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Abstract
Systemic liquidity risk, defined by the International Monetary Fund as “the risk of
simultaneous liquidity difficulties at multiple financial institutions,” is a key topic
in financial stability studies and macroprudential policy-making. In this context, the
complex web of interconnections of the interbank market plays the crucial role of
allowing funding liquidity shortages to propagate between financial institutions. Here,
we introduce a simple yet effective model of the interbank market in which liquidity
shortages propagate through an epidemic-like contagionmechanism on the network of
interbank loans. The model is defined by using aggregate balance sheet information of
European banks, and it exploits country and bank-specific risk features to account for
the heterogeneity of financial institutions. Moreover, in order to obtain the European-
wide topology of the interbank network, we define a block reconstruction method
based on the exchange flows between the various countries.We show that the proposed
contagion model is able to estimate systemic liquidity risk across different years and
countries. Results suggest that our effective contagion approach can be successfully
used as a viable alternative to more realistic but complicated models, which not only
require more specific balance sheet variables with high time resolution but also need
assumptions on how banks respond to liquidity shocks.
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1 Introduction

The global financial crisis of 2007/08 has shown how fundamental is the role of liq-
uidity risk in the stability of the financial system. Recently, an IMF Working Paper
on macroprudential stress testing has pointed out that liquidity shocks can rapidly
manifest and impact the whole financial system, while bank solvency concerns tend to
take more time to build up (Jobst et al. 2017). On the same line, the Bank of England
(Kapadia et al. 2012) has drawn attention to the fact that “although the failure of a
financial institution may reflect solvency concerns, it often manifests itself through
crystallization of funding liquidity risk.” Likewise, the ECB Task Force on Systemic
Liquidity (Bonner et al. 2018) has recently released a paper on the monitoring frame-
work for liquidity risk and the use of macroprudential liquidity tools in the banking
system of the European Union.

Liquidity risk can be differentiated in two main categories: funding liquidity risk
and market liquidity risk. The former is related to the fact that the bank is not able to
meet its liquidity needs in case of a funding shock, while the latter refers to the case
where an institution is not able to buy or sell securities without a huge price impact,
usually measured by the bid–ask spread. The literature has shown that while distinct
in nature, the increased reliance on wholesale bank funding has made the two liquidity
risks strongly connected, with possible feedback and spiral effect between the two,
especially during distress periods (Brunnermeier and Pedersen 2008; Cai and Thakor
2008; Brunnermeier 2009; Bonfim and Kim 2012a, b; Drehmann and Nikolaou 2013;
Jobst et al. 2017). Additionally, funding shocks may originate not only from depositor
run but from the interbank funding market as well, a clear example is the case of
Northern Rock in 2012. Importantly, seminal research papers on the propagation of
funding liquidity shocks (Cifuentes et al. 2005; Gai and Kapadia 2010; Gai et al.
2011) have shown that an initial shock affecting a single bank has the potential to
generate a domino effect that may lead to a systemic financial collapse, because of the
interconnectedness of financial institutions in the funding market.

Indeed, from the viewpoint of a single bank, it is convenient to diversify investments
and have many counterparties in order to minimize individual risk. However, as we
have learned the hard way from the global financial crisis, the resulting complex
structure of interconnections allows for the propagation and amplification of financial
shocks at the systemic level (Allen and Gale 2000; Diamond and Rajan 2001; Nier
et al. 2007; Haldane 2009; Cont et al. 2013; Gai and Kapadia 2010; Beale et al. 2011;
Haldane and May 2011; Glasserman and Young 2016). Since then, the academic
community, as well as regulators, started to adopt complex networks as underlying
models of interconnectedness between financial institutions. The advantage of the
network representation is to clearly and conveniently figure out all the institutions
involved in the market and the topological structure of their interconnections (Cocco
et al. 2009; Battiston et al. 2010; Haldane 2013; Bardoscia et al. 2017, 2021). This
has led to the rise of the “too-interconnected-to-fail” paradigm (Hüser 2015) and to
the development of network-based models for financial shocks propagation (Rochet
and Tirole 1996; Freixas et al. 2000; Eisenberg and Noe 2001; Furfine 2003; Gai et al.
2011; Upper 2011; Battiston et al. 2012; Elsinger et al. 2013; Rogers andVeraart 2013;
Thurner and Poledna 2013; Bardoscia et al. 2015; Acemoglu et al. 2015; Amini et al.
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2016; Barucca et al. 2020), while more attention has been devoted to the interplay
between the shock spreading dynamics and the underlying topology of the network
(Ramadiah et al. 2020). Note that despite its fundamental relevance inmacroprudential
policy and financial stability analysis, funding liquidity contagion has received much
less attention in the literature than market liquidity or solvency contagion.

This work belongs to this line of research, by proposing an effective model for
the propagation of liquidity shocks as an epidemic disease spreading over the inter-
bank market network (Toivanen 2013; Philippas et al. 2015; Brandi et al. 2018). To
this end, we have adapted the classical susceptible-infected (SI) compartment mod-
els of epidemiology to the framework of funding and market liquidity contagion. In
particular, we have built on the model by Brandi et al. (2018), introducing banks’
heterogeneity in contagiousness and vulnerability depending on bank-specific proper-
ties (country of jurisdiction, size, loan volumes, and liquidity resilience). Our model
only requires aggregated balance sheet exposure data, which are extracted for a set of
European banks from the Bankscope dataset (Battiston et al. 2016). As another differ-
ence from previous attempts, we have modeled the interbank network at the European
level using a block structure, with each community representing the internal market
of a country and intra-community relations representing cross-border claims. Since
interbank network data are typically privacy-protected and thus not available, we have
employed a physics-inspired reconstruction method (Cimini et al. 2015; Squartini
et al. 2018) that takes as input the aggregated balance sheet exposure data (again pro-
vided by Bankscope). We have developed a new improved technique to generate block
networks, by imposing as additional constraints the aggregate cross-border banking
claims that we extract from the Bank of International Settlement database.

The aim of the model is to assess systemic liquidity risk, defined by the IMF
(Monetary and Capital Markets Department 2011) as “the risk of simultaneous liq-
uidity difficulties at multiple financial institutions.” In a nutshell, model simulations
for the time period 2006–2013 confirm that for the European interbank market, sys-
temic funding liquidity risk started to build up during the global financial crisis but
escalated in particular during the European sovereign debt crisis. We remark that our
framework is to all effects an effective model, based on i) a simplification of liquidity
shocks dynamics using a contagion process, and ii) an ensemble representation of the
underlying interbank network. Both these ingredients require only aggregate balance
sheet information, as well as a few model assumptions and parameters, similarly to,
e.g., the approaches by Eisenberg and Noe (2001) and Battiston et al. (2012) that deal
with solvency contagion. Data requirement in particular is indeed a major advantage
of our model with respect to more sophisticated approaches (Krause and Giansante
2012; Manna and Schiavone 2012; Aldasoro et al. 2017; Halaj 2018; Smaga et al.
2018; Teply and Klinger 2019; Cont et al. 2020), which require not only more spe-
cific balance sheet variables (for instance, exposures split according to the seniority or
type of contract—repurchase agreements, derivatives, CDS, and so on) with high time
resolution, but also several assumptions to define an agent-based response of banks to
shocks.

Let us also stress that the proposedmodel is intended tomeasure systemic risk in the
market at a given time stemming from the structure of banks’ balance sheet and of the
interbank network, regardless of whether or not a liquidity crisis occurred at that time.
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Wedo not aim at predicting the dynamics of a possible crisis unfolding in the interbank
market, for twomain reasons: i)we cannot predictwhen andwhere an exogenous shock
would hit the market, and if its size would trigger a chain of contagion; ii) the model
does not include the possibility that banks reallocate assets nor of external interventions
by central banks or governments, which instead happen in reality reducing liquidity
problems and thus contagion. Instead our model is appropriate for measuring potential
losses in a worst-case scenario, similarly to regulatory stress tests.

The rest of the paper is structured as follows. Section 2 introduces the epidemic-like
liquidity contagion processes. Section 3 illustrates the data used to inform the model,
and Sect. 4 presents the network reconstruction method. Section 5 contains the results
of both the reconstruction procedure and of the liquidity-driven dynamics. Section 6
is devoted to final remarks and conclusions.

2 Liquidity contagionmodel

The idea of using an epidemiological model to describe financial contagion derives
from the conceptual similarity between the diffusion of a disease in a population
and the spreading of financial losses within a market. As we know, in both cases, the
process is heavily influenced by the topology of the underlying network of connections
(Pastor-Satorras et al. 2015; Bardoscia et al. 2021). Adapting the toolkit of epidemic
modeling to finance ultimately means assuming that financial shocks propagate as
an epidemic disease over the interbank market. There are already a few studies in
the literature that use this approach to model credit-driven (Toivanen 2013; Philippas
et al. 2015) or liquidity-driven (Brandi et al. 2018) contagion. In this work, we focus
on contagion due to banks’ liquidity hoarding causing liquidity shortages to their
counterparties. We build on the model by Brandi et al. (2018), further enhancing it by
considering banks’ heterogeneity. Indeed, each bank has a different financial structure
and it operates in a specific country; both features are important in order to determine
the bank’s riskiness and vulnerability to financial contagion. Before introducing the
detailedmodel formulation, it is useful to explain how losses can spread in the interbank
market.

The primary function of the interbank market is to allow banks to cope with liquid-
ity fluctuations by quickly getting funds through interbank lending (Iori et al. 2006;
Finger et al. 2013; Gabbi et al. 2015). Such borrowed liquidity allows these banks
to temporarily meet reserve requirements without having to sell their illiquid assets.
While the typical duration of these loans is overnight (meaning that the borrower
must repay the lender at the start of the next business day), usually banks’ liquidity
shortages last longer than 1day, so these overnight loans are rolled-over the day after.
This mechanism generates roll-over risk: when for some reason a bank cannot find
all the liquidity needed in the interbank market, it will stop lending to other banks, in
turn causing further funding shortages. Additionally, distressed banks may be forced
to sell their assets; large volumes of illiquid assets sales (the so-called fire sales) may
then trigger further losses and sales, in a downward spiral of assets price (Diamond
and Rajan 2011; Cont and Wagalath 2016). Besides, if other banks perceive these or
other financial turmoils, they may start liquidity hoarding (particularly toward banks
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Fig. 1 Channels of liquidity risk in the interbank funding market. Source: Bank of England (Kapadia et al.
2012)

perceived as unhealthy) due to lack of trust and fear of contagion (Brunnermeier 2009;
May and Arinaminpathy 2009). All these mechanisms can induce subsequent waves
of liquidity shortages (Anand et al. 2012) and then to an overall reduction in bank
funding supply on the interbank market. This is precisely what happened during the
global financial crisis: the default of Lehman Brothers in 2008 triggered a chain of liq-
uidity shocks that caused amarket freeze and a liquidity drought.1 Overall, researchers
by Bank of England (Kapadia et al. 2012) identified five different channels that allow
liquidity shocks to propagate in the interbank market—see Fig. 1:

1. Reputations shocks and negative feedback loops;
2. Liquidity hoarding;
3. Asset prices depreciation (market liquidity risk);
4. Confidence contagion (run on banks similar to defaulted ones);
5. Counter-party credit risk.

The model we are proposing in the paper is based on funding liquidity risk. This
means that we do not consider credit risk (channel 5), while we do consider mar-
ket liquidity risk (channel 3) as an amplification mechanism rather than a contagion
channel.

The contagion process we present is an adaption of the SI (Susceptible-Infected)
model with two different infectious compartments, corresponding to two levels of
liquidity distress. Note that we do not consider the possibility of recovering, as we
suppose the time scale of the contagion spreading to be much shorter than the time
an infected bank would need to sort out its liquidity problems by, e.g., reallocating

1 Note that banks failures due only to losses in the interbank market have not been observed, possibly
because a lack of liquidity generates solvency issues which in turn become the cause of default, or because
of government interventions. A notable exception is the case of Northern Rock that defaulted in 2012 due
to funding liquidity cuts in the interbank market and bank run. Indeed, systemic defaults in the interbank
market seem to be possible even due to cash fluctuations alone (Smaga et al. 2018). In any event, assessing
systemic risk in the interbank market is important because of its interplay with other channels of contagion
(Hüser 2015).
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its assets.2 In other words, an infected bank remains contagious because the recovery
procedure needs longer times than the durationof the considereddynamics.Overall,we
have anEDB (Exposed-Distressed-Bankrupted) compartmentmodel,whose dynamics
proceeds in discrete time steps. At each step t , a bank can be in one of the three possible
states E, D, B. Susceptible (Exposed, E) banks are those that have obtained all the
liquidity they need from the interbank market. Infected (Distressed, D or Bankrupted,
B) banks instead are those that, due to liquidity shortages, have withdrawn some of
their interbank lending. Contagion spreads from an infected (either D or B) lender i
to an exposed (E) borrower j , since the withdrawn of i’s lending may cause liquidity
issues for j , in which case j becomes distressed (D) and contagious for its lending
counterparties. When liquidity issues become overwhelming, a bank i may turn from
the distressed (D) to bankrupted (B) state.

Brandi et al. (2018) define the probability of contagion from a distressed or
bankrupted bank i to an exposed bank j as follows:3

λi j = wi j
∑

j∈Bi
wi j

(1)

wherewi j is the amount of the loan between the lender i and the borrower j , whileBi is
the set of i’s borrowers. The economic rationale behind this contagion rate specification
is that the probability that the funding shock is transmitted is proportional to the amount
of money i lends to j with respect to i’s total interbank lending volume.

The bankruptcy rate of bank i (that is, the probability that a distressed i becomes
bankrupt) instead depends on its current liquidity provision and is defined as follows:

μi (t) =
∑

j∈Ii (t) w j i
∑

j∈Li
w j i

(2)

where Li is the set of lenders of i , while Ii (t) is the set of those lenders that are
distressed and bankrupted at time step t . μi (t) is thus the fraction of liquidity bank i
needs that was previously lent by infected banks, and sums up the volume of shocks
received by i . The underlying idea is that when liquidity losses are overwhelming,
a bank goes bankrupt since it has no possibility to reallocate its assets and absorb
quickly the losses.

Note that according to Eq. (1), the contagion rate is independent of the specific
features of the involved banks. To make the model more realistic, we assume that
liquidity shocks are more likely to originate from banks with higher liquidity risk and
operating in countrieswith amore fragile economy (Panetta et al. 2011). To incorporate

2 If such a mechanism would be of economic relevance, the model could be easily adapted to an SIS
(Susceptible-Infected-Susceptible) or SIR (Susceptible-Infected-Recovered) model, using a stochastic rate
of recovery.
3 For the sake of simplicity, we consider the same contagion rate from distressed and bankrupted banks,
but it is easy to adapt the contagion mechanism to more complex situation in which the two mechanisms
differ.
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these features in the model, we redefine the contagion rate as follows:

λ∗
i j = λ

(1−γi )

i j (3)

where γi ∈ [−1, 1] is a node-specific variable, introducing in the equation a depen-
dence on the features of the infected lender bank i . The functional form of Eq. (3)
ensures the contagion rate to be always bounded between 0 and 1 (since 0 < λi j ≤ 1
by definition). In particular, the contagion rate tends to 1 as γi → 1, while it gets
smaller as γi → −1.4 In the neutral case γi = 0, we recover the contagion rate of
Brandi et al. (2018), which we use as a benchmark model.

We define the node variable γi as a combination of a bank-specific liquidity risk
measure and a country-specific risk measure. Regarding the former, we use the fol-
lowing liquidity indicator:

Liqi = Fi
Ti − Ei

(4)

where Ti , Ei and Fi are, respectively, the values of total assets, the equity and a proxy
of banks’ liquid assets for bank i .5 This indicator is inspired by the regulatory liquidity
(coverage) ratio, or LCR, given by liquid assets over liabilities due to be repaid. As the
LCR, the larger the liquidity indicator is, the better the liquidity position of the bank.
Indeed, liquid assets are the first defense that banks have against liquidity shocks.
Instead, regarding the country-specific risk, we use as a proxy the bid–ask spread δP
of government bonds, which is a popular measure of market liquidity:

δP = BP − AP , (5)

where BP is the bid price of the 10-year government bond, defined as the highest
price that a buyer is willing to pay for the bond, while AP is the ask price, that is, the
lowest price that a seller is willing to accept in order to sell the bond. A high value
of this measure indicates lower liquidity, while a lower value signals higher liquidity
in the market. The European Central Bank has recently released a paper on systemic
liquidity (Bonner et al. 2018), stating that such a measure “shows a clear distinction
between periods of stress and periods of more benign market conditions.”

In order to combine Liqi and δP into a node variable γi defined in the interval
[−1, 1], we use the following transformation:

f (x) = x − m(x)

x + m(x)
(6)

where x is a generic variable and m(x) is the median of x . As x , we use the ratio
between the country and the liquidity risk of bank i .6 The motivation for using this

4 Notice that the effect is not symmetric and that γi > 0 has a higher impact.
5 We will use the total deposits, money market and short-term funding as a proxy.
6 Other possibilities arise in this context. One can subtract the two variables, and then apply the f (·)
transformation, or can firstly transform each variable and then use the geometric or arithmeticmean between
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ratio is to have an amplification mechanism between the country liquidity risk and
the bank liquidity structure, so that a solid bank liquidity structure would imply a
contraction of the country risk, while a fragile structure would magnify it. Overall, the
node variable γi of bank i is thus defined as:

γi = f

(
δP i

Liqi

)

(7)

where the transformation f (·) (which is symmetric around the median) allows to
discern between banks that are more contagious from banks that are less contagious
with respect to the benchmark model.

We further enrich our framework by considering a bankruptcy rate that depends on
bank’s liquidity resilience. Indeed, the transition from the distressed to the bankrupted
state depends not only on the volume of liquidity shocks received by the bank but also
on the bank’s capability to absorb these shocks. We thus redefine the bankruptcy rate
as follows:

μ∗
i (t) = μi (t)

(1−νi ) (8)

where νi ∈ [−1, 1] represents the rescaled liquidity resilience indicator of bank i . The
latter is defined as:

νi = f

(
Li

Fi

)

(9)

where Li are the interbank liabilities and Fi is the liquidity proxy of bank i . This
indicator thus quantifies the capability of a bank to absorb liquidity shocks using
liquid assets. As for the contagion rate, the default rate is amplified when νi > 0 and
decreases when νi < 0. Note that thismodel specification does not alter the asymptotic
stage of the dynamics but only the speed at which this stage is reached.

As noted in an IMF Working Paper on macroprudential stress testing (Jobst et al.
2017), “liquidity crises are partly attributable to psychological factors or confidence
effects.” As previously discussed, funding contagion can propagate from lenders to
borrowers when lenders decide to stop funding their borrowers. This can happen
not only because lenders are distressed and cannot lend liquidity, but also because
borrowers are distressed and therefore lenders perceive them as too risky investments.
While we model the former mechanism explicitly through Eq. (1), the latter is more
tricky since it requires banks to know the state of their counterparties. We therefore
consider this second mechanism as a global tendency to hoard liquidity, depending on
the health state of the whole system. This is achieved by introducing the variable θ(t),
which we call systemic risk multiplier, capturing the pressure exerted by the presence
of distressed or defaulted banks on the whole market:

θ(t) = e(t) + β∗[1 − d(t) − b(t)] = (1 + β∗)e(t) (10)

the rescaled variables, taking into account the interval in which γi should be defined. We tested for such
alternatives and the results remain qualitatively similar.
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where e(t), d(t), b(t) are the fraction of banks, respectively, in the exposed, distressed
and bankrupted state at time step t , β∗ is a tunable parameter (see Sect. 5.2.5 for further
discussion), and the last equality derives from the identity e(t) + d(t) + b(t) = 1 ∀t .
The systemic risk multiplier enters in the equation for the contagion rate, making it
dependent on the current global state of the market:7

λ+
i j (t) = λ

(1−γi )θ(t)
i j = λ

(1−γi )(1+β∗)e(t)
i j (11)

According to this equation, we have that when e(t) = e∗ ≡ (1+β∗)−1, then θ(t) = 1
and the contagion rate becomes λ∗

i j of Eq. (3). When distressed and bankrupted banks
are many (so that e(t) < e∗), then we have a lower value of θ < 1, which increases
the contagion rate and speeds up the infection spreading. Conversely, when distressed
and bankrupted banks are few (so that e(t) > e∗), then we have a higher value of
θ > 1 that corresponds to a smaller contagion rate and a slower infection spreading.

3 Data

In this section, we present the three data sources that we use in our model. In summary,
banks’ balance sheets were collected from the Bankscope dataset; countries’ bid–ask
spreads were obtained from Bloomberg; cross-border banks claims were collected
from Bank of International Settlements.

3.1 Bankscope balance sheets

Bureau Van Dijk Bankscope database contains information on banks’ balance sheets
and aggregate exposures. Here, we consider N = 97 anonymized European banks that
were publicly traded between 2006 and 20138 (Battiston et al. 2016). For these banks,
we have access to yearly values of total interbank assets, total interbank liabilities,
total assets, equities, total customer deposits, total deposits, money market, short-
term funding and derivatives, plus we know the country in which each bank is based.
Overall, these 97 banks represent nine different EU countries: Austria (AT), France
(FR), Germany (DE), Great Britain (GB), Greece (GR), Italy (IT), Portugal (PT),
Spain (ES) and Sweden (SE). Figure 2 reports the number of banks in our dataset
for each of these countries, while Fig. 3 reports the fraction of total asset, interbank
assets and interbank liabilities aggregated for each country, in two representative years
of the dataset (2007 and 2012). Notice that a higher number of banks for a specific
country does not directly translate to a higher contribution of assets and liabilities in
the market. For example, Great Britain has higher figures relative to Italy, even if it

7 It is also possible to generalize the formulation of the systemic risk multiplier θ introducing a nonlinear
transformation h(θ, φ), where h(·) is a nonlinear function, and φ represents the strength of nonlinearity
such that the feedback effect is stronger or weaker with respect to the systemic risk. We have tested different
nonlinear specifications; results are available in the electronic supplementary information.
8 We use the subset of banks for which there was no missing information and that contains a minimum of
4 banks for each represented country.
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Fig. 2 Number of banks per
each country. Source:
Bankscope database

Fig. 3 Fraction of total assets, interbank assets and liabilities per each country in the years 2007 and 2012.
Source: Bankscope database

is represented by less than half of the banks. On the contrary, Germany seems to be
under-represented in terms of total assets; this is probably due to the absence of the
biggest German banks in our dataset.

Of the different balance sheet variables collected for each bank i , interbank assets
Ai and liabilities Li are crucial to reconstruct the individual exposures between banks
(see Sect. 4 below). Additionally, these and other variables (total assets Ti , equity
Ei , liquid assets Fi ) are used to define the various bank-specific indicators we use in
our model. Figure 4a reports the liquidity indicator Liqi of Eq. (4), which together
with the bid–ask spread (see below) affects the contagion rate. This indicator is close
to one for most of the banks except four; a liquidity shock hitting these banks could
easily spread the infection to their neighbors. Figure 4b instead reports the liquidity
resilience indicator Li/Fi (the variable entering into Eq. (9)), which can speed up or
slow down the default of a bank. This indicator is consistently high for a few banks,
which thus have a very small liquidity buffer to absorb liquidity shocks.

3.2 Bloomberg bid–ask spreads

Bid and ask prices of 10-year government bonds were collected fromBloomberg.9 We
have collected end-of-the-year values for the same set of countries and time periods
of Bankscope data. The bid–ask spread of Eq. (5) is a widely adopted measure of

9 Bloomberg, “Bid and ask price of the 10-year government bonds 12/30/06 to 12/30/13.”
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(a) Banks’ liquidity indicator. (b) Banks’ liquidity resilience indicator.

Fig. 4 Liquidity indicators, 2006–2013. Source: Bankscope database

Fig. 5 Bid–ask spread of the
10-year government bonds
during the period 2006–2013.
Source: Bloomberg

market liquidity. In normal times, this spread mostly synthesizes market structural
features, while during distress periods, it becomes a responsive indicator of liquidity
tightness (market liquidity risk) (Kyle 1985; Iachini and Nobili 2016): a high spread
indicates lower liquidity, while a lower spread indicates higher liquidity in the market.
Figure 5 shows bid–ask spreads for the countries in our dataset. Some countries (the
so-called PIGS: Portugal, Italy, Spain, Greece) consistently have higher spreads than
others; banks locate in these countries suffer more from liquidity risk and they can
more likely cause a systemic event through network contagion.

3.3 BIS cross-border claims

Cross-country interbank exposures, namely the aggregate exposures between the bank-
ing sectors of pairs of countries, are obtained using the consolidated banking statistics
from the Bank for International Settlements (BIS)10. In particular, BIS data consist of
(quarterly) amounts of money that banks in country U have lent to banks in country
V , hereinafter expUV . Note that due to several missing values in the BIS dataset dur-
ing 2006–2013 for the nine EU countries we consider, we use the exposure data of
2013-Q4, which is the quarter with fewer missing values.11

10 BIS Statistics Warehouse, https://www.bis.org/statistics/index.htm.
11 We further need to impute the values for the pairs GB-GB, ES-ES, IT-AT and PT-PT. For the first three
pairs, we use the lending exposures of 2014-Q1 for GB-GB and of 2014-Q4 for ES-ES and IT-AT, while for
PT-PT, we use a value proportional to that of ES-ES (as ES and PT have proportionally similar exposures
to other countries).
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Fig. 6 Rescaled cross-country
interbank exposures (2013-Q4).
Source: BIS database

Figure 6 reports the rescaled BIS volumes defined as follows:

V OLUV = expUV
∑

U ,V expUV
(12)

This figure shows that (i) there is a strong home bias, as banks preferentially lend to
banks of the same country rather than to foreign banks, and (ii) there is a large hetero-
geneity of foreign exposures among countries. As explained in the following section,
we will incorporate countries’ preferential lending in the network reconstruction pro-
cedure, so to generate a network with a block structure where each block represents
the exposure between two countries.

4 Network reconstruction

In this section, we explain how we deal with the problem of missing information on
interbank networks. Indeed, data about the individual bilateral exposures in the market
(who lends to whom and how much) is typically not available because of privacy
issues. Several methods have thus been proposed to infer the network structure from
the publicly available information, that is, the aggregated balance sheet variables—see
Squartini et al. (2018) and Anand et al. (2018) for recent reviews of the topic.

4.1 Constrainedmaximum entropy and fitness model

Here, we will exploit the reconstruction methods that rely on the principle of con-
strained entropymaximization (Cimini et al. 2015). The rationale behind this approach
is to maximize the Shannon entropy, which represents our ignorance on the system,
while constraining the information that we know (in our case, the aggregate expo-
sures of each bank). In this way, we follow the recipe provided by Information Theory
and avoid making any unsupported assumption on the system (Cimini et al. 2019).
However, as additional step in order to reconstruct a realistic and sparse network con-
figuration, we need to find out how to estimate the actual number of bilateral exposures
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for each bank from its aggregate exposure volumes.12 This step is achieved assuming
a functional relationship (or at least a strong correlation) between the number of con-
nections and total exposure volume of a bank—an approach known as fitness model
(Caldarelli et al. 2002). Overall, the network reconstruction approach consists of the
two following steps: (1) infer the binary network topology (that is, the presence of
individual links) using constrained entropy maximization and fitness model, and (2)
assign weights to realized links according to balance sheet constraints. These steps
are summarized as follows (see Cimini et al. (2015); Squartini et al. (2017) for full
model details).

Technically, to realize step (1), one needs to define an ensemble of directed net-
works with N nodes, and estimate the occurrence probability of each network within
the ensemble. This is done by maximizing the Shannon entropy of this probability
distribution, using as constraints the number of outgoing and incoming connections
for each node i (respectively the out-degree k→

i and in-degree k←
i of each i). These

constraints are enforced using a set of parameters known as Lagrange multipliers: for
each node i , we have a multiplier ω→

i for k→
i and a multiplier ω←

i for k←
i . At this

point, in order to obtain the numerical values of the multipliers that define the ensem-
ble, we need the empirical values of the degrees, which are unfortunately unavailable.
Therefore, we make a fitness ansatz that these multipliers are linearly proportional to
interbank assets and liabilities: these balance sheet variables are assumed to determine
the bank’s connectivity. In mathematical terms, this ansatz translates to ω→

i ∝ Ai

and ω←
i ∝ Li , where Ai and Li are the interbank assets and liabilities of bank i ,

respectively. In this way, we can express the ensemble probability that a connection is
established from lender bank i to borrower bank j simply as:

pi→ j = zAi L j

1 + zAi L j
. (13)

The value of the free parameter z is found imposing that the average connection prob-
ability between two nodes is equal to a tunable parameter ρ representing the density
of the network (defined as the number of realized connections over the maximum
number of allowed connections in the network):

〈
pi→ j

〉
i, j = ρ (14)

Step (2) then consist in the numerical generation of weighted network configura-
tions. In order to build a single network instance, for each ordered pair (i, j) of nodes,
we draw a connection i → j using Eq. (13):

ai j =
{
1 with probability pi→ j

0 otherwise
(15)

12 This step is needed because maximum entropy alone would distribute volumes as evenly as possible,
leading to an almost fully connected network structure (Cimini et al. 2015) However dense networks are
rather different from real interbank networks, both in terms of topological and systemic risk properties
(Squartini et al. 2018; Anand et al. 2018) (see also Gai and Kapadia (2010); Ramadiah et al. (2020)).
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where ai j is the (i, j) element of the binary adjacency matrix of the network. At last,
the weight wi j of the connection i → j (which is the input of the contagion model
defined above) is estimated using the following degree-corrected gravitymodel recipe:

wi→ j = z−1 + Ai L j

W
ai j (16)

where W = √
(
∑

i Ai )(
∑

i Li ) is a normalization term representing the total volume
of the market. Note that in general the market is not “closed,” as banks can have
external interbank exposures, inwhich case

∑
i Ai 
= ∑

i Li . Typically, total interbank
liabilities are larger than total interbank assets. In order to fix this issue, we introduce
in the system a ground bank13 acting as an external lender, i.e., whose total interbank
assets are given by Agb = ∑

i (Li − Ai ) ≥ 0, while Lgb = 0. By adding the ground
bank we have W = ∑

i Ai = ∑
i Li , whence Eq. (16) properly ensures that for

each bank, the ensemble averages of interbank assets and liabilities sum up to their
aggregate value as prescribed by the balance sheet:

∑

j

〈
wi→ j

〉
i, j =

∑

j

z−1 + Ai L j

W
pi→ j = Ai

∑

j

L j

W
= Ai

∑

i

〈
wi→ j

〉
i, j =

∑

i

z−1 + Ai L j

W
pi→ j = L j

∑

i

Ai

W
= L j .

Lastly, we note that the above relations are satisfied exactly only when the network
admits self-loops, namely links that connect nodes with themselves14. To get rid of
these self-loops, we employ the iterative proportional fitting algorithm (IPF) defined
on top of the degree-corrected gravity model (Squartini et al. 2017). This method
redistributes the diagonal terms

∑
i wi i over the other realized connection in the net-

work, in order to still preserve the constraints of total interbank assets and liabilities.
Thanks to the IPF, such constraints are reproduced exactly (and not only on average)
for each network in the ensemble.

In a recent paper, Anand et al. (2018) tested the performance of different reconstruc-
tion methods using a set of empirical bilateral data obtained from 25markets spanning
13 jurisdictions (including interbank networks, payment networks, networks of repur-
chase agreements, foreign exchange derivatives, credit default swaps, and equities).
They show that the method of Cimini et al. (2015) that we exploit here has a very high
performance, and is “the clear winner among ensemble methods.”

4.2 Block reconstruction

Most of the reconstruction methods proposed so far (with the exception of Hałaj and
Kok (2013)) were designed to infer the interbank market of a single jurisdiction.

13 The ground bank is not involved in the contagion dynamics.
14 Self-loops can be meaningful as internal exposures when a network node represents a bank group rather
than an individual bank.
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This happened because empirical data to test the goodness of the reconstruction are
available only at the national level (for a few countries), while aggregate data broken
down by country counterparties are available only for cross-border banking claims
(source: BIS, see Sect. 3.3). Nevertheless, we have seen that at least for Europe, banks
preferentially lends to counterparties of the same country, and this pattern results in
an international interbank network with a marked block-diagonal structure.

In this section, we thus extend the reconstruction method discussed above to repro-
duce such country-specific blocks in the network. To this end, we will exploit the
BIS volumes of inter- and intra-country exposures as additional constraints in the
reconstruction procedure. So we split banks into groups corresponding to their home
countries, and define network blocks that are reconstructed separately as illustrated
below. Consider the block UV representing the lending relationship from banks of
country U to banks of country V . From BIS data, we have expUV , the aggregate
amount of such exposures. We use this information to define the interbank assets and
liabilities of bank i in the block UV as:

Ãi
UV = Ai

(
expUV

∑
V expUV

)

(17)

L̃i
UV = Li

(
expUV

∑
U expUV

)

(18)

The rationale is that the exposures of the banks are rescaled according to the frac-
tional exposure of home country U with respect to country V . Indeed, these relations

satisfy
∑

V Ãi
UV = Ai and

∑
U L̃i

UV = Li . We can thus define the block-specific
probability matrix and weight matrix, analogously to Eqs. (13) and (16):

pUV
i→ j = z Ãi

UV
L̃ j

UV

1 + z Ãi
UV

L̃ j
UV

. (19)

wUV
i→ j = Ãi

UV
L̃ j

UV

WUV pUV
i→ j

aUV
i→ j , (20)

where WUV =
√

(
∑

i Ãi
UV

)(
∑

j L̃ j
UV

). Again the free parameter z is found by
solving the equation:

〈
pUV
i→ j

〉

i∈U , j∈V = ρ (21)

Note that imposing the same value of z in each block is the simplest assumption that
requires only the average value of the network density ρ. An alternative choice would
be to use block-specific parameters zUV found by 〈pUV

i→ j 〉i∈U , j∈V = ρUV , an approach

that however requires block-specific density values ρUV .
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5 Results

We now present the results of the model. We first focus on how banks’ bilateral expo-
sures are reconstructed from aggregated data. This is an important point to assess
since such reconstructed networks constitute the underlying topology of the conta-
gion spreading. Then, we present results of the epidemic-like contagion model under
different scenarios and parameter choices. For the sake of readability, we report in the
main text only plots related to two representative years, 2007 and 2012. Plots for other
years in the period 2006–2013 are available in the electronic supplementary materials.

5.1 Reconstructed network

In order to generate the reconstructed networkwe have to assume a density value of the
interbank network. We use ρ = 0.315 assuming a constant value over the considered
years 2006–2013. Using this density we generated, for each year, an ensemble of 1000
weighted directed networks.

Figure 7 shows the weighted adjacency matrices obtained as ensemble averages,
for the standard reconstruction method (Eqs. (13) and (16)) and for the block recon-
struction (Eqs. (19) and (20)). By sorting banks according to their size (as measured
by total assets), the network exhibits a core-periphery structure, analogously to real
interbank topology (Finger et al. 2013; Fricke and Lux 2015; Craig and Von Peter
2014). This sorting scheme however does not highlight the difference between the
two reconstruction approaches.

Figure 8 shows instead the average link density of the network, when banks are
grouped into country-specific blocks. While the overall density is fixed, block-specific
values are not uniform due to the heterogeneity of bank and country constraints16. We
can now see a very different pattern between the two reconstruction approaches17.
In the standard reconstruction, density values are much more uniform; in the block
reconstruction, the addition of country-specific constraints allows the home lending
bias to emerge.

In order to check whether the reconstruction methods are able to capture the empir-
ical block pattern of country exposures shown in Fig. 6, we show in Fig. 9 the average
rescaled cross-country volumes as of Eq. (12), computed on the reconstructed net-
works. As expected, a comparison between the figures clearly shows that countries’
preferential lending pattern is properly recovered only in the block reconstruction
method.

Finally, in order to quantify how much the reconstructed networks can reproduce
the BIS cross-border claims of Fig. 6, we compute the Pearson correlation coefficient
between the (logarithmic) rescaled cross-country volumes V OLUV as of Eq. (12),

15 This density value is compatible with typical density values of European interbank networks (Anand
et al. 2018). We obtain similar results also using lower densities.
16 We have only generated network topologies with a single weakly connected component so there are no
isolated nodes.
17 In both schemes, we observe very high values of the Sweden block density. This happens because
Swedish banks in our dataset are only four but are very big in terms of total interbank assets and liabilities;
according to both Eqs. (13) and (19), this implies a huge probability of connection among themselves.
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21027002

(a) Standard reconstruction.

21027002

(b) Reconstruction with country-block structure.

Fig. 7 Ensemble average of the reconstructed weight matrix (mil USD), for 2007 (left) and 2012 (right).
Banks are sorted by total assets of 2013. The color scale represents the weight of the exposures

computed on BIS data and on the reconstructed networks18. Results for each year,
shown in Fig. 10, confirm that the block reconstruction can effectively reproduce BIS
cross-border exposure data (the correlation coefficients range from 0.80 to 0.88), much
better than the standard reconstruction technique (whose coefficients range between
0.48 and 0.62).

Overall, results of this section show that the block reconstruction generates networks
with a much more realistic structure; in the following, we will thus run the contagion
model on these network configurations.

18 The matching between these quantities is not perfect, since we do not constrain BIS exposure but rather
single-bank exposures rescaled proportionally to these volumes. Mismatches can thus arise because the
composition of the BIS and BankScope datasets is different: BIS data are supposed to contain all banks of
the considered countries, and indeed are much larger than what we can compute from our Bankscope data,
which only has a subset of banks for each country. Further deviations from perfect correlation arise also
because of the IPF algorithm: after reconstructing the network with the block constraints, we redistribute the
weights of thematrix diagonal using a global IPF procedure that does not take into account the country-block
structure.
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21027002

(a) Standard reconstruction.

21027002

(b) Reconstruction with country-block structure.

Fig. 8 Average link density of each block, for 2007 (left) and 2012 (right). Banks are sorted by country
code

5.2 Systemic liquidity risk contagion

5.2.1 Contagion setting

As previously explained, for each year, we have generated an ensemble of 1000
weighted directed networks. For each of these networks, we run 97 stochastic SI
contagion simulations, using in each run a different bank of the network as initial
seed. The seed is put in the distressed state at the beginning of the simulation, which
then stops when either there are no more banks in the distressed state, or 50 itera-
tions of the contagion are reached. Unless stated otherwise, results reported below are
averages over the 97000 contagion dynamics simulated for each year.

5.2.2 Contagion without node variable

In this scenario, we consider the functional form of the contagion rate λ already
discussed in Brandi et al. (2018), i.e., the benchmark model of Eq. (1). Figure 11
shows the prevalence dynamics in 2007 and 2012, namely the fraction of banks that
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21027002

(a) Standard reconstruction

21027002

(b) Reconstruction with country-block structure

Fig. 9 Average lending volume of each block (rescaled as of Eq. (12)) for 2007 (left) and 2012 (right).
Banks are sorted by country code

Fig. 10 Pearson correlation
coefficient between the
(logarithm of) rescaled
cross-country exposures in BIS
data and in the reconstructed
network ensemble
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Fig. 11 Prevalence dynamics in the 2007 and 2012 for the different bank states. Mean over all the simula-
tions. Contagion rate without node variable

belong to each compartment at each time step of the contagion spreading 19. Figure11
reports also the asset-weighted prevalence, in which each bank weights according to
the fraction of total assets owned in the considered year. The pattern of the contagion
dynamics is indeed enhanced in the asset-weighted representation.

To better understand how systemic risk evolves during the years, we plot in Fig. 12
the dynamics of the bankruptcy fraction. This fraction is computed as the ratio of
bankrupted banks or, in the asset-weighted case, as the fraction of total assets owned
by bankrupted banks, at the end of the contagion. As the figure shows, there are only
small differences among the various years. The asset-weighted fraction being around
90% means that on average the bigger banks default more frequently than the smaller

19 We remark that the time step of the simulations has in principle nothing to do with real time. Indeed,
we are not trying to model the unfolding of a real crisis but rather to measure the potential systemic risk
in the market due to the structure of balance sheets and interconnections. Similarly to the Eisenberg and
Noe (2001) or the DebtRank (Battiston et al. 2012; Bardoscia et al. 2015) dynamics, iterations of the
algorithm are needed to obtain, respectively, finer refinements of the payment vectors and asset valuations
at equilibrium.
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Fig. 12 Evolution of the
bankruptcy fraction over the
period 2006–2013. Contagion
rate without node variable. Mean
over the all simulations with
95% confidence bands

(a) Fraction of defaulted banks. (b) Fraction of assets owned by defaulted
banks.

Fig. 13 Countries contribution to bankruptcy fraction. Contagion rate without node variable

ones. This is not an obvious result, since both contagion and bankruptcy rates depend
on relative exposures and thus not on the bank size. However, bigger banks have higher
connectivity (higher in- and out-degree): they are more prone to contagion because
they are involved in several contagion paths.We recall that since our model is intended
tomeasure potential systemic risk, the bankruptcy fraction is not intended to reproduce
the number of banks that defaulted in a given year. Rather, it indicates that the structure
of the market in that year had an inherent level of systemic risk capable of causing
those defaults if a crisis would have broken out and spread freely.

Figure 13a reports the decomposition of the bankruptcy fraction with respect to
the country in which banks are based. The plot shows that France, Italy and Great
Britain are the ones that contribute the most to systemic risk. Notice that countries
more represented in the dataset do not necessarily have more defaults. In fact, GB has
less than half of the Italian banks and almost 50% banks less than Germany, but its
contribution is comparable to the former and higher than the latter. This is because
GB banks are more connected to foreign banks with respect to other countries’ banks.
Moreover, Fig. 13b reports the decomposition of the asset owned by defaulted banks
for each country. In this case, GB is the main contributor, even if it is not the biggest
country in terms of assets and number of banks. This is because GB banks being on
average big and central in the interbank market. Furthermore France, even with a large
fraction of assets in defaulted banks, has an average figure per each bank smaller than
other countries which are less represented in number but with a similarly consistent
fraction of assets owned by bankrupted banks, e.g., Spain and Sweden. This result
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Fig. 14 Dynamics of the
distribution of the bankruptcy
rate μ as of Eq. (2) in 2007 and
2012. Contagion rate without
node variable. The line is the
mean, while the shaded area is
constructed by using the
box-plot whiskers’ formula, i.e.,
1st and 3rd quartiles
±1.5×IQR, where IQR is the
Interqurtile Range

suggests that in some countries big banks are the ones at higher risk because of their
centrality, while in other countries the risk is high for both central and peripheral banks
irrespective of size.

Figure 14 shows the dynamics of the average bankruptcy rate μ of Eq. (2), which
can be interpreted as a measure of the market health. For each individual bank, μ is
defined as the fraction of liquidity the bank needs that was previously lent by infected
banks. (The higher the value of μ, the larger the number of the infected lender of a
bank and thus the probability to go bankrupt.) When averaged over the market, this
rate provides information on the resilience of the whole system.

5.2.3 Contagion with node variable

In this scenario, we consider the node variable in the functional form of the contagion
rate λ as for Eq. (3).20 In this way, we model heterogeneity in banks’ contagiousness,
according to individual liquidity risk stemming from balance sheet structure and home
country. Figure 15 shows the prevalence and theweighted prevalence dynamics in 2007
and 2012. With respect to the previous scenario (Fig. 11), the node variable caused a
substantial change in the prevalence pattern. In particular, systemic risk is much higher
for the unweighted case in 2012, as can be noticed by a higher fraction of bankrupted
than healthy banks.

The evolution of the bankruptcy fraction over the years, shown in Fig. 16, is likewise
very different from the benchmark case without node variable (Fig. 12). In particular
the bankruptcy fraction, taken as a proxy of liquidity systemic risk, is much less
constant over time, with a substantial increase in correspondence of the European
sovereign debt crisis of 2011 (rather than of the global financial crisis of 2007–2008).
This outcome can be attributed to the distribution of the node variable, reported in
Fig. 17 21. Starting from 2008, the node variables on averagemoved upward to positive
values (except for all GB and some DE banks), consequently increasing the contagion
rate (mostly relevant for highly connected banks). After 2011, the bankruptcy fraction

20 We remark that the transformation of Eq. (6) is applied for all the variables in the model over the whole
time span of the dataset. Implementing the transformation separately for each year would erase the dynamics
of the variables over time.
21 Note that the individual contribution of the two components to the node variable is not equivalent: The
country term, having stronger fluctuations over the years, drives the dynamic of the liquidity risk, while the
bank component provides corrections that magnify or reduce the liquidity risk indicator.
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Fig. 15 Prevalence dynamics in the 2007 and 2012 for the different bank states. Mean over all the simula-
tions. Contagion rate with node variable

Fig. 16 Evolution of the
bankruptcy fraction over the
period 2006–2013. Contagion
rate with node variable. Mean
over the all simulations with
95% confidence bands

decreased in 2012, probably due to the ECB forward guidance pursued in that year to
counteract the European sovereign debt crisis.

Figure 18a further shows the contribution of the various countries to the bankruptcy
fraction. We can see that Italian banks provide the highest contribution to the potential
systemic risk. This happens because banks operating in this country have both a high
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Fig. 17 Node variable γ as of
Eq. (7), 2006–2013

(a) Fraction of defaulted banks.
(b) Fraction of assets owned by defaulted
banks.

Fig. 18 Countries contribution to bankruptcy fraction. Contagion rate with node variable

liquidity risk and a lot of interconnections, with domestic as well as foreign banks.
Also France bears a large share of systemic risk, due to French banks having many
links with risky banks. However, if we analyze the average risk contribution per-bank
in each country (i.e., the share of bankruptcy fraction divided by the number of banks
in the country), we find that Spain and Sweden are the riskiest countries, bearing
a non-negligible fraction of systemic risk stemming from a small number of banks.
On the contrary, with respect to the benchmark model, the contribution of GB banks
is reduced. This happens because these banks have low liquidity risk. From what
concerns the assets of defaulted banks decomposed by country, shown in Fig. 18b,
similarly to the benchmark model, GB is the country with the highest share: even if
not all the GB banks default, the ones which do are the biggest ones. Conversely for
France, even if more banks default, these banks are of smaller size on average.

Moving further, Fig. 19 shows the dynamics of the bankruptcy rate μ of Eq. (2),
compared with the benchmark model of Fig. 14. We notice that during the simulation
dynamics, such rate is higher for the benchmark model in 2007 but in 2012 the order is
reversed. Thus, in 2012, the node variable speeds up the convergence of the dynamics:
this can be due to more connected and riskier banks becoming more likely to default.
Additionally, for both years, the width of the distribution increases: the bankruptcy
rate is more heterogeneous across banks.

Overall, the node variables introduce heterogeneity in the model and as we have
seen leading to results that aremore in linewith our expectations.We can conclude that
both topology and country-bank features matters for a proper assessment of systemic
liquidity risk.
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Fig. 19 Dynamics of the distribution of the bankruptcy rate μ of Eq. (2) in 2007 and 2012. Contagion with
node variable (NV) as compared to the benchmark model (BM). Line and shaded area as in Fig. 14

5.2.4 Contagion and bankruptcy rates with node variable

In this scenario, we consider the liquidity resilience indicator in the functional form
of the bankruptcy rate μ as of Eq. (8). In this way, the spontaneous transition from
the distressed state d to the bankrupted state b is also dependent on nodes’ feature
as banks’ interbank liquidity resilience of Eq. (9). For long enough simulations, the
systemic risk would result to be equal since without a recovery mechanism, distressed
banks are set to remain in the distress compartment or to default and this node variable
would only accelerate or decelerate the bankruptcies. For this reason, showing the
systemic liquidity risk would not carry any additional information. What is important
though, is not only the final state of the simulation but also its speed to convergence. In
fact, if a policymaker is able to monitor a distress situation, it would intervene timely.
For this reason, it is of crucial importance to understand if liquidity resilience of
some banks (in topologically relevant positions) can indeed slow down the contagion
process. If it is the case, a central bank would operate on banks which can help to stop
the contagion rather than injecting liquidity directly tomore central ormore vulnerable
banks. To see if we have any effect by the liquidity resilience indicator, we compare
the dynamics of the average bankruptcy rate μ before and after the introduction of
the resilience indicator. The results are reported in Fig. 20. As it is possible to notice,
the mean dynamic is almost the same. This is not unexpected. In fact, the resilience
indicator is constructed to have a neutral median; hence, the central tendency should
be quite similar. What is important however, is the variability, i.e., the heterogeneity,
in the speed of the bankruptcy rate, especially in the initial time steps of the contagion.
What we can notice, in fact, is that the variability in the scenario with the resilience
indicator is higher in the initial time steps for both the years considered. From an
economic viewpoint, even if the difference between the two curves is not huge in
absolute terms when we look at the mean levels, focusing on heterogeneity of speed
of bankruptcy can make the difference when preventing an additional bank to fail that
can generate a domino effect is vital.22

22 For the sake of completeness, a figure showing the deviation between the two different bankruptcy rate
scenarios for all the banks is reported in the electronic supplementary material.
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Fig. 20 Dynamics of the average bankruptcy rate μ. The line-square line μ(NV ) refers to the model with
node variable in the contagion rate, while the line-cross line refers toμ∗, the model with liquidity resilience
in the bankruptcy rate defined in Eq. (8). Line and shaded area as in Fig. 14

5.2.5 Contagion and bankruptcy rates with node variable and confidence dynamics

In this scenario, we employ the node variables in both the contagion and the bankruptcy
rate; in addition, the contagion rate has a time-dependent confidence multiplier which
makes the contagion rate intrinsically dynamic. In particular, the liquidity resilience
indicator enters in the functional form of the bankruptcy rate μ∗ as of Eq. (8), while
the systemic risk multiplier θ enters the dynamic of the contagion rate λ+ as of Eq.
(11).

The parameter θ , as described in Eq. (10), measures the health state of the system
at each iteration and modifies the contagion rate accordingly. When the fraction of
distressed and bankrupted banks grows, the fear of contagion and the lack of confi-
dence increase in the interbank market. The consequence is that distressed banks are
more likely to withdraw their lending, thus effectively increasing the contagion rate.
As defined in Eq. (11), this “psychological” effect translates into an increase of the
contagion rate once the threshold e∗ = (1+ β∗)−1 is reached: λ+ > λ∗ when e < e∗.
In this context, the parameter β∗ ∈ (0, 1) determines the tipping point e∗ 23: a higher
value of β∗ corresponds to a lower threshold e∗ and vice versa.

Figure 21 shows in this scenario the bankruptcy fraction dynamics for different β∗
specifications 24. First of all, the peak in correspondence of the Euro sovereign debt
crisis of 2011 is evident for any value of β∗. With respect to the previous scenario λ∗
(same of Fig. 16), the presence of the parameter θ has a strong impact on the dynamics.
We can identify three regimes: slow-reversal (β∗ ≥ 0.5), fast-reversal (β∗ = 0) and
a mixed-effect (β∗ ∈ (0, 0.5) ). For β∗ = 1, i.e., the slowest reversal case among
those we consider, the extent of the contagion decreases in every year but 2011. On

23 We set β∗ ∈ (0, 1) according to the following argument. At the beginning of the dynamics, e � 1. If
β∗ = 1, we have θ � 1 and thus a much smaller contagion than in the benchmark model, even when
e decreases: the presence of distressed and defaulted banks has a negligible psychological effect on the
market. Instead, if β∗ = 0, then θ = 1 as in the benchmark model; however, as soon as e decreases, θ

becomes smaller than 1 and contagion is much higher than in the benchmarkmodel: distressed and defaulted
banks have a very strong psychological effect even if most of the banks are healthy. A reasonable value for
β∗ should therefore be in the range (0, 1), with small values having a stronger behavioral effect.
24 We show the results for different values of β∗. Plots related to the nonlinear specification of the systemic
risk multiplier are available in the electronic supplementary materials.
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Fig. 21 Evolution of the bankruptcy fraction over the period 2006–2013. Contagion rate with node variable
and confidence dynamics. Bankruptcy rate with liquidity risk multiplier. Mean over the all simulations with
95% confidence bands. On the left, the fraction of bankrupted banks at the end of the infection; on the right,
the fraction of total assets owned by bankrupted banks at the end of the infection

Fig. 22 Dynamics of the distribution of the bankruptcy rate μ∗ of Eq. (8) in 2007 and 2012 for different
β∗ specifications. Mean over the all simulations with 95% confidence bands

the contrary, for very low values of β∗, the contagion is more severe and more banks
default with respect to the static contagion rate λ∗. These additional failures however
concern mainly the small banks, as can be seen by the smaller difference of the share
of assets owned by bankrupted banks (right panel). In between, the mixed-effect cases
are more interesting. Indeed, these cases are more credible both ex-ante from an
economical point of view and ex-post from the results we get.

We finally show in Fig. 22 the bankruptcy rate μ∗ for different β∗ specifications.
While μ∗ does not depend directly on θ(t), the bankruptcy rate grows as the number
of distressed lenders increases, and thus the effect of β∗ on μ∗ is analogous to the
effect of β∗ on the contagion rate. In 2007, the bankruptcy rate is rather flat for the
slow-reversal specifications, while the fast-reversal case is very similar to the scenario
without confidence contagion (λ∗); mixed-effect specifications fall between these two
regimes. In 2012, the dynamic of the bankruptcy rate for themixed-effect specifications
is much more interesting. For early stages of the simulation, we observe a default rate
that is smaller than the rate of the no confidence contagion case; however, this rate
grows at a faster pace, and thus after some simulation steps it becomes larger than the
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reference case λ∗: at the end of the simulations there are approximately 15% more
defaults. This behavior suggests that contagion due to psychological effects has a
twofold nature: it lessens systemic risk if tackled in time; otherwise, it can lead to a
quicker systemic collapse.

6 Conclusions

In this paper, we proposed a stochastic epidemic-like model for the propagation of
(funding) liquidity risk in the European interbank market. We built on the Exposed-
Distressed-Bankrupted (EDB) contagion dynamics recently proposed by Brandi et al.
(2018), enhancing it using bank-specific features related to liquidity risk. In particular,
we used the bid–ask spread of the home country combined with liquidity indicators
to characterize the contagion dynamics of each individual bank in the interbank net-
work. Further, we employed the liquidity resilience indicator tomodel a heterogeneous
probability of bank default. Finally, we introduced a confidence contagion channel
depending on the health state of the interbank market. In order to run agent-based sim-
ulations of the model, we reconstructed the European interbank market generalizing
the degree-corrected gravity model of Cimini et al. (2015) to account for the block
structure of the system. In particular, we used data on cross-countries banking claims
to inform the reconstruction method.

We found that our reconstruction approach generates interbank networks with real-
istic country-block structures. Concerning the results of the contagion model, we
found that using bank features in the dynamics considerably improves the outcome in
terms of systemic risk assessment. Importantly, we found that the interplay of market
topology and contagion dynamics is non-trivial. For example, while Greece has the
highest (country) market liquidity indicator, the default rate of Greek banks turns out
to be less prominent, because these banks are not much connected to foreign banks as
compared to, e.g., Italian banks. Overall our results highlight that a macroprudential
policy targeted at the hubs of the interbank network (the big actors in the contagion
dynamics) can be more effective than simply injecting money in the larger or in the
more vulnerable banks.

As remarked in the introduction, our proposal represents a simple yet effective
and flexible model to assess the potential systemic risk stemming from banks’ balance
sheets and contagion driven by the interbank network structure. As such, our modeling
approach can be useful when data to inform more refined models is not available.
However, our model can be easily enriched with more parameters entering in the node
variables γ and ν, or modified by changing the functional form of the contagion and
bankruptcy rate in order to more accurately mimic specific financial mechanisms.
An important limitation concerning data is however the incompleteness of BIS cross-
country exposures:whileweused themost complete snapshot (2013Q4),more realistic
results would have been obtained from having at disposal data for each year. Another
more general limitation of our model is the absence of contagion channels due to,
e.g., credit risk and overlapping portfolios. A future step in the use of epidemic-
like models for financial contagion is thus to couple the liquidity risk dynamics with
these and other contagion channels. A model encompassing all contagion channels
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simultaneously could be implemented on a multilayer network, with spillover effects
between layers.
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