with this hypothesis,

correlative gene expression analysis in basal breast

cancer patients supports a significant positive correla-

tion among ERO1, the PERK branch of the UPR,

and VEGF, confirming the strong functional associa-

tion among these three players in cancer.

In vivo, ERO1-deficient breast cancer xenografts

show reduced ability to generate lung metastases,

together with a decreased vasculogenesis in the pri-

mary tumors, suggesting that ERO1 inhibition might

represent a good tool to selectively impair angiogenesis

of solid tumors and limit metastases [45,52].

To date, three compounds have been reported to

inhibit ERO1, that are: erodoxin, selective for the yeast

isoform of ERO1, ERO1p, but with a weak activity

against the protein of the mammalian orthologous,

and the two functionally related molecules EN460 and

QM295, identified from a high-throughput screening

[53]. EN460 and QM295 interact with the reduced

active form of ERO1 preventing ERO1 reoxidation

and ERO1-dependent H2O2 production by displacing

the FAD from ERO1. However, the low potency

in vivo and the toxicity profile of both inhibitors sug-

gest that they are not selective for ERO1, and indeed,

EN460 inhibits other FAD-containing enzymes [54].

NADPH oxidases

NOX family consists of seven members, NOX1–5, and
the dual oxidases (Duox) 1 and 2, with NOX1, NOX2,

NOX4, and NOX5 being expressed in the vascular sys-

tem. NOXs are transmembrane oxidoreductases, which

share a conserved catalytic domain containing two

heme groups on the N-terminal membrane side, and

binding sites for prosthetic group (FAD) and substrate

(NADPH) on the C-terminal cytosolic side. During

the reaction catalyzed by NOXs, electrons flow from

NADPH to the two heme groups via FAD and finally

reach O2 to generate H2O2.

NOX4 is localized mainly in the ER and mitochon-

dria and, differently from the other isoforms, which

are activated by other proteins or stimuli, is constitu-

tively active, generating a constant flow of electrons

from NADPH to FAD [55].

NOX4�/� mice have reduced angiogenesis, whereas

endothelial-specific NOX4 transgenic mice have

enhanced angiogenesis in an eNOS-dependent manner

[56,57], suggesting a causal link between NOX4 and

angiogenesis. NOX4 is implicated in angiogenesis

induced by different cancer types, such as VHL-

deficient renal carcinoma, fibrosarcoma, and gliobas-

toma [58–60]. NOX4 also promotes tumor angiogene-

sis under hypoxia through ROS-mediated stabilization

of HIF-1a and subsequent expression of proangiogenic

genes, such as VEGFA, glucose transporter 1 (GLUT-

1), and adrenomedullin [61].

As for ERO1, NOX4 expression is regulated by the

PERK/ATF4 branch of the UPR and, in a positive

feedback loop, NOX4 sustains ATF4 signaling, which

regulates VEGF [62]. This evidence suggests a com-

mon regulation of ERO1 and NOX4 by the PERK

branch of the UPR involved in tumor angiogenesis

and argues for both these factors as promising targets

for antiangiogenic tumor therapy.

To date, the most studied and best characterized

NOX inhibitors are apocyanin, di-2-thienyliodonium,

and diphenyleneiodonium (DPI). DPI directly interacts

with Fe-heme, and it has been proposed to react with

FAD as well. Therefore, due to its high reactivity with

all heme-containing proteins, possible use of DPI in

the clinic is very limited and not recommended. Fur-

ther two compounds, VAS2870 and VAS3947, are

emerging as novel covalent NOX inhibitors. They tar-

get a conserved active-site cysteine in NOX, producing
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covalent inhibition and affecting NOX activities in the

early phases of their catalytic cycle [63]. Interestingly,

the use of these two inhibitors has been reported to

exert beneficial effects on endothelial dysfunctions

both in vitro and in vivo systems [64].

ETC

The mitochondrial ETC is composed of four protein

multimolecular complexes, that are, complexes I–IV,
which reside on the inner mitochondrial membrane.

They are responsible for the generation of the electro-

chemical proton gradient required for ATP synthase

(complex V) to produce ATP, and ROS, which repre-

sent side products of uncomplete reduction in oxygen.

Indeed, around 1–4% of oxygen fails to be properly

reduced and superoxide is produced as a consequence

at complexes I and III [65].

Mutations in complex I occur in different tumors

and trigger the glycolytic switch, that is, the so called

Warburg effect [66], and ROS-derived metastasis [67].

Complex III generates ROS at the external side of

the mitochondrial inner membrane as well as at the

matrix. This site-specific ROS topology inside mito-

chondria is most likely important for redox signaling

[68].

Hypoxic conditions stimulate ROS production at

the level of Complex III in a way that is inversely cor-

related to the percentage of O2: That is, the lower is

the percentage of O2, the more are the ROS produced

in the mitochondria [69].

Mitochondrial ROS (mtROS) activate the hypoxic

response signaling by stabilizing HIF-1a [70]. Along

this line of reasoning, the inhibition of complex III

with stigmatellin reduces hypoxic stabilization of HIF-

1a in vitro, confirming the contribution of this com-

plex to mtROS and stabilization of HIF-1a [71]. Ter-

pestacin also counteracts mtROS production by

binding a subunit of the mitochondrial complex III,

thus inhibiting HIF-1a stabilization, VEGF-induced

signaling, and impairment of angiogenesis [72].

Nitric oxide synthase

Nitric oxide is a gaseous free radical which acts as

intracellular second messenger in manifold biological

processes. In mammalian cells, endogenous NO is pro-

duced from the enzymatic oxidation of arginine to

citrulline by a family of three NADPH-dependent NO

synthases (NOSs). Two of them are constitutively

expressed, one predominantly in neurons (nNOS) and

one in endothelial tissues (eNOS); a third isoform, the

inducible one (iNOS), is mainly expressed in cells of

the immune system and in other tissues during the

immune response [73]. NO-induced signaling mecha-

nisms rely on different chemical interactions that NO

can establish with amino acidic residues (e.g., tyrosine

and cysteine) [74,75] or prosthetic groups (e.g., heme

group and Fe–S clusters) of several proteins [76]. Fe-

nitrosylation is probably one of the best-documented

NO-induced modifications of heme-containing proteins

[77], which is able to modulate the ability to bind oxy-

gen of hemoglobin [78], as well as the activity of sev-

eral enzymes involved in cell signaling (e.g., guanylate

cyclase) and metabolism (e.g., cytochrome oxidase)

[79,80].

As mentioned above, NO can also react with tyro-

sine (nitration) or cysteine residues (S-nitrosation or

nitrosylation), thus also producing biological effects.

Tyrosine nitration is essentially an irreversible damag-

ing modification of protein backbone, whereas SNO,

which is is the covalent addition of NO moiety to

reactive sulfhydryl of cysteines, is emerging as one of

the most relevant NO-mediated post-translational

modification with biological activity [81].

During the last few years, different lines of evidence

suggest that many oncoproteins can undergo gain or

loss of function upon SNO, thus highlighting the role

of NO in driving tumor progression.

Increase in NOS expression is usually observed in

different human breast cancers and this correlates with

malignancy [82]. Indeed, it has been reported that NO

produced in the proximity of tumor (by both cancer

or noncancer cells) can promote aggressiveness and

development of a chemotherapy-resistant phenotype

[83]. Several studies have also been reported about the

implication of NO in HIF-1a and angiogenesis regula-

tion in both physiological and pathological conditions

[84]. The first biological function identified for NO

was the control of vascular tone and permeability.

This aspect is particularly relevant in cancer, where it

is well known that SNO is involved in angiogenesis

and tumor cell adhesion to endothelium, as well as in

contributing to cancer cell spreading [85]. Increase in

NO production in cancer cells correlates with upregu-

lation of VEGF, leading to the increase in cancer

metastasis. This is also essential to enhance vascular

permeability induced by VEGF. In particular, stimula-

tion of endothelial cells with VEGF induces NOS3-

dependent SNO of b-catenin at Cys619. This leads to

dissociation of b-catenin from VE-cadherin and full

disassembly of adherens junction complexes [86].

Importantly, NOS3-deficient mice are unable to induce

vascular permeabilization upon VEGF treatment [86],

suggesting the use of NOS3 inhibitors in cancers that

rely on epithelium permeability to metastasize.
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HIF-1 drives new vessel formation and, as men-

tioned above, NO fluxes stabilize HIF-1a even in nor-

moxia. However, the regulation of HIF-1a by NO is

still debated and seems to depend on the concentration

and exposure time. In particular, recent observations

indicate that short-term exposure to NO stabilize,

while chronic fluxes destabilize HIF-1a [87–89]. Fur-

thermore, there is also evidence that NO can exert dif-

ferent effects on HIF-1a stability in hypoxia vs

normoxia. Some lines of evidence, indeed, indicate that

NO donors act as pseudo-hypoxia mimickers, thereby

inducing HIF-1 transcriptional activity even under

normal oxygen tension [90, 91]. By contrast, other

studies suggest the occurrence of opposite effects (i.e.,

decrease stability of HIF-1a) under hypoxia [26,87,92].

In regard to this apparent controversy, it has been

reported that, besides Cys533—whose effects of SNO

have been well established—HIF-1a also contains

another reactive cysteine (i.e., Cys800) which is suscep-

tible to SNO, but still not characterized in terms of

the effects produced. A number of evidence reports

that Cys800 SNO results in increased HIF-1 transcrip-

tional activity, whereas other papers show that this

modification reduces interaction of HIF-1 with its

coactivator p300 which, in turn, abolishes HIF-1-

mediated gene transcription [93, 94].

As mentioned above, NO can also directly interact

with the oxygen sensor enzymes PHDs [27]. So far, the

molecular mechanisms by which NO inhibits PHDs

are not clearly described.

Finally, NO can also modulate HIF-1 pathway by

affecting oxygen availability for the mitochondrial res-

piratory chain. Low NO concentrations, indeed, have

been reported to reduce mitochondria-mediated HIF-

1a accumulation under hypoxia in a ROS-independent

manner, as antioxidants do not recover HIF-1 activa-

tion [95,96]. In particular, it has been reported that

low NO concentrations can displace O2 from the cyto-

chrome c oxidase, making it available for PHDs

[95,97].

Besides the well-known role of mitochondria in the

energy production, it has been found that NO-

mediated change on mitochondria can play an impor-

tant role also in the regulation of other intracellular

signaling, for example the ER stress response [98]. In

NO-generating cells, the inhibition of respiratory rate

correlates with mitochondrial Ca2+ fluxes, which

upregulates the ER stress mediator and Ca2+-binding

chaperone GRP78 (binding immunoglobulin protein,

BIP) activating its cytoprotective properties [98]. NO

can also modulate HIF-1a-signaling by suppressing

the activation of NOX. Indeed, DETA-NONOate,

sodium nitroprusside, and sodium acetylpenicillamine,

three different NO-donors, were shown to inhibit the

production of superoxide by NOX in a concentration-

and time-dependent manner through the SNO of

p47phox (NoxO1) [99].

Given the variety of mechanisms by which NO modu-

lates HIF-1 signaling and the consequences of excessive

SNO on angiogenesis, the efficacy of NOS inhibitors

has been tested in cancer therapy. So far, preclinical

studies show that NOS2 and NOS3 knocking down, or

Fig. 3. Redox modulation of the HIF-1 signaling pathway in

angiogenesis. Schematic representation of direct HIF-1 inhibitors

and inhibitors of HIF-1 redox modulators which impair

angiogenesis. Ascorbate impairs HIF-1a stabilization by acting as

cofactor of PHD and thus promoting its catalytic activity, which

results in increased HIF-1a degradation. PX-478 inhibit HIF-1

complex by attenuating HIF-1 translation whereas KCN-1 blocks

HIF-1a interaction with its transcriptional coactivator p300.

Impairment of ROS levels, that activate HIF-1a, can also be

achieved via inhibition of their producers. ETC complex I can be

inhibited by BAY 87-2243, while ETC complex III is inhibited by

stigmatellin, antimycin, and terpestacin. VAS2870 and VAS3947

covalently bind and inhibit all NOX isoforms, preventing the

formation of hydrogen peroxide. ERO1 activity can be inhibited by

QM295 and EN460, which trap ERO1 in its reduced isoform

suppressing H2O2 and protein disulfide bond formation. NOS

inhibitors 1400 W and the N5-(1-Iminoethyl)-L-ornithine (L-NIO)

suppress angiogenic pathway by reducing NO and enfeebling HIF-1

signaling.
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treatments with the NOS inhibitors 1400 W and the N5-

(1-Iminoethyl)-L-ornithine suppress angiogenic pathway

leading to the reduction in colorectal cancer cell growth

and migration (Fig. 3) [100].

Conclusion

It is nowadays commonly accepted that HIF-1 signal-

ing is regulated by redox mechanisms and players,

such as ROS- and NO-generating enzymes. These sta-

bilize HIF-1 a, leading to VEGF transcription and

consequent de novo tumor angiogenesis. Growing

knowledge of the last few years has been setting the

stage for the development of new lines of research

aimed at targeting these enzymes for antiangiogenic

therapy in cancer treatment. ERO1 is emerging as one

of the most interesting and versatile prototypes due to

multiple (indirectly transcriptional and directly post-

transcriptional) effects it produces on the expression

and correct assembly of VEGF and other HIF-1-

dependent angiogenic factors.

The still low specificity of these new antiangiogenic

strategies is slowing down preclinical validation of

many new potential drugs. However, results so far

obtained are very promising, and further studies

deserve to be done to pave the way for new lines of

intervention in cancer treatment.
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