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We studied turbulence induced by the Rayleigh-Taylor (RT) instability for 2D immiscible

two-component flows by using a multicomponent lattice Boltzmann method with a Shan-

Chen pseudopotential implemented on graphics processing units. We compare our results

with the extension to the 2D case of the phenomenological theory for immiscible 3D RT

turbulence studied by Chertkov and collaborators [Phys. Rev. E 71, 055301 (2005)]. Fur-

thermore, we compared the growth of the mixing layer, typical velocity, average density

profiles and enstrophy with the equivalent case but for miscible two-component fluid. In

both miscible and immiscible cases, the expected quadratic growth of the mixing layer and

the linear growth of the typical velocity are observed with close long-time asymptotic prefac-

tors but different initial transients. In the immiscible case, the enstrophy shows a tendency

to grow like ∝ t3/2, with the highest values of vorticity concentrated close to the interface.

In addition, we investigate the evolution of the typical drop size and the behavior of the

total length of the interface in the emulsion-like state, showing the existence of a power law

behavior compatible with our phenomenological predictions. Our results can also be con-

sidered as a first validation step to extend the application of the lattice Boltzmann tool to

study the 3D immiscible case.

DOI: https://doi.org/10.1103/PhysRevFluids.6.054606

∗ hugoczpb@impa.br

ar
X

iv
:2

00
9.

00
05

4v
3 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

 J
un

 2
02

1

https://doi.org/10.1103/PhysRevFluids.6.054606
mailto:hugoczpb@impa.br


2

I. INTRODUCTION

When a heavy fluid is accelerated against a lighter fluid the so-called Rayleigh-Taylor (RT)

instability can develop [1, 2], which eventually leads to a mixing layer with a turbulent motion

called Rayleigh-Taylor turbulence. In this process the two fluids seek to reduce the total potential

energy of the system [3]. The turbulent regime is relevant in many different contexts, for example,

in the understanding of the Earth’s climate, in the nuclear fusion process [4, 5] and as a key

mechanism for thermonuclear flames in some types of supernovae [6, 7]. In the context of classical

fluids, the incompressible Rayleigh-Taylor turbulence has important properties [8], one of the most

important of which is the quadratic growth of the mixing layer width. In some cases, important

connections have been found with classical theories of turbulence for simple fluids [9–11].

Physical experiments of the RT instability have shown some challenges due to the difficulty of

sustaining an unstable density stratification necessary to set up the appropriate initial conditions for

the instability [3, 12–14]. Despite this limitation, considerable advances in numerical simulations

of the Rayleigh-Taylor instability have been verified in the past few decades, especially in the

context of systems with miscible fluids [8, 10, 15–18]. Only a few works have been dedicated to the

immiscible case [3, 19–23], and most of them are devoted to the early stages of the instability with

little information about the state of developed turbulence. One of the reasons for this is the highly

complicated pattern formed by the interfaces that appear in the immiscible case, originating high

gradients and singularities in the solutions, which is a source of challenging numerical instabilities

in many numerical methods for multicomponent fluids. Some works tried to close the dynamics in

terms of effective equations for the interface; see [24, 25] for a recent discussion.

With respect to the theoretical aspects of the immiscible RT turbulence, it is only recently

that a consistent phenomenological study of the effects of surface tension has been proposed by

Chertkov and collaborators [26]. It followed the earlier work in Ref. [10], where a phenomenological

theory was developed for two- and three-dimensional miscible RT turbulence in the Boussinesq

approximation. Said work considers a three-dimensional(3D) scenario, in which the direct energy

cascade happens in a range of scales limited by the mixing layer width (integral scale) and the

viscous (Kolmogorov) scale, both dependent on time. In the two dimensional case, the lack of

energy and enstrophy cascades leads to the assumption of Bolgiano–Obukhov theory describing

the cascade of temperature fluctuations in the inertial range [27, 28]. Reference [26] described the

theory of three-dimensional immiscible RT turbulence, studying the effects of surface tension in an

emulsionlike state and predicting the rate of growth for the typical drop size.
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In the present paper we extend the phenomenological theory of Ref. [26] for two-dimensional

immiscible RT turbulence assuming the Boussinesq approximation, which is valid in the limit of

small density variations [29, 30]. This extension includes predictions for the growth of the total

length of the interface and the typical drop size. We also provide predictions for the evolution of

the enstrophy in the miscible and immiscible cases, which have not been addressed earlier. These

predictions are tested using numerical simulations based on the multicomponent lattice-Boltzmann

method with the Shan-Chen pseudopotential model [31, 32]. In the immiscible case, this method is

able to accurately overcome the inherent numerical complexity caused by the complicated structure

of the interface that appears in the fully developed turbulent regime [3, 19, 33]. This method

also allows parallel implementations in many situations, which is very important for statistical

analyses that requires a substantial number of simulations, as in our numerical verification for the

phenomenological predictions. We run several parallel simulations of RT turbulence on graphics

processing units (GPUs) using CUDA with a computational grid of resolution 10000× 5000.

This paper is organized as follows. Section II describes the basic equations for the classical

Rayleigh-Taylor system, miscible and immiscible, characterizing the Boussinesq approximation

and including the surface tension effects. In Sec. III we describe the multicomponent lattice-

Boltzmann method with the Shan-Chen pseudopotential model, and show how to approach the

Boussinesq approximation with this method. In Sec. IV we construct phenomenological predictions

for the mixing layer, typical velocity and averaged density profile, with the respective numerical

verifications, showing a direct comparison between the miscible and immiscible cases. Section V is

dedicated to the phenomenological properties of the interface. In the first part of that section, we

investigate the evolution of the typical drop size and total length of the interface in the emulsion-

like state, and at the end we study the evolution of enstrophy. The statistics for the enstrophy

are also used to understand the influence of the interface on small-scale statistics and to verify

the validity of the assumption of the Bolgiano-Obukhov regime in our phenomenology. Section VI

provides some conclusions and perspectives.

II. IMMISCIBLE AND MISCIBLE RAYLEIGH-TAYLOR SYSTEMS

An interface between two fluids of different densities becomes unstable when a heavier fluid is

placed above a lighter fluid under gravity [34]. In the classical formulation of fluid dynamics, the
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flow is described by the incompressible Navier–Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

{
µ
(
∇u + (∇u)T

)}
+ f , ∇ · u = 0, (1)

where u is the fluid velocity depending on spatial coordinates x and time t, p is the pressure, and

ρ and µ are the fluid density and dynamic viscosity. The buoyancy forcing term is f = ρg with

the acceleration of gravity g. In this work, we study two-dimensional flows with x = (x, y) for two

different physical models describing the immiscible and miscible flows.

The immiscible formulation considers two fluid phases with constant densities and viscosities:

ρ1 and µ1 for the first phase and ρ2 and µ2 for the second phase. We assume that ρ1 > ρ2, i.e.,

the first phase is heavier. The two subdomains occupied by each phase are separated by a moving

interface Γ(t). Equations of motion for each phase are given by (1) with the corresponding constant

values of density and viscosity. At the interface, the boundary conditions take the form

x ∈ Γ : [u]Γ = 0, u · n = uΓ,
[
−pn + µ

(
∇u + (∇u)T

)
n
]
Γ

= −σκn, (2)

where [·]Γ denotes the jump of the quantity across the interface, n and uΓ are the interface normal

vector and velocity, σ is the surface tension and κ is the interface curvature. The first two conditions

in (2) describe the continuity of fluid velocity and mass conservation, while the last condition

corresponds to the balance of momentum. The no-slip condition, u = 0, is assumed at a rigid

boundary. This condition is the simplest choice for the boundaries, which is also convenient from a

numerical point of view. We stop our simulations before the mixing layer reaches the boundaries.

We assume the Boussinesq approximation, valid for small Atwood numbers A = (ρ1−ρ2)/(ρ1 +

ρ2)� 1. It corresponds to the density treated as a constant and density variations affecting only

the buoyancy force as

ρ = ρ0, f = −ρ0θg̃ ey, (3)

where ρ0 = (ρ1 + ρ2)/2 is a background density, g̃ = Ag is the effective gravity, ey = (0, 1) is

the unit vector in vertical direction, and θ is the order parameter equal to 1 in the first phase

and −1 in the second phase. In this formulation, the background value of the buoyancy term ρ0g

is included into the pressure. If viscosities µ1 and µ2 of two components are close, one can use

the mean kinematic viscosity ν = (µ1 + µ2)/(2ρ0). For the study of the Rayleigh-Taylor systems

without the assumption of the Boussinesq approximation, we refer to the Refs. [15, 35, 36].

Initial conditions at t = 0 for the Rayleigh-Taylor system correspond to the fluid at rest, u = 0,

with the heavier (first) phase occupying the upper half-plane y > 0 and the lighter (second)
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FIG. 1. Mixing layer of the immiscible Rayleigh-Taylor turbulence, where the yellow color represents a

heavier phase and the brown color corresponds to a lighter phase. Lower pictures show the phases in the

small region (marked in the center of the main panel) for three different times: the initial linear growth,

formation of nonlinear mushroom-like structures at intermediate times, and fully developed turbulent mixing

at larger times. Simulations are performed on the grids 10.000 × 5.000 in lattice Boltzmann units (lbu), a

simple artificial set of units with spatial and time steps verifying ∆t = ∆x = ∆y = 1. This set of units is

directly connected with the lattice Boltzmann method described in Section III.

phase occupying the lower half-plane y < 0. This configuration is an unstable stationary solution:

small perturbations of the interface with wavenumbers k <
√

2ρ0Ag/σ grow exponentially with a

dispersion relation superiorly bounded by λ(k) = −νk2 +
√
gAk − σk3/(2ρ0) + (νk2)2 [16, 37, 38],

see Fig. 5 in Section III. Depending on the values of viscosity and surface tension, this upper bound

can be a good approximation of the actual dispersion relation [3]. In Fig. 5, it is also possible to

see that the main effect of the viscosity is a small reduction of the growth rate of the instability.

After an initial linear growth such perturbations develop into nonlinear mushroom-like structures

evolving further to the fully developed turbulent mixing layer, as shown in the Figures 1 and 3.

In the miscible flow, the fluid is modeled by a single phase with a variable density. We write
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FIG. 2. Mixing layer of the miscible Rayleigh-Taylor turbulence, where colors describe the fluid density;

lighter colors represent a heavier fluid. Lower pictures show the densities in the small region (marked in

the center of the main panel) for three different times: the initial linear growth, formation of nonlinear

mushroom-like structures at intermediate times, and fully developed turbulent mixing at larger times. Sim-

ulations are performed on the grids 10000× 5000 in lattice Boltzmann units (lbu), a simple artificial set of

units with spatial and time steps verifying ∆t = ∆x = ∆y = 1. This set of units is directly connected with

the lattice Boltzmann method described in Section III.

this density, also assuming the Boussinesq approximation, as ρ = ρ0 (1 +Aθ) with the Atwood

number describing a typical amplitude of density variations. The function θ(x, t) describing density

variations satisfies the transport equation

∂θ

∂t
+ u · ∇θ = ∇ · (D∇θ), (4)

where D is the diffusion coefficient. In general, both viscous and diffusion coefficients are functions

of density. Analogous formulation arises when the density is considered to be a function of tem-

perature T , in which case θ = −β(T − T0) with the coefficient of thermal expansion β [29]. In the

Boussinesq approximation, one considers a constant density and buoyancy term (3).

The miscible Rayleigh-Taylor instability corresponds to the same initial conditions as the im-
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FIG. 3. Components of the velocity field for the immiscible Rayleigh-Taylor flow shown in Fig 1. The

velocities are indicated in simulation units.

miscible one. It follows a similar scenario, where small perturbations of the interface are amplified

first linearly and then nonlinearly, growing into the developed turbulent mixing layer, as shown

in the Figures 2 and 4. The important difference between the immiscible and miscible cases can

be seen at small scales. The immiscible Rayleigh-Taylor turbulence leads to the formation of an

emulsionlike state with a multitude of small bubbles. The miscible Rayleigh-Taylor turbulence

develops sharp gradients leading the enhanced diffusion at small scales.

III. LATTICE BOLTZMANN MODEL

In this section, we describe the two-component lattice Boltzmann method for simulating immis-

cible and miscible Rayleigh-Taylor systems in the Boussinesq approximation; we refer the reader

to the Refs. [31, 32] for more details. In this method, spatial coordinates and time take values on

the lattice with spacings ∆x and ∆t, and the system is described by the interactions between two

species of particles, A and B. Considering the so-called D2Q9 scheme, each particle is allowed to

have nine velocities c0, . . . , c8. These velocities are given by the vectors (0, 0), (±c, 0), (0,±c) and

(±c,±c) with c = ∆x/∆t, such that a particle either stays at the same lattice point or moves to a
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FIG. 4. Components of the velocity field for the miscible Raleigh-Taylor flow shown in Fig. 2. The velocities

are indicated in simulation units.

neighboring lattice point in a single time step. The system is described by the functions f si (x, t)

determining the number of particles of component s = A or B and velocity ci at a given point and

time. The densities of each component and common velocity of the fluid are defined as

ρs(x, t) =
∑
i

fis(x, t), u(x, t) =

∑
s,i f

s
i (x, t)ci/τs∑

s ρs(x, t)/τs
, (5)

where s = A,B and i = 0, . . . , 8. The total density is given by the sum ρ = ρA + ρB.

The evolution is governed by the lattice-Boltzmann equations with the Bhatnagar-Gross-Krook

collision term [33]

fsi (x + ci∆t, t+ ∆t)− fsi (x, t) = − 1

τs

[
fsi (x, t)− fs(eq)i (ρs,u + τsFs/ρs)

]
, (6)

where τs and Fs are the relaxation time and the forcing term for component s, respectively. The

right-hand side in (6) describes the relaxation towards the local equilibrium distribution

f
s(eq)
i (ρs,u

′) = ρswi

(
1 +

3ci · u′

c2
+

9(ci · u′)2

2c4
− 3u′ · u′

2c2

)
, u′ = u +

τsFs
ρs

, (7)

with the lattice sound speed cs = c/
√

3 and constant weights wi. These weights are expressed
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through velocity components ci = (c1
i , c

2
i ) by the conditions∑

i

wic
a
i c
b
i = c2

sδab,
∑
i

wic
a
i c
b
ic
c
ic
d
i = c4

s (δabδcd + δadδbc + δacδbd) for a, b, c, d = 1, 2, (8)

where δab is the Kronecker delta.

The forcing terms Fs = Fff
s +Ffb

s +Fext
s contain three parts describing the fluid-fluid interaction,

the fluid-boundary interaction and the external forces. The first is given by the Shan-Chen inter-

molecular force as

Fff
s (x, t) = −GABρs(x, t)

∑
i

wiρs′(x + ci∆t, t)ci, (9)

with s′ = B and s = A or vice versa. Here, we consider a system without self-interaction, where

the coupling constant GAB controls the interaction between components A and B. The interaction

between fluid and boundary is given by

Ffb
s = −Gsbρs(x, t)

∑
i

wiS(x + ci∆t)ci, (10)

where S(x) is the indicator equal to unity at boundary nodes and vanishing otherwise. The

parameters GAb and GBb control interactions between fluid components and solid boundary; they

relate to contact angles of fluids in the mixture. External forces are introduced as

Fext
A = −ρAg̃ ey, Fext

B = ρB g̃ ey, (11)

which yield the buoyancy forces in Boussinesq approximation, as we will see below.

A. Implementation details

We choose ∆x = ∆t = 1 (considered as lattice-Boltzmann units) in the rectangular domain of

horizontal size Lx = 104 and vertical size Ly = Lx/2. Periodic boundary conditions are assumed

in the horizontal direction with the solid bottom and top boundaries. The bounce-back relation

[32, 39] is used for the distribution function fsi (x, t) at the solid boundaries for modeling the

no-slip condition. The relaxation time τ = 0.53 is chosen for both components, providing the

kinetic viscosity ν = c2
s(τ − 1/2) = 0.01. In the continuous limit, the lattice Boltzmann system

approximates the coupled Navier-Stokes and Cahn–Hillard equations [32, 40] for the velocity field

u(x, t), the total density ρ(x, t) and the order parameter φ(x, t) = ρA−ρB. For small fluid velocities

(small lattice Mach numbers) |u| � cs, the flow can be assumed incompressible. We consider pure

densities of both fluid components equal to 1.10 and the gravity parameter g̃ = 9 · 10−6. Since
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changes of the total density due to pressure variations and mixing are small, we approximate

ρ(x, t) ≈ ρ0 by a constant. In this case, the Boussinesq buoyancy force (3) agrees with our choice

of the external force (11) for θ = φ/ρ0.

The coupling constant GAB has a critical value with the immiscible (two phase) fluid for stronger

couplings and miscible (single phase) fluid for weaker couplings. For our immiscible and miscible

models, we select GAB = 0.1381 and GAB = 0.0805, respectively. In the interactions with the

boundaries, we use neutral wetting, i.e., GAb = GBb = 0, to minimize the influence of the boundaries

in the simulations. In the immiscible model, two phases are separated by a diffuse interface having

a width of approximately lint ∼ 3 grid nodes. This model approximates the Boussinesq system

(1)–(3) considered at scales much larger than lint with the surface tension σ = 0.0059 obtained from

pressure measurements for large bubbles. Similarly, one recovers the miscible Boussinesq system

(1), (3) and (4) in the continuous limit for small gradients of the order parameter. The diffusion

coefficient can be estimated roughly as D ' c2
s [(τ − 1/2)− ρτGAB/2] = 0.002 [40]. Though the

diffusion coefficient is a function of the order parameter in a more accurate description, such

dependence is not important for our study based on the phenomenological theory of turbulence.

Simulations are implemented on GPUs of the model NVIDIA Tesla V100 PCIe 32 GB. The

use of a GPU is instrumental to accumulate better statistics with a reasonable amount of time.

Specifically, for our main tests we consider ensembles with 15 simulations on the grids 10000×5000

for the immiscible and miscible flows performed for different random initial disturbances. For

further quantitative indications on the performances and potentialities of the GPU codes, we refer

the reader to Refs. [41–43]. The choice of the size of the ensembles is motivated by small values of

standard deviations verified in our numerical experiments, indicating a small dependence on the

initial conditions for big computational grids like the ones used by us. For smaller grids and early

stages of turbulence, the influence of initial conditions was studied in [17, 44].

We perform a number of additional numerical tests justifying the validity of the lattice Boltz-

mann model for the Rayleigh-Taylor instability. In particular, we show that numerical dispersion

relations of the initial linear instability are in agreement with theoretical predictions [3, 38]; see

Fig. 5. We verify that non-isotropic contributions to the stress tensor due to variations of the

order parameter are small in the miscible case. In the immiscible flow, these contributions grow

in time following the increase of the interface, but they remain small compared to buoyancy and

viscous contributions. Also, numerical anisotropy of the Shan-Chen force generates spurious cur-

rents [45, 46] within thin diffuse interfaces, which do not affect most of our measurements but

may interfere in the results for enstrophy, as discussed in the end of Section V. A more detailed
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FIG. 5. We show the theoretical upper bound for the dispersion relation λ = −νk2 +√
gAk − σk3/(2ρ0) + (νk2)2 [37] for the immiscible RT system (black curve) compared to the results of

lattice Boltzmann simulations (circles) obtained by measuring exponential growth of the maximum interface

displacement for different values of the effective gravity g̃ = Ag. Error bars for fitting are approximately

the size of the data symbols. We also compare with the classical dispersion relation without viscosity [3],

indicated by the blue dashed line, showing that in our case the main effect of the viscosity is a small reduc-

tion in the growth rate of the RT instability. The simulations are performed on grids of size 512× 512 with

parameters corresponding to the relaxation time τ = 1.0 and interaction parameter GAB = 1.22, which gives

the kinematic viscosity ν = 0.1667 and the surface tension coefficient σ = 0.061. The numerical experiments

considered different values of g̃ for a fixed k = 2π/512.

account of the tests describing the validity and performance of the numerical method will be given

elsewhere. For simulations in this paper, we initialize the flow by using an equilibrium immisci-

ble configuration and adding a small random (white-noise) deformation to the interface with an

amplitude of 4 grid points. In this equilibrium configuration, the first phase consists primarily of

component A with about 9% of component B, and vise versa for the second phase.

IV. EVOLUTION AND SHAPE OF THE MIXING LAYER

In this section, we investigate the large-scale dynamics of the RT mixing layer, comparing its

development in immiscible and miscible flows.

The development of the mixing layer from a small initial perturbation of the straight interface

line is presented in Fig. 1 (immiscible) and Fig. 2 (miscible). The panels in the bottom of these
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figures correspond to zooms of a small region in the middle of the computational domain (red

rectangles in the main plots) at different times. They illustrate the initial linear growth of pertur-

bations, which develop into a nonlinear quasi-periodic pattern with mushroom-like structures. For

later times, these structures break down, forming a fully developed turbulent mixing layer.

The macroscopic properties of the turbulent mixing layer are described by its width L(t) and the

large-scale velocity fluctuation U(t). The latter estimates the velocity of large-scale plumes within

the mixing layer, which yields the relation U(t) ∼ dL/dt. Phenomenologically, the energy balance

dE/dt ∼ −dP/dt describes the transfer of potential energy P ∝ −AgL into kinetic energy E ∝ U2;

see e.g., Ref. [8]. Recall that the Atwood number A characterizes typical density variations, and

we denoted g̃ = Ag in the Boussinesq approximation and the lattice Boltzmann method. The

energy balance provides the relation dU/dt ∼ Ag. Integrating, we obtain the quadratic asymptotic

growth of the mixing layer and linear growth of the velocity fluctuation as

L(t) ≈ αLAgt2, U(t) ≈ αUAgt, (12)

where the starting moment is set to t = 0. The two dimensionless parameters αL and αU charac-

terize the efficiency of the conversion of potential into kinetic energy.

The numerical procedure for the analysis of the mixing layer is illustrated in Fig. 6. Here the

red and black lines show the dependence on the vertical coordinate y for the component densities

ρA(x, t) and ρB(x, t) averaged with respect to the horizontal coordinate x. We define the mixing

layer as the region between two points, at which the averaged density of each component reaches

20% of the total density. This definition separates the central region of the mixing layer, cutting

off its most non-homogeneous outer parts. Then, the large-scale velocity fluctuation is introduced

as U2 = 〈‖u‖2〉ML, where the averaging is performed within the central region of the mixing layer.

Numerical measurements for the width L(t) and speed U(t) of the mixing layer, averaged with

respect to ensembles of realizations, are presented in Fig. 7 for both immiscible and miscible flows.

We associate the beginning of turbulent mixing with the time when mushroom-like structures break

down into a chaotic multi-scale mixing layer; see Figs. 1 and 2. In our simulations, turbulent mixing

layers develop roughly at the times t & 4×104 in the immiscible case and t & 3×104 in the miscible

case. The difference between these initial times can be attributed to the resistance caused by the

surface tension in immiscible flows. All simulations are stopped at times t ≈ 8.5× 104. For larger

times, the mixing layer may be affected considerably by the top and bottom rigid boundaries.

In terms of the Reynolds number Re = UL/ν, the developed turbulent regime corresponds to

(0.3 ∼ 2.1)× 104 for the immiscible flow and (0.1 ∼ 2.1)× 104 for the miscible flow.
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FIG. 6. Definition of the mixing layer as the region between two points, where the averaged component

densities ρA (red) and ρB (black) attain 20% of the total density.
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FIG. 7. (a) Width of the mixing layer L(t) and (b) large-scale velocity fluctuation U(t) depending on time

for immiscible (bold blue) and miscible (thin red) flows. Shaded areas indicate standard deviations. The

inset in figure (a) compares the graphs
√
L(t) in the region of turbulent mixing with the estimated slopes

(13) shown by dotted lines.

In order to verify the phenomenological predictions (12), we estimate

αL =
1

4AgL

(
dL

dt

)2

, αU =
1

Ag
dU

dt
, (13)

where the derivatives are computed by finite differences. Such relations are more robust numerically

because they are insensitive to shifts of the initial time, t 7→ t − t∗, accounting for the early non-

turbulent development of the mixing layer. The results of computations with formulas (13) are

shown in Fig. 8, demonstrating clear tendencies to constant values in the regions of developed
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FIG. 8. Measurement of the dimensionless pre-factors for the immiscible (bold blue) and miscible (thin red)

flows: (a) αL for the mixing layer width and (b) αU for the large-scale velocity fluctuation. Constant values

(dashed lines) are estimated in the regions of turbulent mixing.

turbulent mixing. The estimated values are αL = 0.027 ± 0.005 and αU = 0.083 ± 0.007 for

immiscible and αL = 0.033 ± 0.004 and αU = 0.1 ± 0.005 for miscible flows; see also the direct

comparison in the inset of Fig. 7(a). Notice that previous experiments [8, 16, 35, 47] reported

the pre-factors αL between 0.01 and 0.06 for the miscible mixing layer, which are compatible with

our estimates taking into account that we use a different definition of L. Our results provide a

value of αL in the immiscible case slightly lower than those in the miscible situation, see Fig. 8(a),

indicating that the immiscible RT turbulence may be less efficient in the conversion of potential into

kinetic energy; the same conclusions are valid for the other pre-factor αU . However, the differences

are small (comparable to standard deviations), which does not exclude the possibility that they

are actually equal for immiscible and miscible flows in the asymptotic limit of an infinitely large

domain. Analogous universality of the mixing layer pre-factors with respect to small-scale physics

was observed recently for the Kelvin–Helmholtz instability [48], where Navier–Stokes flows were

compared to a point-vortex model.

Figure 9 shows profiles for the density ρA of component A averaged with respect to the horizontal

coordinate x and an ensemble of realizations. The figure (a) shows profiles at three consecutive

times both for immiscible (bold blue) and miscible (thin red) flows. By the dimensional argument

leading to power laws (12), one can also conjecture that the averaged density profiles are self-similar

in the regime of developed turbulent mixing, with the dependence only on the ratio y/L(t). This

conjecture is supported by Fig. 9(b), where the graphs from the left panel collapse into a single

curve when plotted with respect to the rescaled coordinate y/L(t). The graphs suggest that the

inner region of the mixing layer develops a linear average density profile with a slope decreasing
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FIG. 9. Density profiles for the component A averaged with respect to horizontal coordinate x and ensemble

of realizations. The results are shown at three consecutive times t = 4.5 × 104, 7 × 104 and 8.9 × 104.

(a) Dependence on the vertical coordinate y. (b) Dependence on the rescaled vertical coordinate y/L(t)

demonstrates self-similarity and universality of the density profile for immiscible and miscible flows.

proportionally to 1/L(t) ∝ t−2. This linear profile implies statistical homogeneity inside the mixing

layer [8, 16]. Notice that, up to numerical fluctuations, the self-similar profiles are indistinguishable

for the immiscible and miscible cases. This provides further evidence for the universality of large-

scale properties in the RT turbulence for immiscible and miscible flows.

Self-similarity, homogeneity and isotropy in the statistical sense [9] are important assump-

tions for phenomenological theories derived similarly to the Kolmogorov’s theory of turbulence

(K41) [49]. For miscible Rayleigh-Taylor systems, the tendency toward isotropy restoration of

small-scale fluctuations has been numerically verified by the Refs. [15, 50, 51] and experimentally

by the Ref. [12]. The similarities of the statistics between miscible and immiscible RT flows in our

experiments indicate that the same tendency may also happen for the immiscible Rayleigh-Taylor

systems, which motivates the definition of turbulence for the observed late-time behavior. Notice

that, though numerical simulations confirm self-similar RT dynamics, some experiments report on

departures from the canonical turbulence scenario with strong sensitivity to initial conditions; see

e.g. [44, 52, 53].

V. EVOLUTION OF THE INTERFACE IN THE IMMISCIBLE RT TURBULENCE

An intricate evolution of the interface between two phases is the most distinctive feature of

immiscible RT turbulence. In this section, we study the statistical properties of the interface

depending on time and scale, the distribution of drops with respect to their size, and the effects of
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the interface on the flow.

The interface evolution with the formation of drop-rich (emulsion) regions is driven by the

velocity fluctuations at small scales. In the RT turbulence, such fluctuations can be described

phenomenologically assuming that the dynamics at small scales adjusts in a quasi-stationary (adia-

batic) manner to the large-scale growth of the mixing layer described by the width L(t) and velocity

U(t). In two-dimensional flows, statistics at small-scales follows the so-called Bolgiano–Obukhov

scenario [27, 28, 54], which assumes the balance of buoyancy and nonlinear terms with density fluc-

tuations cascading toward small scales at a constant rate. For equations (1)–(3), this balance reads

(δru)2/r ∼ Agδrθ, where we denoted coarse-grained velocity fluctuations at scales r by δru and

analogous fluctuations of the order parameter by δrθ. With the estimate εθ ∼ (δrθ)
2(δru)/r for

the flux of order-parameter fluctuations, elementary derivation yields the well-known Bolgiano–

Obukhov scaling laws δru ∝ r3/5 and δrθ ∝ r1/5. These laws are valid at scales of the inertial

interval η � r � L limited from below by the viscous (Kolmogorov) scale η, at which viscous

forces must be taken into account. There is also a limitation caused by the interface introduc-

ing the scale ` of a typical drop size. We will see later that the interface affects the turbulent

fluctuations considerably at scales r . `.

The change of fluctuations in time is derived using the conditions δru ∼ U(t) and δrθ ∼ 1 at

the scales r comparable to the size of the mixing layer L(t). This yields [10]

δru ∼ U(t)

(
r

L(t)

)3/5

∼ (Ag)2/5 r
3/5

t1/5
,

δrθ ∼
(

r

L(t)

)1/5

∼ (Ag)−1/5 r
1/5

t2/5
,

(14)

where we used relations (12). Note that these scaling laws are only approximate due to the expected

intermittency [8]. The scale r ∼ η(t) at which viscous and nonlinear terms become comparable is

found as ν(δru)/r2 ∼ (δru)2/r. With the use of (14), this yields [10]

η(t) ∼ ν5/8

(Ag)1/4
t1/8. (15)

In our simulation, the viscous scale computed by expression (15) stays close to the value η ≈ 4

(four lattice distances) at all times corresponding to turbulent mixing.

Let us denote by ` the size of a typical drop (or the typical size of small interface structures) in

the emulsion-like state; see Fig. 10(a). It can be estimated as the scale where kinetic and surface

energy densities are of the same order, ρ0(δ`u)2 ∼ σ/` [10, 55]. Using (14), we find

`(t) ∼ σ5/11

ρ
5/11
0 (Ag)4/11

t2/11. (16)
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FIG. 10. (a) Interface between two phases defined as the line of equal component densities, ρA = ρB , for

a typical simulation of immiscible RT turbulence. The inset compares typical drops and their statistical

size estimate (blue circle). (b) Length frequencies for different values of curvature radius R along the whole

interface at a fixed time. We use the logarithmic binning, which corresponds to constructing the PDF for

logR. The PDF maximum determines a typical drop size as ` = 2Rmax. The dashed red line corresponds

to the theoretical prediction (18) for the dependence of interface structures on scale, i.e., Lr ∝ 1/R. (c)

Temporal dependence of the typical curvature radius for times corresponding to turbulent mixing, shown

in logarithmic scales; the inset shows the same graph in linear scales. The blue line corresponds to the

theoretical prediction ` = 2Rmax ∝ t2/11, which is expected to approximate the data for times bigger than

t ' 50000, corresponding to the turbulent regime.

This formula is derived under the assumption that the typical drop size `(t) exceeds the viscous scale

η(t) given by expression (15). As we show later in Fig. 10(c), a typical drop size in our simulations

is about ` ∼ 50, which is an order of magnitude larger than the viscous scale. Therefore, ` belongs

to the inertial interval at times corresponding to turbulent mixing.

If typical-sized drops are dense (distances among drops are comparable to their sizes) in the



18

mixing layer of width L(t) and horizontal length Lx, the total number of drops is estimated as

N`(t) ∼ LxL(t)/`2(t). This yields an estimate for the maximum total length of the interface as

Ltot(t) ∼ N`(t)`(t) ∼ LxL(t)/`(t). Using relations (12) and (16), we obtain

Ltot(t)

Lx
∼ ρ

5/11
0 (Ag)15/11

σ5/11
t20/11. (17)

This expression provides, up to a dimensionless coefficient, a phenomenological estimate for the

growing length of the interface.

At smaller scales, the mean kinetic energy is insufficient for forming a drop. Therefore, drops of

sizes r � ` are very rare, being induced by extreme velocity fluctuations. On the contrary, drops

can form freely at larger scales r � `. Let us denote by Nr the total number of drops having size of

order r. It is estimated similarly to typical-sized drops as Nr(t) ∼ LxL(t)/r2. The total interface

of such drops, Lr(t) ∼ Nr(t)r, is expressed using relations (12) as

Lr(t)
Lx

∼ Ag t
2

r
. (18)

Naturally, this length decreases for larger r, and, therefore, the total length of the interface is

dominated by drops of typical size r ∼ `.

In the numerical simulations, the points of the moving interface Γ(t) for an immiscible binary

mixture are commonly given by the equation φ(x, t) = 0; see Fig. 10(a). This definition assumes a

diffuse interface [31, 56] and approximates the actual interface in the sharp interface formulation

given by (1) and (2). Then, the typical drop size can be accessed through the measurements of the

interface curvature radius R = 1/κ, the inverse of the curvature κ. Therefore, we can define the

typical drop size as two times the most frequent curvature radius. This concept was implemented

numerically: we computed the curvature radius for each adjacent pair of small interface segments

at a given time t, and also associated weight using the lengths of the corresponding interface

segments. Then, these data are represented in the form of a histogram with logarithmic binning

for the curvature radius R; see Fig. 10(b). This histogram approximates the (not normalized)

probability density function (PDF) for the values of lnR within the interface. The histogram in

Fig. 10(b) has the well-defined maximum at R = Rmax(t), and we define the typical drop size as

`(t) = 2Rmax(t). The measured value is demonstrated in the inset of Fig. 10(a) by a blue circle

of diameter `, providing a visual validation of our numerical approach. Figure 10(c) presents the

measurements of typical drop sizes at different times shown in logarithmic scale, with the straight

line corresponding to the phenomenological prediction (16). In addition to having a good agreement

between theory and numerical simulations, we are able to estimate the dimensionless pre-factor in
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FIG. 11. (a) Time dependence for the total interface length Ltot averaged over an ensemble of 10 immiscible

RT simulations; the shaded region shows standard deviations. (b) Logarithmic derivative of the previous

graph, d(logLtot)/d(log t), indicating the power-law dependence in the turbulent regime (t & 4.5 × 104)

with the exponent 1.64 ± 0.07 shown by a dashed horizontal line. The solid horizontal line shows the

phenomenological estimate (upper bound) 20/11 for the same exponent.

the expression (16) as 6.7±0.7. Notice also that the slope of the histogram in Fig. 10(b) to the right

of the maximum value (dashed red line) confirms our prediction (18) for the distribution of drops

with respect to their size. This slope extends to the integral-scale structures with R ∼ L(t) ∼ 104.

At larger values of R & 105, Fig. 10(b) measures the increased probability of almost flat interfaces

segments; such segments can be recognized both in Figs. 1 and 10(a).

Figure 11(a) presents the temporal dependence of the total interface length in our simulations,

which is computed using the Cauchy–Crofton formula [57, 58]. Its logarithmic derivative (with

logarithms to the base 10) is shown in Fig. 11(b), demonstrating a well-established power law in

the regime of turbulent mixing. The measured exponent of this power law is equal to 1.64± 0.07

(dashed horizontal line), which is rather close to and slightly below its theoretical estimate of 20/11

(solid horizontal line) from Eq. (17). The difference between these exponents may be attributed

to our theoretical assumption that typical-sized drops are dense in the mixing layer. The lower

numerical value of the exponent implies that typical-sized drops get more sparse at larger times.

In the final part of this section, we study the influence of the interface on the properties of

the flow. Namely, we will show that the immiscible RT turbulence generates a considerably larger

enstrophy compared to the miscible flow, and that the source of this extra enstrophy is confined

within a small neighborhood of the interface.

The phenomenological estimate for fluctuations of vorticity ω = ∇× u in the inertial range is
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obtained using expression (14) as

δrω ∼
δru

r
∼ (Ag)2/5

r2/5t1/5
. (19)

Vorticity fluctuations increase at smaller scales and attain the maximum at the viscous scale

r ∼ η(t). Thus, the total enstrophy of the flow Ω(t) can be estimated as a product of (δηω)2 and

the size of the mixing layer L(t)Lx. Using expression (12) for L(t) and (15) for η(t), we derive the

power law for the enstrophy Ω in the form

Ω

Lx
∼ (δηω)2L(t) ∼ (Ag)2

ν1/2
t3/2. (20)

Numerical verification of this relation is presented in Figs. 12(a,b). In the first figure, we plot the

total enstrophy as a function of time for the immiscible (bold blue) and miscible (thin red) flows,

and the second figure shows their logarithmic derivatives demonstrating a good agreement with

the phenomenological exponent 3/2 (a horizontal line). Note that ν ≈ 0.01 and D ∼ 0.002 in our

miscible simulations, which implies that the particle diffusion does not affect the inertial range.

It is apparent from Fig. 12(a) that, despite the power-law exponents being the same in both

immiscible and miscible cases, the dimensionless pre-factor is considerably larger for the immiscible

flow. We now argue that this difference can be attributed to the flow in a small neighborhood of the

interface. Figure 12(c) shows the vorticity field for the immiscible flow; it corresponds to a small

area of 667× 467 lattice points marked by the rectangle in the center of Fig. 1 and amplified in its

right small panel. Visually, it is clear that a considerable part of the high vorticity is concentrated

near the interface. For comparison, we present the vorticity field for the miscible case in Fig. 12(d),

which corresponds to a small area from Fig. 2. In the miscible case, the vorticity is more dispersed

and its amplitude is roughly twice as small (notice the difference in the color scales).

According to [59], the interface can be considered a source of vorticity depending on the velocity

jump across the interface, variations of the curvature, and other details of the flow. Also, a part of

the enstrophy may have a numerical origin coming from spurious currents of the lattice Boltzmann

method (see Sec. III); however, our estimates suggest that this numerical contribution is not very

large [60]. For quantification of the interface contribution, we separate the bulk enstrophy in

the immiscible case by excluding small areas around the interface. This is done numerically by

removing all nodes within squares of size 8 × 8 at each point of the interface. This size is much

smaller than the typical drop (` ∼ 50) and roughly twice as larger as the viscous scale (η ∼ 4) and

the numerical interface width (lint ∼ 3). The filtered enstrophy is plotted in Fig. 12(a) by a dotted

black curve, which agrees very well with the miscible data for the times corresponding to turbulent
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FIG. 12. (a) Evolution of total enstrophy averaged over 10 realizations for the immiscible (bold blue) and

miscible (thin red) simulations; shaded regions indicate standard deviations. The dashed black line corre-

sponds to the filtered enstrophy of the immiscible flow, by excluding small neighborhoods of the interface.

(b) Logarithmic derivatives, d(log Ω)/d(log t), of the same graphs compared with the theoretical power law

exponent (horizontal line). (c) Example of vorticity field for immiscible and (d) miscible flow. (e) PDFs of

the vorticity fields. (f) PDFs of the vorticity fields normalized by the respective standard deviations (SD).
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mixing. Though such a fine agreement may partially be attributed to the chosen filter, removing

larger areas around the interface yields only a moderate effect. This observation suggests that the

immiscible flow in the regions away from the interface features turbulent statistics similar to the

miscible flow. This conclusion is further justified in Fig. 12(e), where we plot PDFs of vorticity: one

can see that the PDFs for the miscible (red) and filtered immiscible (dotted black) flows are very

close, while the PDF for the full immiscible flow favors much larger values of vorticity characteristic

of thin boundary layers. Still, normalized PDFs of vorticity shown in Fig. 12(f) reveal a distinctive

shape of the tails for large ω (rare events), which is the same for the original and filtered fields in

the immiscible flow.

It is remarkable that the filtered part of the enstrophy, which is concentrated in a thin neigh-

borhood of the interface, follows the same power law as its bulk value, Fig. 12(b). We conjecture,

however, that this similarity is coincidental, because the vorticity generation by the interface is

not described by the Bolgiano–Obukhov scenario. The enstrophy corresponding to the interface

can be estimated as a product of the total interface lengths and the linear enstrophy density. The

former grows as a power law with the measured exponent 1.64 ± 0.07; see Fig. 11(b). The latter

may depend on the drop size and velocity fluctuations, both of which change very slowly in time;

see Eqs. (14) and (16). These estimates suggest that a power law for the enstrophy growth gener-

ated by the interface may have an exponent close to 3/2, i.e., very similar to the prediction (20)

following from the Bolgiano–Obukhov theory. Since the scaling range accessed by our simulations

is not too wide, one cannot exclude other behaviors, e.g., the possibility of anomalous scaling.

VI. CONCLUSION

We have presented the a high resolution study of immiscible RT turbulence in 2D using the

Shan-Chen multicomponent method. The large-scale statistics for the mixing layer, typical velocity,

and average density profile have been compared with the miscible case and found to have very

similar power-law behaviors with close overall prefactors but different transient behavior. In the

immiscible case, the presence of the interface affects the small-scale statistics, leading to a significant

difference, with respect to the miscible RT, in the evolution of the enstrophy. The Bolgiano–

Obukhov assumption generates a valid prediction for the power law behavior of the temporal

evolution of total enstrophy also for the immiscible case [see Eq. 20], but does not account for the

big change in the prefactor, which could be affected by extra vorticity induced by the interface.

The evolution of the typical drop size and the total length of the interface in the emulsion-like state
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of developed RT turbulence are measured and shown to be compatible with our phenomenological

predictions.

A natural question that can be addressed in the future is about the statistics of the structures

with a typical size smaller then the typical drop size. In this range of scales, the presence of

capillary waves propagating along the interfaces of the drops is expected [26]. The developed

numerical scheme can also be applied to the problem of fragmentation and whitecapping at the

surface of breaking waves, which involves a complex process with the formation of drops and

bubbles; see, e.g., [61, 62]. It is also important to note that most of the numerical procedures

presented in this article is naturally extendable for the three-dimensional immiscible Rayleigh-

Taylor turbulence, which is a more suitable configuration for experimental procedures, although

such an extension of the present GPU code, with appropriate optimizations to obtain affordable

statistics, can be a non-trivial task. Some laboratory experiments for the two-dimensional case

may be conducted in thin liquid films [14, 22] using, for example, aqueous gelatin solutions with

very high concentration [44]. The corresponding extension of the lattice Boltzmann method to

these cases seems feasible, but it requires further study.
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[58] D. Legland, K. Kiêu, and M.-F. Devaux, Image Analysis & Stereology 26, 83 (2007).

[59] M. Brøns, M. C. Thompson, T. Leweke, and K. Hourigan, Journal of Fluid Mechanics 758, 63 (2014).

[60] H. S. Tavares, Lattice Boltzmann modelling for immiscible Rayleigh-Taylor turbulence, Ph.D. thesis,

Institute for Pure and Applied Mathematics (IMPA) (2021).

[61] S. Dyachenko and A. C. Newell, Studies in Applied Mathematics 137, 199 (2016).

[62] A. A. Mailybaev and A. Nachbin, Journal of Fluid Mechanics 863, 876 (2019).

https://impa.br/wp-content/uploads/2021/03/tese_dout_Hugo-Saraiva-Tavares.pdf

	Immiscible Rayleigh-Taylor turbulence  using mesoscopic lattice Boltzmann algorithms
	I Introduction
	II Immiscible and miscible Rayleigh-Taylor systems
	III Lattice Boltzmann model
	A Implementation details

	IV Evolution and shape of the mixing layer
	V Evolution of the Interface in the immiscible RT turbulence
	VI Conclusion
	 References


