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ABSTRACT

We present mesoscale numerical simulations of Rayleigh-Bénard (RB) convection in a two-
dimensional model emulsion. The systems under study are constituted of finite-size droplets,
whose concentration Φ0 is systematically varied from small (Newtonian emulsions) to large
values (non-Newtonian emulsions). We focus on the characterisation of the heat transfer
properties close to the transition from conductive to convective states, where it is well known
that a homogeneous Newtonian system exhibits a steady flow and a time-independent heat
flux. In marked contrast, emulsions exhibit a non-steady dynamics with fluctuations in
the heat flux. In this paper, we aim at the characterisation of such non-steady dynamics
via detailed studies on the time-averaged heat flux and its fluctuations. To quantitatively
understand the time-averaged heat flux, we propose a side-by-side comparison between the
emulsion system and a single-phase (SP) system, whose viscosity is suitably constructed from
the shear rheology of the emulsion. We show that such local closure works well only when a
suitable degree of coarse-graining (at the droplet scale) is introduced in the local viscosity. To
delve deeper into the fluctuations in the heat flux, we furthermore propose a side-by-side
comparison between a Newtonian emulsion (i.e., with a small droplet concentration) and a
non-Newtonian emulsion (i.e., with a large droplet concentration), at fixed time-averaged
heat flux. This comparison elucidates that finite-size droplets and the non-Newtonian
rheology cooperate to trigger enhanced heat-flux fluctuations at the droplet scales. These
enhanced fluctuations are rooted in the emergence of space correlations among distant
droplets, which we highlight via direct measurements of the droplets displacement and the
characterisation of the associated correlation function. The observed findings offer insights
on heat transfer properties for confined systems possessing finite-size constituents.

ar
X

iv
:2

10
1.

03
37

4v
2 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

9 
Fe

b 
20

21



1 Introduction

Heat transfer in heterogeneous media made
of dispersions of one phase (solid, liquid or
gaseous) in another liquid phase is of paramount
importance for a broad variety of contexts, rang-
ing from everyday life to technological applica-
tions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Depending
on the composition of the dispersed phase, different
types of systems can be considered: dispersions
of gas bubbles in a continuous liquid phase (e.g.,
foams or bubbly flows) [13, 14, 15, 16, 17],
dispersions of droplets in a liquid matrix (e.g.,
emulsions) [18, 19, 20, 21, 22], suspensions of
particles dispersed in a liquid solvent [23, 24, 25, 26].
The focus of this paper is on the characterisation
of the heat transfer properties in a model emulsion,
consisting of deformable droplets of a liquid phase
dispersed in another continuum phase with the
same viscosity. The dynamical behaviour differs at
changing the rheological response of the emulsion,
the latter being encoded in the flow-curve of the
material reporting the stress Σ as a function of the
shear rate γ̇, from which the effective viscosity ηeff
is extracted as ηeff(γ̇) = dΣ(γ̇)/dγ̇. The rheology,
in turn, depends on the droplet concentration:
dilute emulsions behave as Newtonian fluids (i.e.
ηeff=const) with a viscosity that increases with the
droplet concentration [27, 28, 29, 30]. For larger
concentrations, non-Newtonian effects emerge: the
latter appear in the form of shear-thinning rheology,
whereby the viscosity increases as the shear-rate
decreases. This non-Newtonian behaviour is even
more pronounced at larger droplet concentrations,
where the emulsions can be categorised as yield
stress materials [18, 31, 32, 33], with a diverging
viscosity at small values of γ̇, while exhibiting a
finite viscosity at larger values of γ̇. The mechanical
response of emulsions has been vastly characterised
in experiments, theory and simulations, both in the
case of Newtonian emulsions as well as in the case of
non-Newtonian emulsions, as briefly reviewed below.

Regarding Newtonian emulsions, literature offers
a very detailed characterisation of the response of
the medium (see [34, 35, 36, 37, 38, 39, 40] for
reviews on the topic). One may refer, for example,
to the vast knowledge on the deformation and
break-up properties of single constituents (i.e., an
emulsion in the extremely dilute limit) and/or the
characterisation of the medium effective viscosity
from dilute to semi-dilute concentrations. However,
all these situations typically refer to cases where
the material response is analysed in the presence
of external drivings, either a force or a shear. As
a matter of fact, such a very detailed knowledge
is somehow not mirrored in a corresponding char-
acterisation of the heat transfer properties of the

medium. A practical case in point is the thermal
convection [41, 42, 43, 44], that we consider in
this paper in the widely studied Rayleigh-Bénard
(RB) set-up [45, 46, 47, 48, 49], consisting of a
material between two parallel walls at different
temperatures (a hot bottom and a cold top wall). In
this situation, the material is driven by buoyancy
forces which depend on the local temperature field;
the temperature field, in turn, is advected by the
velocity field that diffuses in space via the viscosity
of the material. For homogeneous Newtonian fluids,
an infinitesimal stress perturbation can linearly
destabilise the conductive state if the advective time,
which takes for a thermal perturbation (a “plume”)
to travel from one wall to the other, is smaller than
the time that it takes to be smeared out by thermal
diffusion. There exists a critical ratio of these two
timescales above which steady convection sets in [50].
Convection has been studied in biphasic systems
comprising bubbles [51, 52, 49, 53] but treating the
dispersed objects as if they were point-like or in the
dilute limit. Actually, we may expect that, especially
in highly confined systems and/or in concentrated
dispersions, the granularity of the system will lead
to a failure of any attempt of modelling employing
continuum equations or with point-like particles.

Regarding non-Newtonian emulsions, there is a
lot of knowledge pertaining to the mechanical
response of such systems under the effects of an
external driving [35, 37, 33], but very little is
known on the convective heat transport properties.
Some studies investigated the convective heat
transfer of model-systems exhibiting non-Newtonian
rheology (similar to that of highly concentrated
emulsions), focusing on the role of the yield
stress [54, 55, 56, 57, 58, 59, 60, 61, 62, 32, 63, 64].
In these studies, it is shown that, when the rheology
changes from Newtonian to non-Newtonian, the
stability of the base conductive state changes, to
the point that for a yield stress material it becomes
linearly stable [54, 55, 32] and a finite perturbation
intensity is required for the onset of convection;
this perturbation value increases upon approaching
the Newtonian critical point [54]. However, all
these theoretical/numerical insights predominantly
consider the problem of thermal convection in the
presence of “local” rheology. In other words, it is
assumed that the viscosity that enters the momentum
equation depends locally on γ̇. This assumption
may be reasonable whenever convection is treated
on “continuum scales”, i.e., at scales much larger
than the characteristic size of the constituents of
the material. When we move to scales comparable
with that of the constituents, it is known that a
description based on a local relation between Σ

and γ̇ falls short of capturing the relevant physics,
and finite-size effects need to be taken into account
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to obtain a comprehensive characterisation of the
flow [31, 65, 66, 67, 68, 69]. It was argued that
convective transport of non-Newtonian complex
fluids might be impacted in a non-trivial way by
"rearrangements" of the mesoscopic constituents at
small scales, but unfortunately, due to the limited
resolution, the available experimental data were not
conclusive [60].

The motivation of our study is that both for Newto-
nian emulsions or non-Newtonian emulsions, there
is a lack of knowledge on the characterisation of
the convective heat transfer mediated by finite-size
droplets. In the RB set-up, such characterisation can
be accomplished by considering confined systems,
with a wall-to-wall distance H of the order of a
few tens of constituents size (cfr. Fig. 1). Close
to the transition from conduction to convection,
homogeneous Newtonian systems display a steady
flow with time-independent heat flux. The emulsions
studied in this paper, instead, display a non-stationary
heat transfer flux with fluctuations that increase
with the concentration. This is accompanied by the
development of heterogeneous droplet concentrations
across the cell. Intending to characterise and under-
stand quantitatively such heat transfer mechanisms,
we studied both the associated time-average and
fluctuations. Due to the presence of the dispersed
phase, emulsions are more viscous than the under-
lying continuum phase. Hence, it comes naturally
to compare these heterogeneous two-phase system
with a single-phase (SP) fluid model with some
effective viscosity, suitably constructed from the shear
rheology of the emulsion. We will show that the heat
flux of the SP system can match the time-averaged
heat flux of the emulsions only if we introduce
a spatial averaging procedure (“coarse-graining”)
having a scale of the order of the droplet size. This
fact clearly points to the granular nature of these
complex fluids and the necessity to include it in any
quantitative characterisation of the heat transfer
mechanisms. Regarding the fluctuations, we will
study their dependency on the droplet concentrations
and also explore fluctuations from "large scales"
down to droplets scales. Again, the finite size of the
droplets is crucial in promoting the emergence of
such fluctuations, which can be remarkably enhanced
in conjunction with the non-Newtonian rheology.
Our work hinges on numerical simulations that
allow an unprecedented detailed analysis of the heat
transfer, thereby permitting to highlight both the
role of finite-size constituents and their space-time
correlations.

The paper is organised as follows: in Section 2 we
report on the tools for the numerical simulations and
the numerical set-ups used (further details can be
found in the ESI section); in Section 3 we present a

Figure 1: Numerical simulations set-up: we study the
Rayleigh-Bénard (RB) convection in two-dimensional
concentrated emulsions made of droplets (dispersed
phase, dark-yellow domains) into a continuous phase.
The emulsions are placed between two parallel walls
at fixed temperatures in y = ±H/2, while gravity
forces (buoyancy) act along the wall-to-wall direc-
tion. We focus on the convective regimes close to the
transition from conduction to convection, where the
systems display a temperature plume with a two-rolls
structure in the velocity field (black arrows repre-
sent droplets displacements during convection). We
focus on the heat transfer efficiency at fixed buoy-
ancy forces, while changing the concentration Φ0 of
the emulsions, from the dilute to the concentrated
regimes. The temperature field is shown in simulation
units.

shear-rheology characterisation of the emulsions, that
is a necessary pre-requisite to study RB thermal con-
vection; in Section 4 we present the phenomenology
on the heat transfer in RB convection at changing the
droplet concentration; in Section 5 we quantitatively
analyse the time-averaged heat flux and propose an
effective modelling for it; in Section 6 we will quanti-
tatively analyse the heat-flux fluctuations; conclusions
will be drawn in Section. 7.

2 Methods

We report the results of numerical simulations of
RB thermal convection in stabilised two-dimensional
emulsion systems. The choice of the dimensional-
ity is instrumental to properly resolve the emulsion
droplets in the simulation and achieve appropriate
statistics in a reasonable amount of time. Moreover,
for 2D systems, we can use the Lagrangian tool of
analysis developed in [70], which is not available
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presently for three dimensions. A careful inspection
of the changes induced by the dimensionality surely
requires an additional hard work that warrants fu-
ture studies. Regarding the numerical technique, we
resort to the mesoscale lattice Boltzmann method
(LBM) [71, 72]. Briefly, the model allows the sim-
ulation of two-component fluids (say A and B, with
densities ρA and ρB, respectively) undergoing phase
segregation, wherein the system can be divided into
bulk regions with the majority of one of the two com-
ponents. Coalescence of bulk domains is further inhib-
ited by the introduction of repulsive interface forces.
Thus, the system can be prepared with a number of
droplets Ndroplets (dispersed phase) inside the continu-
ous phase (cfr. Fig. 1).
The concentration of the droplets Φ0 is a tunable pa-
rameter in the preparation of the system, thus we
can explore situations ranging from dilute to denser
droplet concentrations. Φ0 is defined as the ratio of
the area of the dispersed phase over the total area,
Φ0 = Ad/At ; such a definition surmises, of course,
a sharp interface. Since we use a diffuse interface
method, we need to introduce a threshold, that is
Ad =

∫ ∫
Θ(ρA(x,y)−ρ∗)dx dy, where Θ is the Heavi-

side step function and ρ∗ is a reference value taken
as the mean density of the dispersed (A) phase eval-
uated between its values in the bulk phases inside
and outside the droplets, i.e., ρ∗ = (ρ in

A,bulk +ρout
A,bulk)/2.

Further details on the LBM used can be found in the
ESI section.
Buoyancy forces act on the emulsion. At hydrodynam-
ical scales the reference dynamical equations are the
diffuse-interface Navier-Stokes-Boussinesq equation
for the hydrodynamical field u(x,y, t) = (ux,uy)(x,y, t)
(repeated indexes are summed upon)

ρ (∂t +uk∂k)ui =

=−∂ jPi j +η0∂ j (∂iu j +∂ jui)+ραgT δiy i = x,y
(1)

where ρ is the local total density, Pi j the non-ideal
pressure tensor, η0 the dynamic viscosity of the bulk
phase 2, α the thermal expansion coefficient and g the
gravity acceleration. The temperature field T (x,y, t)
(taken as relative to some reference temperature)
obeys the advection-diffusion equation

∂tT +uk∂kT = κ∂kkT. (2)

where κ is the thermal diffusivity. The stabilised emul-
sions are placed in a confined channel, with the walls
in y=±H/2 and periodic conditions in the x-direction.
No-slip boundary conditions for the fluid are intro-
duced at the walls, whereas Dirichlet-type boundary
conditions are imposed for the temperature fields at
the walls, T (x,y=±H/2, t) =∓∆T/2=∓0.5 lbu (with
∆T = 1.0 lbu, i.e., lattice Boltzmann units). In Fig. 1

2This is the viscosity that the system would exhibit in
the presence of a homogeneous continuous phase without
droplets.

Φ0 Ndroplets Φ0 Ndroplets

0.0735 90 0.2680 284
0.1038 120 0.3322 338
0.1433 159 0.3978 392
0.1721 214 0.4775 449
0.2018 235 0.5413 496
0.2357 242

Table 1: Number of droplets Ndroplets simulated for each
concentration Φ0.

we report some pictorial views of how the system
looks like at different concentrations. In all simula-
tions, the Capillary number (Ca) and Reynolds num-
ber (Re) stay small/moderate (Ca < 10−2, Re < 102).
The software we employ for all the simulations is an
extension of an in-house developed code written in
C-CUDA. The code has been described in detail else-
where [73, 70]. Here we recall just that it exploits
at its best the computing power of modern Graph-
ics Processing Units (GPU) employing an innovative
memory access pattern. The code can run on multiple
GPUs. To that purpose, we resort to a hybrid paral-
lel programming model (based on a combination of
MPI and CUDA). The smoothness by which the ther-
mal LB component has been implemented confirms
the flexibility of the software that, besides, supports
many different boundary conditions and the chance of
simulating the presence of obstacles within the com-
putational domain [74, 75, 76].
Notice that, hereafter, all dimensional observables will
be reported in simulation units (i.e., lattice Boltzmann
units, lbu).

3 Emulsion Rheology

Before performing numerical simulations on convec-
tive emulsions at changing the concentration, it is
mandatory to perform a rheological characterisation
of the systems under study. From one side, this rheo-
logical characterisation is useful to compare our data
with available literature data (especially in the dilute
limit); from the other side, it is also instrumental to
provide a characterisation of the functional behaviour
of the dynamic viscosity as a function of Φ0, from
dilute to finite concentrations. This will constitute an
important point for the study discussed in Sec. 5.
The rheological characterisation of the emulsions is
performed via dedicated experiments in Couette cells,
where constant and opposite velocities are imposed
at the walls (uwall

x (y =±H/2, t) =±U . Given the shear
rate γ̇ = 2U/H, we measure the resulting stress Σ.
This allows us to extract the flow curves, i.e., the rela-
tion between Σ vs. γ̇. Simulations are performed by
placing the emulsions in a channel of height H ∼ 17d,
where d is the mean droplet diameter 3, and we sys-

3The mean droplet diameter d is around 24 lbu.
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Figure 2: Shear rheology of the emulsions. Panel (a):
flow curves for the emulsion systems obtained with
dedicated shear experiments (see text for details).
The concentration is varied. Panel (b): the emulsion
effective viscosity ηeff as a function of shear rate γ̇,
extracted from the flow curves in panel (a), for dif-
ferent concentrations [28]. The dark region refers to
a range of concentrations for which non-Newtonian
effects are observed. All dimensional quantities are
reported in simulation units.

tematically explore different droplet concentrations
Φ0, from very diluted to concentrated emulsions, by
varying the number of droplets Ndroplets (see Table 1).
All the emulsions analysed are pretty monodisperse
with tiny variations in the droplet area. In Fig. 2
we show the flow curves (panel (a)), and the effec-
tive viscosity (panel (b)) for various concentrations
of the emulsions. Given the flow curve data, the
effective viscosity is measured as ηeff(γ̇) = dΣ(γ̇)/dγ̇.
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Figure 3: We report the intrinsic viscosity ηr(Φ0) (cfr.
Eq. (3)) for the shear rheology data of panel (a) of
Fig. 2, along with its best polynomial fit. We also
report literature estimates for the effective viscosity,
both in a 2D and in a 3D set-up. In the inset, we
zoom-in at very low Φ0 to highlight the agreement
with [78] up to Φ0 ≈ 0.12. The dark region refers to
a range of concentrations for which non-Newtonian
effects start to emerge (cfr. Fig. 2).

At low droplet concentrations, the emulsion behaves
as a Newtonian fluid (ηeff = const), with an aug-
mented effective viscosity [77, 18]: dark region in
Fig. 2(b) (and hereafter) shows the range in which
non-Newtonian effects are observed. By focusing on
the Newtonian emulsions presenting a linear rheology,
in Fig. 3 we compare the effective viscosity extracted
from simulations with the literature data. Let us recall
that for suspensions of solid spherical particles, in the
very dilute limit (Φ0→ 0), the three-dimensional Ein-
stein relation predicted a linear growth of the relative
viscosity with Φ0 [79]; later on, G.I. Taylor proved that
linearity holds also for the relative viscosity of three-
dimensional emulsions [80] (in the small droplet de-
formation regime), i.e.,:

ηr(Φ0)≡
ηeff(Φ0)

ηsolv
= 1+[η ]0Φ0, (3)

with an intrinsic viscosity coefficient dependent on the

viscosity ratio λ as [η ]0 =
5
2 λ+1
λ+1 (which tends to 5/2,

Einstein’s coefficient for solid particles, as λ → ∞).
The measured relative viscosity is in good agreement
with Eq. (3), with [η ]0 = 7/4, as expected for an emul-
sion with unitary viscosity ratio (λ = 1), for concen-
trations up to Φ0 ≈ 0.12. The agreement is improved
upon using a 2D estimate of the effective viscosity,
that we have extracted from the data in [78], as we
can see in the zoom-in reported in the inset. At larger
droplet concentrations, data start to deviate from di-
lute predictions. Specifically, for larger Φ0 (and up
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to Φ0 ≈ 0.35) our data agree well with Zinchenko’s
prediction for three-dimensional emulsions [81].

4 Heat transfer phenomenology

In this section, we provide an overview of the prop-
erties of heat transfer at changing the concentration,
from dilute to larger concentrations. In order to as-
sess the heat transfer properties of the emulsion, we
focus on the heat flux across the system, F , which
is the sum of a conductive and a convective part,
F = Fcond +Fconv; both can, in principle, differ in
the biphasic system, from the mono-phasic counter-
part. For our simulations, the two fluids have the
same thermal diffusivity and no interfacial thermal re-
sistance is supported, therefore Fcond is not affected.
An obvious effect of increasing the concentration is to
increase the system viscosity, as discussed in Sec. 3.
The increase in viscosity will result in a reduction of
the emulsion propensity to convection. Given this, a
naive expectation would be that of a monotonic decay
of the heat flux with Φ0. Actually, the phenomenol-
ogy is richer, because of the emergence of temporal
fluctuations in the heat transfer properties. This is
quantitatively elucidated in Fig. 4,where we analyse
the heat fluxes, expressed in a dimensionless form via
the Nusselt number [82, 48, 83, 84]

Nu(t) =
〈uy(x,y, t)T (x,y, t)〉x,y−κ〈∂yT (x,y, t)〉x,y

κ
∆T
H

(4)

where 〈(. . .)〉x,y denotes a space average. Nu is a pa-
rameter that quantifies the relative intensity between
convective and conductive transport. In Fig. 4(a)
we report Nu(t) for different values of Φ0, at fixed
buoyancy amplitude αg∆T = 1.86 10−5 lbu; the time
average of Nu(t) over the statistically steady-state
(〈Nu〉t) is reported in Fig. 4(b), while time-averaged
fluctuations with respect to its time average (∆Nu =

〈(Nu(t)−〈Nu〉t)2〉1/2
t ) are displayed in the inset of the

panel (b) as a function of Φ0. We observe that 〈Nu〉t
stays nearly constant for concentrations up to Φ0≈ 0.2
and then decreases when Φ0 increases, whereas the
fluctuations ∆Nu tend to increase with Φ0. In par-
ticular, in the limit Φ0 → 0, i.e., for a single-phase
(SP) system, the fluctuations go to zero, indicating
that the convection is stationary (dashed black line in
Fig. 4), because of a relatively low Rayleigh number,
Ra ≈ 5.3×104 [45] 4 The emergence of fluctuations
must then be interpreted as a genuine feature of the
heterogeneous system and it is ascribed to the pres-
ence of the droplet phase. Results reported in Fig. 4
represent a "large scale" characterisation of the heat

4The Rayleigh number Ra is defined as Ra = gα∆T H3

κν
,

where ν is the kinematic viscosity. It provides information
on the balance between buoyancy force and viscous friction
force, so it governs the transition from a conductive to a
convective state in an homogeneous system [50].
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Figure 4: Panel (a): Nusselt number as a function of
time t (cfr. Eq. (4)) (time shown in lbu) for differ-
ent concentrations Φ0. The magnitude of buoyancy
forces is kept fixed. We report in the x-axis a repre-
sentative time lapse where the system has reached
a statistically steady state. The dashed line repre-
sents the corresponding Nusselt number for a single-
phase (SP) system (Φ0 → 0). Panel (b): we report
the time-average of the Nusselt number 〈Nu〉t . In
the inset, we report the time-averaged fluctuations of
the Nusselt number with respect to its time average,
∆Nu = 〈(Nu(t)−〈Nu〉t)2〉1/2

t . The dark region refers
to a range of concentrations for which non-Newtonian
effects start to emerge (cfr. Fig. 2).

transfer properties of the studied emulsions, in that
they refer to a global observable, i.e. the Nusselt
number that is defined as an average over the whole
system size (cfr. Eq. (4)). Since our system is charac-
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terised by finite-size constituents, it comes naturally
to inspect properties at smaller scales, comparable to
the droplet size. Indeed, it is worth reminding that
for the thermal convection in a different soft system
(polymer solutions), it was shown that variation in
the heat flux could be understood in terms of a space-
dependent effective viscosity (due, in that case, to
the differential stretching of the polymers along with
the cell height) [85]. Inspired by this observation,
we monitored the droplet concentrations in the wall-
to-wall coordinate (y), by averaging over time and
along the mainstream flow direction (x), during the
convection state. The resulting concentration profiles
φ0(y) are reported in Fig. 5. We observe, indeed, they
are not constant and exhibit a height-varying modula-
tion, especially from low to moderate concentrations
Φ0. Importantly, the modulation with the height of
concentration profiles shows a variation on the scale
of the droplet, i.e. when the coordinate y changes
by an amount of the order of d. The development of
these non-homogeneous concentration profiles might
be due to multiple factors, such as droplet migration
induced by a non-uniform shear field [86, 87, 88]
(owing to the large scale circulation of convection) or
droplet depletion due to interactions with the walls. A
precise description disentangling these various mecha-
nisms and discriminating which one contributes most
lies beyond the scope of the present work. Here,
just take the emergence of such profiles as an empir-
ical fact. This said it is nevertheless clear that the
non-homogeneity relies on the fact that droplets are
transported by the flow. Large Φ0 implies reduced mo-
bility of the droplets, which is reflected in a relative

suppression of profile modulation.
Summarising, emulsions with different droplet con-
centrations exhibit heterogeneous profiles and a time-
averaged Nusselt number that decreases (for fixed
buoyancy forces) upon increasing the droplet concen-
tration. This decrease in the Nusselt number goes
along with increasing fluctuations in the heat flux.
In the next sections, we will inspect more quantita-
tively both the decrease in the time-averaged Nusselt
number and the emergence of fluctuations, starting
from the "large scale" observations of Fig. 4 down to
smaller scales, comparable to the droplet size.

5 Time-Averaged Nusselt Num-
ber: effective modelling at the
droplet scale

To delve deeper into the behaviour of 〈Nu〉t with in-
creasing droplet concentration, the natural question
we asked is whether one might capture it employ-
ing a continuum approach. For this purpose, we ran
simulations with the SP system with a homogeneous
viscosity equal to the shear viscosity that we have
measured (cfr. Fig. 2(b)), i.e.,

η
SP
rheo(Φ0) = ηeff(Φ0). (5)

This is possible within our numerical approach, by
changing the relaxation time of the lattice Boltzmann
equation in such a way that the corresponding dy-
namic viscosity (cfr. Eq. (13) in ESI section) matches
the measured shear viscosity homogeneously through-
out the system. Notice that SP systems constructed
in that way exhibit a Nusselt number independent of
time, for the reasons posited before. Moreover, we no-
tice that this study is well-posed only for Newtonian
emulsions, where the effective viscosity is a function
of the concentration only. For non-Newtonian emul-
sions, one should come up with some refined proposal
including the shear rate dependency of the effective
viscosity. Therefore, hereafter we will limit the dis-
cussion to Newtonian emulsions. Generalisations to
Non-Newtonian emulsions will be discussed at the
end of this section and in Section 6.
In Fig. 6 we report the time-averaged Nusselt num-

ber 〈Nu〉t as a function of the droplet concentration
Φ0 for both the heterogeneous emulsions and the
homogeneous SP system. In the limit Φ0 → 0 the
time-averaged Nusselt numbers tend to coincide, as
they should. At increasing Φ0, the Nusselt number
measured in the SP simulations decreases monoton-
ically, as expected for an increasingly viscous sys-
tem. However, we observe a mismatch with the be-
haviour of 〈Nu〉t in the emulsion case, which becomes
particularly evident (with deviations up to roughly
10%) for intermediate values of the concentration
and then decreases again at larger Φ0. The assump-
tion of a global effective viscosity equal to the one ex-
tracted from the shear rheology is clearly not enough.

7



 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

0 0.1 0.2 0.3 0.4

<
N

u
>

t

Φ0

Emulsion

η
SP

rheo (Φ0)

SP, Φ0= 0.0

−0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4

δ Nu

Figure 6: The time-averaged Nusselt number 〈Nu〉t as
a function of the concentration Φ0 for two different
cases: emulsion (purple circles) and a single-phase
system (SP, brown triangles) with a dynamic viscosity
that homogeneously matches the rheological viscosity
(cfr. Eq. (5) and Fig. 2). The dark region refers to
a range of concentrations for which non-Newtonian
effects start to emerge (cfr. Fig. 2). The comparison,
exalted by δNu = 〈Nu〉t −NuSP

rheo, is given in the inset.

We then inspected whether a local effective viscosity
should be considered in our case as well, due to a
non-homogeneous droplet concentration distribution
across the system, as shown in Fig. 5. To account
for this aspect in the SP fluid model, we promote the
effective viscosity to be a local quantity as well, i.e.,

η
SP
0 (y) = f (φ0(y)), (6)

where the function corresponds to the fit displayed
in Fig. 3 (black solid line). By analysing the Nusselt
number obtained from SP simulations with the pre-
scription (6), we observed that the emulsions data
stay in between the two protocols (see Fig. 1 in the
ESI section): while the protocol (5) underestimates
the emulsions data, the new protocol (6) overesti-
mates them. A possible explanation for the deviations
observed in comparing the emulsions data with the
protocol (6) can be grasped by looking again at the
concentration profiles in Fig. 5: the latter displays
a bulk profile with an overshooting occurring in the
wall-proximal regions whose extension is comparable
to 1−2 droplet sizes (droplet layering). This means
that forcing the continuum model SP fluid to vary its
effective viscosity over such small scales may have a
non-trivial effect on the system dynamics. To over-
come this problem, we propose to generalise the local
effective viscosity (6) as follows:

η
SP
Λ (y) = f (φΛ(y)), (7)
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Figure 7: The time-averaged Nusselt number 〈Nu〉t as
a function of concentration Φ0 for emulsion (purple
circles) and a single-phase system (SP) with different
choices of the viscosity ηSP (other colours/symbols).
We report data based on ηSP

rheo(Φ0) from protocol
Eq. (5) and data based on ηSP

Λ
(y) from protocol Eq. (7)

using various resolutions of the coarse-graining pa-
rameter Λ (cfr. Eq. (8)). The dark region refers to
a range of concentrations for which non-Newtonian
effects start to emerge (cfr. Fig. 2).

where φΛ(y) is a coarse-grained (over a size Λ) concen-
tration profile defined as:

φΛ(y) =
1
Λ

∫ y+Λ/2

y−Λ/2
φ0(y′)dy′. (8)

Notice that for Λ = 0 the original concentration profile
φ0(y) is recovered, by definition. Evidence of oscilla-
tions of ηSP

Λ
(y) = f (φΛ(y)) near the walls, stemming

from the droplet layering, can be seen in Fig. 2 in the
ESI section. These oscillations are smoothed out by
the coarse-graining procedure, highlighting that the
relative variation of the effective viscosity is actually
more important for the lower concentrations (Fig. 2
in the ESI section). Simulating the SP fluid with the
choice (7) for the effective viscosity, indeed, yields the
best agreement with the phenomenology of the emul-
sion in terms of the time-averaged heat flux 〈Nu〉t , as
shown in Fig. 7, for Λ = 3d (we also plot the data for
Λ→ ∞ which, not surprisingly, basically overlap with
those for ηSP

rheo(Φ0)).
As mentioned above, the results obtained so far refer
to a fixed buoyancy amplitude αg∆T = 1.86 10−5 lbu
(i.e., at fixed Rayleigh number Ra). It appears then
natural to investigate the impact of changing the value
of αg∆T on the protocol (7). To this aim, we have
performed additional numerical simulations at dif-
ferent buoyancy amplitude αg∆T and compared the
time-averaged Nusselt number 〈Nu〉t obtained from
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Figure 8: The time-averaged Nusselt number 〈Nu〉t
as a function of the concentration Φ0: comparison
between emulsion (purple points: full circles, empty
circles, daggers) and single-phase system (SP, orange
points: full triangles, empty triangles, times symbols)
with a resolution of coarse-graining process Λ = 3d,
for different applied buoyancy forces αg in Eq. (1).
The buoyancy amplitudes are reported in simulation
units. The dark region refers to a range of concentra-
tions for which non-Newtonian effects start to emerge
(cfr. Fig. 2).

simulations of the emulsions at changing Φ0, with
that of SP system with viscosity given by (7). Re-
sults are reported in Fig. 8, which displays a sat-
isfactory agreement between the numerical simula-
tions and protocol (7) for αg∆T spanning roughly an
order of magnitude, from αg∆T = 6.21 10−6 lbu to
αg∆T = 1.86 10−5 lbu. Because of the coalescence of
the droplets, larger values of the buoyancy amplitude
αg∆T could not be explored in detail.
Before closing this section, we stress that the proto-
col (7) has been studied in the framework of Newto-
nian emulsions, where the effective viscosity ηeff(Φ0)
is independent of the shear rate (cfr. Fig. 2). For
non-Newtonian systems, it is necessary to consider
the extra complication of a shear-dependent viscosity
(see also Section 6 and Fig. 3 in the ESI section). All
the attempts that we made in this direction failed in
reproducing the time-averaged Nusselt number: some
quantitative indications on this point will be shown
in the next section. We will also return on this issue
in the conclusions.

Type 〈Nu〉t αg∆T
NNE (Φ0 = 0.6373) 2.0 5.96 10−6

NE (Φ0 = 0.2680) 2.0 6.65 10−7

NNE (Φ0 = 0.6373) 2.7 8.71 10−6

NE (Φ0 = 0.2680) 2.7 1.42 10−6

SPloc 2.7 3.51 10−6

Table 2: We report the buoyancy amplitudes neces-
sary to obtain the same time-averaged Nusselt number
〈Nu〉t (see text for more details). The buoyancy am-
plitudes are reported in simulation units.

6 Anomalous heat transfer fluctu-
ations: from large scales to the
droplet scale

In this section, we study heat transfer fluctuations
highlighting the difference between the cases of low
and high concentration of droplets. To this aim, we
decided to proceed with a side-by-side comparison be-
tween a diluted Newtonian emulsion (NE, hereafter)
with Φ0 = 0.2680 and a concentrated non-Newtonian
emulsion (NNE, hereafter). The droplet concentration
of the NNE is the largest one for which we do not ob-
serve coalescence events during the time dynamics 5

Moreover, in order to maximise the Φ0 for the NNE,
we found that a slightly wider confinement H/d ∼ 25
allowed to increase the droplet concentration while
retaining the possibility to simulate stable convective
states. The chosen Φ0 for the NNE is Φ0 = 0.6373, see
Fig. 9(a) to get a pictorial view of how the highly con-
centrated system looks like. In Fig. 3 in the ESI section
we report the flow curves from shear rheology mea-
surements on the two types of emulsion. Notice that
the droplet concentration for the NNE is large enough
to detect "incipient" yield stress behaviour [33]. The
buoyancy amplitude, αg∆T , is chosen in such a way
that the system sustains a convective state, close to
the transition from conduction to convection. For the
analysis we are going to present, it has been necessary
to track droplets trajectories and analyse the correla-
tion functions of their displacements. This is possible
in our code since it is equipped with a Lagrangian tool
of analysis, which allows keeping track of the vectorial
displacement of all droplets di(t) (i = 1...Ndroplets) at all
times (cfr. Fig. 9(a)). From the Lagrangian droplets
displacement, we construct the corresponding Eule-
rian quantity d(x,y, t) by considering - for each point
(x,y) at a given time t - all droplets displacements
that are near that point at that time (cfr. Fig. 9(b)).
The vectorial displacement d(x,y, t) can be averaged
in time (〈d(x,y, t)〉t) and fluctuations with respect to

5For the sake of a fair comparison between NNE and NE,
we decided not to consider larger concentrations.
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Figure 9: Panel (a): pictorial view of a non-Newtonian emulsion (NNE, Φ0 = 0.6373) with the vectorial
Lagrangian droplets displacements (black arrows). Starting from the Eulerian droplets displacements d(x,y, t)
(see panel (b) for a zoom), we construct the associated fluctuations with respect to its time average δd(x,y, t) =
d(x,y, t)−〈d(x,y, t)〉t (panel (c), see text for more details). All dimensional quantities are reported in simulation
units.

this time-averaged can be studied (cfr. Fig. 9(c))

δd(x,y, t) = d(x,y, t)−〈d(x,y, t)〉t . (9)

In order to address the heat transfer properties, we
focus again on the time-dependent Nusselt number
(cfr. Eq. (4)). Our initial strategy was to compare the
fluctuations in the two emulsions at the same heat
transport efficiency (i.e., same Nusselt number). The
two emulsions have different effective viscosity, with
NNE being more viscous that NE, hence they respond
differently to a given imposed buoyancy amplitude.
Therefore, we have to determine – for each emulsion–
the buoyancy amplitude necessary to obtain the de-
sired value of the time-averaged Nusselt number 〈Nu〉t
(see Table 2 for details). Specifically, it is necessary to
impose a larger buoyancy in the dynamical evolution
(cfr. Eq. (1)) if the emulsion is more concentrated.

In doing so, a first marked difference emerges in the
comparison between NE and NNE. While NE can flow
with a Nusselt number that is only mildly dependent
on time, NNE shows neat and larger fluctuations in
the Nusselt number (cfr. Fig. 10). To dig deeper into
this phenomenology, we also report in Fig. 10(c) the
2D-maps of the local shear γ̇ in correspondence of a
local maximum/minimum in Nu(t) for NNE. These
maps clearly show the coexistence of spatial regions,
of different extent, at very small and larger shear
rates γ̇, respectively. In other words, while in corre-
spondence of a maximum in the Nusselt number, the
system is predominantly fluidised with a little number
of small shear rates (i.e., large viscosity) regions, in
correspondence of a minimum in the Nusselt num-
ber, the reversed situation holds. We remark that for
a homogeneous Newtonian fluid at these values of
the Nusselt number the convective states are time-
independent, hence it is natural to ask where these
fluctuations come from. To get further insight into the
problem, we studied also the case of a single-phase
(SPloc) fluid with a “local” closure for the effective
dynamic viscosity. More precisely, we fitted the rhe-
ological curve of NNE displayed in Fig. 3 in the ESI
section and extracted the effective “local” viscosity

from the slope, ηeff(γ̇) = dΣ(γ̇)/dγ̇; we then ran a
numerical simulation with Eq. (1) with the so con-
structed ηeff(γ̇), however without droplets. In this
way, we are simulating a homogeneous fluid inherit-
ing the complex rheology of the emulsion via a local
relationship between the dynamic viscosity and the
local shear rate. Also in this case, for an optimal
comparison, a different buoyancy has been imposed,
such as to keep the time-averaged Nusselt number
〈Nu〉t fixed. Table 2 shows the numerical values of
the buoyancy amplitudes αg∆T used in the simula-
tions. With respect to the NNE, we remark that it is
necessary to reduce the buoyancy amplitude αg∆T
of about 60% in the SPloc case in order to obtain the
same heat transfer of the NNE. In other words, the
SPloc case does not reproduce the same time-averaged
Nusselt number 〈Nu〉t for the same buoyancy ampli-
tude of the NNE. Moreover, as shown in Fig. 10(b),
the fluid with the “local” rheology does not show any
fluctuations of Nu(t). The conclusion that we draw is
that the non-Newtonian rheology is not sufficient to
observe the neat fluctuations; rather, we must have
non-Newtonian rheology supplemented with the pres-
ence of finite-size droplets. We deemed, therefore,
appropriate to inspect this phenomenology from a
Lagrangian viewpoint, that is looking at the relevant
observables along a droplet trajectory; in particular,
inspired by Lagrangian studies of turbulent RB convec-
tion [89, 90], we focus on the droplet Nusselt number
Nu(drop)

i . The definition of this Lagrangian observable
is constructed in such a way that the global Nusselt
number Nu may be seen as the sum over the local
contributions of the single droplets, i.e.,

Nu(t) =
1

Ndroplets

Ndroplets

∑
i=1

Nu(drop)
i (t). (10)

A good candidate to satisfy Eq. (10) is the droplet
Nusselt number defined as:

Nu(drop)
i (t) =

u(i)y (t)T (i)(t)−κ(∂yT )(i)(t)
κ

∆T
H

. (11)
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Figure 10: Time behaviour of the Nusselt number (cfr. Eq. (4)) for both Newtonian (NE) and non-Newtonian
(NNE) emulsions. Panel (a): we report Nu(t) as a function of time t for a NE. The buoyancy forces are changed
to fix the time-averaged Nusselt number 〈Nu〉t (cfr. Table 2). Panel (b): same plot as panel (a) for the NNE.
We also report the time behaviour for the Nu(t) for a single-phase (SPloc) with local rheology obtained from
the flow-curve of NNE (cfr. Fig. 3 in the ESI section). Concerning the NNE case, we emphasise that the same
time-averaged Nusselt number 〈Nu〉t can be obtained from the SPloc system only by decreasing the buoyancy
amplitude (details are given in Table 2). In the ESI section we include a simulation movie to highlight the
different dynamics for NE and NNE. Panel (c): 2D-maps of the local shear γ̇(x,y) at selected times (circles in
panel (b)) for the NNE. All dimensional quantities are reported in simulation units.

where u(i)y (t) = uy(Xi(t), t), T (i)(t) = T (Xi(t), t) and
(∂yT )(i)(t) = ∂yT (Xi(t), t) are the fluid velocity, tem-
perature, and temperature gradient evaluated at the
position of the i-th droplet centre-of-mass, Xi(t) (i =
1...Ndroplets), respectively. In Fig. 11(a) we report the
PDF of the droplet Nusselt number for the numeri-
cal simulations previously analysed in Fig. 10. Here
we extract the PDF by analysing the Nusselt number
of all droplets at all times. For the sake of compari-
son, we show data with the x-axis given in units of
the standard deviation with respect to the average
value 〈Nu(drop)〉t 6. Being the SPloc simulation without
droplets, for the computation of Nu(drop)

i we took an
Eulerian viewpoint and divided the computational
domain in boxes (in number equal to Ndroplets of NNE
case) and computed Nu(drop)

i (t) for each box. The
most evident result regards the PDFs tails, shown in
Fig. 11(a): while the PDF for the NE drops to zero at
roughly 5-6 standard deviations, the PDF for the NNE
exhibits more pronounced tails, up to 10-15 standard
deviations. We have analysed the events contributing
to such fat tails and found that, in correspondence of
the “extreme” events (either in the positive or the neg-
ative tail), neat vectorial displacement fluctuations
δd (cfr. Eq. (9)) are observed. These fluctuations are
nothing but droplets rearrangements which contribute
to “boost” the thermal convection, hence providing
enhanced positive tails in the PDF of the droplet Nus-
selt number (red box in the top panel of Fig. 11(b));
rearrangements may also inhibit convective transport,
hence a contribution to the negative tail of the PDF

6The average value 〈Nu(drop)〉t is computed by consider-
ing all droplets at all times.

(blue box in the bottom panel of Fig. 11(b)). Notice
also that such “extreme” events are located within the
boundary layers. We remark that the enhancement
of the tails appears only in the presence of finite-size
droplets, whereas the SPloc model does not show such
pronounced tails, being closer to the NE case. The
analysis performed in Fig. 11 helps in further elucidat-
ing the large scale fluctuations in the Nusselt number
observed in Fig. 10. In particular, it gives some hints
on the physical mechanism that allows the system to
display the switch shown in Fig. 10(c). If the system
is almost entirely non-fluidised, it can change to a
situation where it is predominantly fluidised if non-
local correlations are active in the system. The same
holds for a system that is predominantly fluidised
and switches back to an almost entirely non-fluidised
state. Spatially extended correlated zones are also
expected by looking at the maps of δd(x,y, t) reported
in Fig. 11(b), where collective “bursts” of δd(x,y, t)
appear. In fact, in the absence of space correlations,
“bursts” of activity would be unable to propagate in
the system and trigger the switching of a substantially
large part of the system in another state. These facts
said it comes as a logical consequence to study the
observable δd(x,y, t) to better corroborate the exis-
tence of non-trivial correlations in the system. To
this aim, we first average the field δd(x,y, t) in the x-
direction, i.e., ˜δd(y, t) = 〈δd(x,y, t)〉x. The space-time
evolution of the displacement fluctuations is reported
in Fig. 12(a), where we plot the absolute value of
˜δd(y, t) in the (y, t) plane. It is seen that for the NNE

the displacement fluctuations depart from zero coher-
ently in extended space regions, predominantly close
to the boundaries. Such space coherence persists for
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Figure 11: Panel (a): Log-Lin probability distribution
function (PDF) of the droplet Nusselt number (cfr.
Eq. (11)) for simulations reported in Fig. 10 (see text
for details). To obtain the statistics of the droplet
Nusselt number, we consider the observable (11) and
we analyse its statistical properties for all the droplets
and for all times. It is shown in units of the standard
deviation with respect to the average value 〈Nu(drop)〉t .
Panel (b): we report snapshots of vectorial displace-
ment fluctuations (cfr. Eq. (9)), where it is possible to
observe those events that contribute to positive (top
red panel) and negative (bottom blue panel) tails of
the PDF of the NNE.

some finite time. This is in marked contrast with
the observations for the NE, where the space-time
coherence is visibly lost. Finally, to unveil more quan-
titatively the difference in space correlations between
NE and NNE, we have computed the spatial correla-
tion function C(r). To this aim, we have adapted the
definitions of previous literature studies [91, 92, 93]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

−10 −5  0  5  10

C
(r

)

r/d

NE (Φ0 = 0.2680)

NNE (Φ0 = 0.6373)

(b)

Figure 12: Panel (a): space-time evolution of the
absolute value of the x-averaged displacement fluctu-
ations, ˜δd(y, t) = 〈δd(x,y, t)〉x (see text for details) in
the (y, t) plane. Panel (b): correlation function C(r) of
the absolute value of ˜δd(y, t) (cfr. Eq. (12)) for both
NE and NNE. The variable r is normalised with the
mean droplet diameter d. All dimensional quantities
are reported in simulation units.

to the absolute value of ˜δd(y, t):

C(r) =
〈| ˜δd(0, t)| | ˜δd(r, t)|〉t −〈| ˜δd(0, t)|〉t 〈| ˜δd(r, t)|〉t

σ(0)σ(r)
(12)

where −H/2 < r <+H/2 and σ(0)(σ(r)) is the stan-
dard deviation of | ˜δd(0, t)| (| ˜δd(r, t)|). In Fig. 12(b)
we show C(r) for both NE and NNE with the x-axis
normalised by the mean droplet diameter d: while
for the NE case the correlation rapidly decays to zero
within a distance of the order of single droplet di-
ameter, the NNE emulsion shows larger correlation
extending in space for a markedly larger distance.
It is worth noting that two reference cases studied
here are representative of two different “categories”
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of emulsions: a dilute, Newtonian, emulsion and a
concentrated emulsion. A continuous scan of the
volume fraction may well reveal intermediate situ-
ations, with an incipient non-Newtonian character
(manifesting itself, e.g., in the form of a weak shear-
thinning), whereby the observed phenomenology –
i.e., non-Gaussian temporal statistics of the heat flux
and enhanced space correlation – falls somehow in
between the two instances considered here.

7 Conclusions

We analysed the heat transfer properties of a model
emulsion in the Rayleigh-Bénard (RB) set-up, where
the emulsion is placed in a confined cell between two
parallel walls at different temperatures (a hot bottom
and a cold top wall). The droplet concentrations Φ0
in the emulsions have been chosen to range systemati-
cally from very dilute cases (Newtonian emulsions) to
situations with larger concentrations, where the emul-
sion behaves as a non-Newtonian fluid. We explored
the heat transfer properties while keeping the droplet
size finite, thus disclosing insights into the way a con-
tinuum picture (i.e., point-like droplets) is changed by
the finite-size effects induced by a non-zero extension
of the droplets. It is well known that the transition
to convection of a homogeneous Newtonian system
is accompanied by the onset of steady flow and time-
independent heat flux; in marked contrast, the het-
erogeneity of emulsions brings in an additional and
previously unexplored phenomenology. We find that
the heat transport efficiency (i.e., the Nusselt num-
ber, Nu) displays a non-stationary character in time at
fixed buoyancy intensity: while its time-average de-
creases at increasing Φ0, the fluctuations around the
mean value increase. Besides, due to the convective
dynamics, the emulsion develops a non-homogeneous
droplet distribution across the cell.
In the attempt of capturing the time-averaged Nus-
selt number 〈Nu〉t at changing droplet concentration
Φ0, we pursued the idea of considering a single-
phase (SP) system, equipped with a suitable choice
of viscosity ηSP that allows the SP system to display
the same heat transport efficiency of the emulsions.
Starting from the knowledge of the shear rheology
for the emulsions ηeff(Φ0), we investigated the suit-
able protocol that allows constructing ηSP. Due to
the non-homogeneous droplet distribution across the
cell, we have explored the possibility that ηSP could
acquire a space-dependence. A quantitative anal-
ysis reveals that this local viscosity must be prop-
erly supplemented with a spatial averaging proce-
dure (“coarse-graining”), over a scale that is of the
order of the droplet size. In this part, we deliber-
ately discussed results on emulsion concentrations
resulting in Newtonian responses. Indeed, further
increasing the droplet concentration would produce a
non-Newtonian emulsion with an effective viscosity
that depends on the shear-rate. Any kind of attempt

that we tried to capture the time-averaged Nusselt
number for such non-Newtonian emulsions failed.
These findings raise interesting questions as to the
precise meaning of viscosity when the assumption of
continuity breaks down and scales involved become of
the order of the size of constituents. It is known from
the literature on the rheology of highly concentrated
emulsions [65, 94, 67, 68] that non-local effects are
present at such small scales. Non-local effects impact
significantly the flow properties and they can be reab-
sorbed into a continuum formulation by introducing
an effective diffusivity in the dynamical equations for
the “fluidity” field (i.e., inverse viscosity). If and how
this is possible for the convective systems studied in
this paper, certainly deserves future scrutiny.
Heat-flux fluctuations have been studied via a sys-
tematic comparison on the heat transfer properties
between two representative emulsion concentrations:
a Newtonian emulsion (NE) exhibiting Newtonian rhe-
ology, and a non-Newtonian emulsion (NNE) exhibit-
ing shear-thinning rheology with a marked increase of
the viscosity at low shear rates. We have shown that
the presence of non-Newtonian rheology and finite-
size droplets conspire to trigger the emergence of neat
fluctuations in the Nusselt number, corresponding to
the switching between two qualitatively different sys-
tem configurations, with a predominance of fluidised
(i.e., a maximum of the Nusselt number) and non-
fluidised (i.e., a minimum of the Nusselt number)
regions. This goes together with the emergence of fat
tails in the statistics of the local Nusselt number, i.e.,
the Nusselt number at the droplet scale. Overall, the
convective phenomenology for the NNE is attributed
to the emergence of a finite correlation between dis-
tant droplets, which we have unveiled via the analysis
of the displacement fields. The correct way to cap-
ture these temporal fluctuations is not clear at this
stage: they can be measured and characterised in the
simulations with the emulsions, but the specific way
to embed them in a continuum approach warrants a
dedicated study.
Overall, all our findings suggest that any approach
aiming at a quantitative description of heat transfer in
fluid-fluid dispersions at scales comparable to the size
of the constituents must take into account the discrete
nature of such complex fluids.
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