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Abstract: In this paper, we study the optimal investment and reinsurance problem of an insurance
company whose investment preferences are described via a forward dynamic exponential utility in
a regime-switching market model. Financial and actuarial frameworks are dependent since stock
prices and insurance claims vary according to a common factor given by a continuous time finite
state Markov chain. We construct the value function and we prove that it is a forward dynamic
utility. Then, we characterize the optimal investment strategy and the optimal proportional level of
reinsurance. We also perform numerical experiments and provide sensitivity analyses with respect
to some model parameters.

Keywords: forward dynamic utility; optimal investment; optimal proportional reinsurance; stochas-
tic factor-model; stochastic optimization
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1. Introduction

In this paper, we study the optimal reinsurance-investment problem in a regime-
switching model for an insurance company, whose preferences are described by forward
dynamic utilities. Under this forward-looking approach the agents can adjust their (random)
preferences over time, according to the available information. One of its advantages is that
it allows for a significant flexibility in incorporating changing market opportunities and
agents’ attitudes in a dynamically consistent manner. This means to define the forward
performance process as an adapted stochastic process parameterized by wealth and time,
and constructed “forward in time”. The pioneers of the forward investment performance
approach are the papers of Musiela and Zariphopoulou [1,2,3] (see also Aghalith [4], Chen
and Vellekoop [5] for more recent results). Given the initial utility function as input
parameter, the forward dynamic utility for an arbitrary upcoming investment horizon is
specified by means of the solution to a suitable stochastic control problem, such that the
supermartingale property holds for any admissible strategy, and the martingale property
holds along the optimal strategy. The latter, allows to derive a Hamilton–Jacobi–Bellman
(in short HJB) equation which permits to characterize the value process.

The main difference with the classical approach based on backward preferences is that
it does not require to set at the initial time a utility criterion to hold at the end of the invest-
ment horizon, say T. Under backward preferences, when entering the market, agents must
define their risk profile at the horizon time and consequently, the portfolio is built accord-
ingly and they cannot adapt it to variations in market conditions or update risk preferences.
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The property that a clearly specified risk profile can dynamically be targeted is a clear ad-
vantage of forward utility preferences. In the actuarial framework, optimal reinsurance and
investment problems have been widely investigated for different risk models and under dif-
ferent criteria, especially via expected utility maximization, ruin probability minimization
or mean-variance criteria. However, to the best of our knowledge, all these contribu-
tions only employ classical backward utilities preferences, see, e.g., Brachetta and Ceci [6],
Cao et al. [7], Ceci et al. [8], Gu et al. [9], Liu and Ma [10] and references therein. A recent
application of the forward utility approach to insurance can be found in Chong [11], where
an evaluation problem of equity-linked life insurance contracts is investigated.

The main novelty of this paper is to consider an investment-reinsurance problem in
a regime-switching market model for an insurance company whose utility preferences
are described by a forward dynamic exponential utility. The modeling framework pro-
posed by our paper takes into consideration possible dependence between financial and
insurance markets via the presence of a continuous time finite state Markov chain af-
fecting the asset price dynamics, as well as the claim arrival intensity. This additional
stochastic factor may represent some economic or geographical conditions, natural events
or pandemics, that can have a considerable impact on certain lines of business of insur-
ance companies and also affect returns of investment portfolios. The economic effects
of catastrophic events, climate changes and pandemics, as for instance the COVID-19,
on both the insurance/reinsurance business and the financial market are analyzed by a
recent, but quite rich, bunch of literature, see, e.g., Baek et al. [12], Just and Echaust [13],
Tesselaar et al. [14], Wang et al. [15]. In our paper, we address this modeling issue by assum-
ing that all these exogenous events are aggregated to create different regimes. Examples of
regime switching models in a purely financial setting can be found for instance, in Bäuerle
and Rieder [16], Mamon and Elliott [17], Sotomayor and Cadenillas [18], Zhou and Yin
[19], and more recently Altay et al. [20,21], Cretarola and Figà-Talamanca [22], where
different problems are analyzed. Although considering regime-switching risk models
related to optimal investment and reinsurance is not unusual, see, e.g., Chen et al. [23]
Jang and Kim [24], Liu et al. [25], to the best of our knowledge our contribution is the first
which accounts for forward dynamic preferences under dependence between the actuarial
and insurance framework. The insurance company can allocate its wealth among a money
market account and a risky security, and can buy a proportional reinsurance to hedge its
insurance risks. The risky asset price process follows a regime-switching constant elasticity
of variance (CEV) model. As observed in Ma et al. [26], empirical evidence suggests that the
classical CEV model represents a good alternative to stochastic volatility models to describe
the risky asset price, which turns out to be correlated with volatility. The dependence of the
coefficients on the continuous time Markov chain adds a link with the insurance modeling
framework. A strategy of the insurance consists of the retention level of a proportional
reinsurance and the amounts to be invested in the financial securities.

Applying the classical stochastic control approach based on the HJB equation, we ob-
tain an analytic construction of a forward dynamic exponential utility, see Theorem 1, and
characterize the optimal reinsurance-investment strategy in Proposition 1. Our analytical
findings are qualitatively discussed via a numerical analysis in a two-state Markov chain
model. In particular, we underline the dependence of the optimal strategy on the Markov
chain under the assumption that insurance and reinsurance premiums are calculated via
the intensity-adjusted variance principle introduced by Brachetta and Ceci [6]. We also
study the difference between the backward and the forward approach by comparing opti-
mal strategies and optimal value functions, and see how the gap varies for different values
of model parameters.

The paper is organized as follows. Section 2 introduces the mathematical framework
for the financial-insurance market model. In Section 3, we formulate the optimization
problem and construct a forward dynamic exponential utility. Section 4 characterizes the
optimal investment and reinsurance strategy. Numerical experiments and a sensitivity
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analysis are provided in Sections 5 and 6 concludes. Finally, some technical proofs are
collected in Appendix A.

2. A Regime Switching Insurance-Financial Market Model

We fix a filtered probability space (Ω,F , P;F), where F = {Ft, t ≥ 0} is a complete
and right-continuous filtration.

We introduce a continuous time Markov chain Y = {Yt, t ≥ 0} with finite state
space E = {e1, . . . , eK}, where ej, with j = 1, . . . , K, denote the standard vectors of RK. Let
Q = (qij)i,j=1,...,K be the K× K matrix representing the switching intensity. The entries of
the matrix satisfy qij ≥ 0 for all i 6= j and qii = −∑i 6=j qij. We also recall that Y admits the
following semimartingale decomposition

Yt = Y0 +
∫ t

0
QYsds + MY

t , t ≥ 0

where QYs is the matrix-vector product and MY = {MY
t , t ≥ 0} is a martingale with

respect to the natural filtration of Y. Due to the finite state nature of the Markov chain Y we
also get that, for any function f : E → R, f (Yt) = ∑K

j=1 f j1{Yt=ej}, where f j = f (ej), for all
j = 1, . . . , K. The process Y is interpreted as a common stochastic factor that affects the loss
process and the risky asset price as shown below, and hence introduces a certain mutual
dependence between the actuarial and the pure financial framework. Such behavior of
the combined financial-insurance market is, nowadays, well known. Indeed, economic
and geographical conditions, natural events or pandemics have a huge impact on certain
lines of business of insurance companies, but they also affect returns of portfolios. In this
paper, we address this modeling issue by assuming that all these exogenous events are
aggregated to create different regimes.

To describe the losses of the insurance company we introduce a Poisson process
N = {Nt, t ≥ 0}, where Nt counts the number of claims in [0, t], with stochastic intensity
given by the process {λ(t, Yt−), t ≥ 0}, where the function λ : [0,+∞)× E → (0,+∞), is
such that ∫ +∞

0
λ(t, ej)dt < ∞, (1)

for every j = 1, . . . , K, and λ(·, ej) is Borel-measurable. Notice that condition (1) implies in
particular that

E
[ ∫ +∞

0
λ(t, Yt)dt

]
≤ max

j=1,...,K

∫ +∞

0
λ(t, ej)dt < ∞.

Moreover, we observe that the intensity process {λ(t, Yt−), t ≥ 0} is F-predictable.

Remark 1. Condition (1) implies that N is non-explosive. Furthermore, the compensated process
Ñ = {Ñt, t ≥ 0}, given by

Ñt = Nt −
∫ t

0
λ(s, Ys−)ds, t ≥ 0,

is an (F, P)-martingale (see Brémaud [27] (Chapter II)).

Let {Tn}n∈N be the sequence of jump times of N, or equivalently the claim arrival times
and let {Zn}n∈N be a sequence of independent and identically distributed F0-random vari-
ables independent of N and Y. All random variables {Zn}n∈N have common continuous
distribution function with compact support Z ⊂ [0,+∞), which is denoted by F(z). For
any n ∈ N, Zn indicates the claim amount at time Tn.

The cumulative claim process C = {Ct, t ≥ 0} is given by

Ct =
Nt

∑
n=1

Zn, t ≥ 0.
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Remark 2. We can provide an equivalent representation of the claim process C in terms of its jump
measure as follows. Define

m(dt, dz) = ∑
n∈N

δ(Tn ,Zn)(dt, dz),

where δ(t,z) is the Dirac measure at point (t, z) ∈ [0,+∞)×Z ; then, we get that for every t ≥ 0

Ct =
∫ t

0

∫
Z

zm(ds, dz).

The measure m is a random counting measure with dual predictable projection ν given by

ν(dt, dz) = F(dz)λ(t, Yt−)dt.

Since the process N is non-explosive and claim amounts have compact support, it holds that

E[Ct] = E
[∫ t

0

∫
Z

zm(ds, dz)
]
= E

[∫ t

0

∫
Z

zλ(s, Ys−)F(dz)ds
]
< ∞, (2)

for every t ≥ 0. We refer to Brémaud [27] (Chapter VIII, Section 1) for further details.

The insurance company collects premiums from selling insurance contracts and buys
reinsurance contracts to share the risk that it may not be able to carry. Since the claim arrival
intensity is affected by the stochastic factor Y, following for instance [6], we assume that
both the claim premium rate and the reinsurance premium are subject to different regimes.
Precisely, the insurance gross premium is of the form a(t, Yt), for every t ≥ 0, where
a : [0,+∞)×E → [0,+∞) is a continuous function in t ≥ 0, for all j = 1, . . . , K. We consider
reinsurance contracts of proportional type, with protection level θ = {θt, t ≥ 0}, i.e., at any
time t ≥ 0, θt ∈ [0, 1] represents the percentage of losses which are covered by the reinsurer.
The insurance company pays to the reinsurer a premium at rate {b(t, Yt, θt), t ≥ 0}, for
some function b : [0,+∞)× E × [0, 1]→ [0,+∞), which is jointly continuous with respect
to (t, θ), for every ej ∈ E , with j = 1, . . . , K.

This structure for the insurance and the reinsurance premiums includes classical
premium calculation principles, as for instance, the expected value principle and the
variance premium principle, as well as recently introduced calculation principles like the
intensity-adjusted variance principle, proposed in [6]. The latter premium calculation
rule has the advantage that optimal reinsurance strategies are chosen according to the
current regime.

Insurance and reinsurance premiums are assumed to satisfy the conditions listed
below (see, e.g., [6]), that translate the classical premium properties to the case where they
depend on a Markov chain.

Assumption 1. The function b(t, ej, θ) has continuous partial derivatives
∂b(t, ej, θ)

∂θ
,

∂2b(t, ej, θ)

∂θ2 in θ ∈ [0, 1] and satisfies

(i) b(t, ej, 0) = 0, for all (t, ej) ∈ [0,+∞)× E , since the cedent does not need to pay for a null
protection;

(ii)
∂b(t, ej, θ)

∂θ
≥ 0, for all (t, ej, θ) ∈ [0,+∞)× E × [0, 1], because the premium is increasing

with respect to the protection level;
(iii) b(t, ej, 1) > a(t, ej), for all (t, ej) ∈ [0,+∞)× E , for preventing a profit without risk;

In the sequel,
∂b(t, ej, 0)

∂θ
and

∂b(t, ej, 1)
∂θ

should be intended as right and left derivatives,
respectively.
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It follows from the continuity of the functions a(t, ej) with respect to t and of the
function b(t, ej, θ) with respect to (t, θ), for all j = 1, . . . , K, and the finite state nature of the
Markov chain Y that for every t ≥ 0,

|a(t, Yt)− b(t, Yt, θt)| ≤ k(t), P−a.s.,

for some continuous function k : [0,+∞) → [0,+∞), since θt ∈ [0, 1]. In particular∫ t
0 k(s)ds < ∞, for all t ≥ 0. Moreover, the following implications hold:

E
[ ∫ t

0
b(s, Ys, θs)ds

]
≤ max

θ∈[0,1],
j=1,...,K

∫ t

0
b(s, ej, θ)ds < ∞,

for every t ≥ 0, and

E
[ ∫ t

0
a(s, Ys)ds

]
≤ max

j=1,...,K

∫ t

0
a(s, ej)ds < ∞,

for every t ≥ 0.
For any given reinsurance strategy θ, the insurance company surplus (or reserve)

process Rθ = {Rθ
t , t ≥ 0} is given by

dRθ
t = a(t, Yt)dt− b(t, Yt, θt)dt− (1− θt−)dCt, Rθ

0 = r0 > 0.

In particular, integrability conditions on insurance/reinsurance premiums imply that
the surplus process is well defined. Notice that, for every t ≥ 0,

|Rθ
t | =

∣∣∣∣∫ t

0
(a(s, Ys)ds− b(s, Ys, θs))ds−

∫ t

0
(1− θs−)dCs

∣∣∣∣
≤
∣∣∣∣∫ t

0
(a(s, Ys)ds− b(s, Ys, θs))ds

∣∣∣∣+ ∣∣∣∣∫ t

0
(1− θs−)dCs

∣∣∣∣
≤
∫ t

0
k(s)ds + Ct, P− a.s.,

and hence E
[
|Rθ

t |
]
< ∞, for every t ≥ 0, in view of (2).

The insurance company is allowed to invest part of its premiums in a financial
market where investment possibilities are given by a riskless asset with value process
B = {Bt, t ≥ 0} and a stock with price process S = {St, t ≥ 0}. We assume zero interest
rate, that is, Bt = 1 for every t ≥ 0, and that S follows a regime-switching constant elasticity
of variance (CEV) model, i.e.,

dSt = St

(
µ(Yt)dt + σ(Yt)S

β
t dWt

)
, S0 = s > 0, (3)

where −1 < β ≤ 0 is the coefficient of elasticity and W = {Wt, t ≥ 0} is a standard
F-Brownian motion independent of Y and the random measure m(dt, dz).

Specifically, we assume that the filtration F = {Ft, t ≥ 0} is the completed and
right-continuous filtration with

Ft = FW
t ∨ FY

t ∨ Fm
t ∨O,

for every t ≥ 0, where FW
t = σ{Ws, 0 ≤ s ≤ t}, FY

t = σ{Ys, 0 ≤ s ≤ t},
Fm

t = σ{m([0, s) × A), 0 ≤ s ≤ t, A ∈ B(Z)} (see, e.g., Brémaud [27] (Chapter VIII,
Equation (1.3))), with B(Z) being the Borel σ-algebra on Z , and O is the collection of
P-null sets.

The functions µ : E → R and σ : E → (0,+∞) are measurable functions representing
the appreciation rate and the volatility of the stock, respectively. We also assume that
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the diffusion term is not degenerate, that is, σ(ej) > 0 for every j = 1, . . . , K. Notice that
functions µ and σ may only take a finite number of values and therefore, they are bounded
from above and below; in particular, it holds that µ ≤ µ(Yt) ≤ µ and 0 < σ ≤ σ(Yt) ≤ σ,
for every t ≥ 0, where µ = minj=1,...,K µ(ej), µ = maxj=1,...,K µ(ej), σ = minj=1,...,K σ(ej),

σ = maxj=1,...,K σ(ej). Consequently, the ratio µ(Yt)
σ(Yt)

is also bounded from above and below
for every t ≥ 0.

Remark 3. The choice of a CEV model for the stock price process deserves a few considerations.
This model was originally introduced in the paper Cox and Ross [28] under the assumption β < 0
and extended later on to the case β > 0, see, e.g., Emanuel and MacBeth [29]. The range of the
parameter has different interpretations. For specific choices of β ∈ R the stock price dynamics
reduces to well known processes. For instance, when β = 0 and the coefficients µ and σ are constant,
we get the classical Black & Scholes model, for β = − 1

2 we end up with a Cox-Ingersoll-Ross process
and when β = −1 the process S becomes an Ornstein-Uhlenbeck process. It is therefore clear that,
depending on the values of β < 0, the process S may touch zero with positive probability in finite
time and even become negative, which is an unpleasant characteristic for modeling stock prices. On
the other hand, if β > 0 the process S may explode. Both choices for the range of β, either β < 0 or
β > 0 have advantages and drawbacks. The setting with −1 < β ≤ 0 and constant coefficients
µ and σ is studied deeply for instance in Delbaen and Shirakawa [30], where the existence of an
equivalent martingale measure is proved and considerations on absence of arbitrage are provided.
For further details we also refer to, e.g., Dias et al. [31], Heath and Schweizer [32].

3. Forward Exponential Utility Preferences

We consider the problem of an insurance company with an initial wealth x0, which
invests its surplus in the financial market outlined in Section 2 and buys a proportional
reinsurance. For every t ≥ 0, we denote by Πt the total amount of wealth invested in
the risky asset at time t, and hence Xt −Πt is the capital invested in the riskless asset at
time t. We assume that short-selling and borrowing from the bank account are allowed
and accordingly we take Πt ∈ R for every t ≥ 0. Moreover, for every t ≥ 0, let θt ∈ [0, 1]
be the dynamic retention level at time t corresponding to the reinsurance contract. We
will consider only self-financing strategies. Then, the wealth of the insurance company
associated with the investment-reinsurance strategy H = (Π, θ) = {(Πt, θt), t ≥ 0}
satisfies the following stochastic differential Equation (in short SDE)

dXH
t = dRθ

t + Πt
dSt

St
+ (XH

t −Πt)
dBt

Bt

=
{

a(t, Yt)− b(t, Yt, θt) + Πtµ(Yt)
}

dt + Πtσ(Yt)S
β
t dWt − (1− θt−)dCt, (4)

with XH
0 = x0 ≥ 0.

Remark 4. The solution of the SDE (4) is given by

XH
t =x0 +

∫ t

0
(a(s, Ys)− b(s, Ys, θs) + Πsµ(Ys))ds

+
∫ t

0
Πsσ(Ys)S

β
s dWs −

∫ t

0

∫
Z
(1− θs−)zm(ds, dz), t ≥ 0. (5)

Remark 5. Since the insurance company can borrow a potentially unlimited amount from the
bank account, the wealth process is allowed to be negative, and hence this permits us to neglect
bankruptcy. From the mathematical point of view, dealing with a negative wealth is not a problem
since we consider forward utilities of exponential type. In real life, large companies may easily have
access to large amount of liquidity. Moreover, as observed also in Schmidli [33] “... The event
of ruin almost never occurs in practice. If an insurance company observes that their surplus is
decreasing they will immediately increase their premiums. On the other hand an insurance company
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is built up on different portfolios. Ruin in one portfolio does not mean bankruptcy.” The insurance
company, in fact, can adjust premiums dynamically. This is accounted, in our model, for instance
by assuming that insurance (and reinsurance) premiums are time-dependent and chosen according
to the current regime.

We assume that the preferences of the insurance company are of exponential type but
they are specified forward in time and then, the goal of the insurance is to maximize the
expected forward utility, as explained below. As a first step, we provide the definition of
dynamic performance process.

Definition 1. Fix a normalization point t0 ≥ 0. An F-adapted process
U(x, t0) = {Ut(x, t0), t ≥ t0} is a dynamic performance process (normalized at t0) if

(a) the function x → Ut(x, t0) is increasing and concave for all t ≥ t0;
(b) for every self-financing strategy H, and for all t, T such that t0 ≤ t ≤ T it holds that

Ut(XH
t , t0) ≥ E

[
UT(XH

T , t0)|Ft

]
;

(c) there exists a self-financing strategy H∗ such that, for all t, T such that t0 ≤ t ≤ T, it
holds that

Ut(XH∗
t , t0) = E

[
UT(XH∗

T , t0)|Ft

]
;

(d) at t = t0,
Ut0(x, t0) = u0(x),

where u0(x) is a concave and increasing function of wealth.

From now on the time point t0 will be our starting point and all processes and
filtrations will be considered for t ≥ t0.

We will work under exponential preferences, that is, u0(x) = −e−γx, with γ > 0.
Then, in this case Definition 1 describes a forward dynamic exponential utility and can be
re-formulated as follows.

Definition 2. Let t0 ≥ 0. An F-adapted stochastic process U = {Ut(x, t0) : t ≥ t0} is a forward
dynamic exponential utility (FDU), normalized at t0, if for all t, T such that t0 ≤ t ≤ T, it
satisfies the stochastic optimization criterion

Ut(x, t0) =

{
−e−γx, t = t0,
supH∈A E

[
UT(XH

T , t0)|Ft
]
, t0 < t ≤ T,

with XH given by (4), XH
t0

= x ∈ R and γ > 0, for a suitable class A of admissible strategies
which is characterized later.

The rationale behind this definition is that at a certain time t0 (for instance, t0 = 0),
the insurance company specifies its utility which is based on the available information. As
time goes by, market conditions may change and hence the insurance company might be
willing to modify its preferences accordingly. The advantage of this approach is double:
first, there is no need to specify a priori a utility to be valid at the maturity, i.e., the investor
does not fix today investment preferences that will hold at a future date; second, defining
the function v as

v(t, x, s, ei; t0) = sup
H∈A

Et,x,s,ei

[
UT(XH

T , t0)
]
,

where Et,x,s,ei [·] denotes the conditional expectation given XH
t = x, St = s and Yt = ei, for

every (t, x, s, ei) ∈ [t0, T]×R× (0,+∞)× E and every T ≥ t0, it holds that

Ut(x, t0) = v(t, x, s, ei; t0).
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The latter implies that the forward dynamic exponential utility coincides with value
function of the optimization problem at any time. An important property of the forward
approach is that a forward dynamic utility might not be unique, as argued, for instance in
Musiela and Zariphopoulou [2].

In the sequel we assume that

− ∂2b
∂θ2 (t, ei, θ) < γλ(t, ei)

∫
Z

eγ(1−θ)zz2F(dz), (6)

for every (t, ei, θ) ∈ [0,+∞) × E × [0, 1]. This condition guarantees the existence of a
unique optimal reinsurance strategy (see discussion after Proposition 1 below).

Let t0 ≥ 0 be the normalization point. We define the function g : [t0,+∞)× (0,+∞)×
E → R as

g(t, s, ei) =
1
2

(
µ(ei)

σ(ei)sβ

)2

+ γa(t, ei)− ϕ(t, ei), (7)

where the function ϕ : [t0,+∞)× E → R is given by

ϕ(t, ei) = γb(t, ei, θt) + λ(t, ei)
∫
Z

(
eγ(1−θt−)z − 1

)
F(dz), (8)

and θt = θ(t, Yt) satisfies:

θ(t, ei) =


0, (t, ei) ∈ D0
θ̂(t, ei), (t, ei) ∈ (D0 ∪D1)

c

1, (t, ei) ∈ D1,
(9)

where (D0 ∪D1)
c indicates the complementary set of D0 ∪D1,

D0 ≡
{
(t, ei) ∈ [t0,+∞)× E

∣∣ λ(t, ei)E
[

Z1eγZ1
]
≤ ∂b

∂θ
(t, ei, 0)

}
D1 ≡

{
(t, ei) ∈ [t0,+∞)× E

∣∣ ∂b
∂θ

(t, ei, 1) ≤ λ(t, ei)E[Z1]

}
and θ̂ is the unique solution of the equation:

∂b
∂θ

(t, ei, θ) = λ(t, ei)
∫
Z

zeγ(1−θ)zF(dz). (10)

The existence of a unique solution to Equation (10) is guaranteed by the concavity
assumption in Equation (6). The process θ = {θt, t ≥ t0} defined above takes values in
[0, 1] and has the same structure of the optimal retention level in the standard backward
utility maximization. We will see later that it also provide the optimal reinsurance strategy
under forward utility preferences.

Next, for t ≥ t0, we define the process {h(t0, t), t ≥ t0} as

h(t0, t) =
∫ t

t0

g(v, Sv, Yv)dv, (11)

with g given in (7). Our objective is to characterize the forward dynamic exponential
utility (Problem 1), i.e.,

Ut(x, t0) = sup
H∈A

E
[
−e−γXH

T +h(t0,T)
∣∣∣Ft

]
,

for every t0 ≤ t ≤ T, and to find the optimal strategy H ∈ A, where the set of admissible
strategies A is defined below.
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Definition 3. An admissible strategy is a pair H = (Π, θ) = {(Πt, θt), t ≥ t0} of F-
progressively measurable processes with values in R × [0, 1], such that, for every T ≥ t0

E
[
e−γXH

T +h(t0,T)
]
< ∞ and

E
[∫ T

t0

(
|Πs|+ Π2

s S2β
s

)
ds
]
< ∞.

Denote by C1,2,2
b the set of all bounded functions f (t, x, s, ej), with bounded first-order

derivatives with respect to t, x, s and bounded second-order derivatives with respect to x, s,
for every j = 1, . . . , K. Let LH denote the Markov generator of (XH , S, Y) associated with a
constant control H = (θ, Π) ∈ [0, 1]×R.

Lemma 1. Let f (·, ·, ·, ei) ∈ C1,2,2
b , for each ei ∈ E . For any constant strategy H = (Π, θ) ∈

R× [0, 1], the triplet (XH , S, Y) is a Markov process with infinitesimal generator LH given by

LH f (t, x, s, ei) =
∂ f
∂t

(t, x, s, ei) +
[
a(t, ei)− b(t, ei, θ) + Πµ(ei)

]∂ f
∂x

(t, x, s, ei)

+
K

∑
j=1

f (t, x, s, ej)qij + sµ(ei)
∂ f
∂s

(t, x, s, ei) +
1
2

Π2σ2(ei)s2β ∂2 f
∂x2 (t, x, s, ei)

+ s2β+2σ(ei)
∂2 f
∂s2 (t, x, s, ei) + Πσ2(ei)s2β+1 ∂2 f

∂x∂s
(t, x, s, ei)

+ λ(t, ei)
∫
Z

{
f
(
t, x− (1− θ)z, s, ei

)
− f (t, x, s, ei)

}
F(dz). (12)

The proof of this result is given in Appendix A.1.
Now, we provide the analytic construction of a forward dynamic utility in

this framework.

Theorem 1. Let t0 ≥ 0 be the forward normalization point. Then, the process {Ut(x, t0), t ≥ t0},
given for x ∈ R and t ≥ t0, by

Ut(x, t0) = −e−γx+h(t0,t), (13)

with the process {h(t0, t), t ≥ t0} defined in (11), is a forward dynamic exponential utility,
normalized at t0.

Proof. We show that the process {Ut(x, t0), t ≥ t0} introduced in (13) satisfies Definition 2
(equivalently, Definition 1 with the initial condition u0(x) = −e−γx). Firstly, we see that
Ut(x, t0) is Ft-measurable for each t ≥ t0 and normalized at t0, as the condition at t = t0 is
satisfied (i.e., Ut0(x, t0) = −e−γx). Next, we need to prove that for arbitrary t, T such that
t0 ≤ t ≤ T,

−e−γx+h(t0,t) = sup
H∈A

E
[
−e−γXH

T +h(t0,T)
∣∣∣Ft

]
. (14)

This means that for any self-financing strategy H we get

−e−γx+h(t0,t) ≥ E
[
−e−γXH

T +h(t0,T)
∣∣∣Ft

]
,

and we will also show that there is a self financing strategy H∗ ∈ A such that equal-
ity holds.

We notice that Equation (14) is equivalent to say that

−e−γx = sup
H∈A

E
[
−e−γXH

T +h(t,T)
∣∣∣Ft

]
. (15)
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We define the right-hand side of Equation (15) as

u(t, x, s, ei) = sup
H∈A

Et,x,s,ei

[
− e−γXH

T +h(t,T)
]
= sup

H∈A
Et,x,s,ei

[
− e−γXH

T +
∫ T

t g(r,Sr ,Yr)dr
]
, (16)

for a function u : [0,+∞)×R× (0,+∞)× E → (−∞, 0). We proceed as follows.
Step 1. We first notice that

u(t, x, s, ei) = e−
∫ t

t0
g(r,Sr ,Yr)dr sup

H∈A
Et,x,s,ei

[
− e−γXH

T +
∫ T

t0
g(r,Sr ,Yr)dr

]
.

Using the martingale property of the conditional expectation, if u is sufficiently smooth
(i.e., u ∈ C1,2,2

b ), by Itô’s formula and the product rule we get that u solves the final
value problem

sup
H∈A
LHu(t, x, s, ei) + g(t, s, ei)u(t, x, s, ei) = 0, (17)

for all (t, x, s, ei) ∈ [t0, T)×R× (0,+∞)× E , with the final condition

u(T, x, s, ei) = −e−γx, (x, s, ei) ∈ R× (t0,+∞)× E , (18)

where we recall that LH denotes the infinitesimal generator of the Markov process
(XH , S, Y) defined in (12) associated with a constant control H.

Step 2. Next, we choose H∗ = (Π∗, θ∗) such that Π∗t =
µ(Yt)

γσ2(Yt)S
2β
t

and θ∗t = θ(t, Yt)

as in Equation (9). We show that the function u of the form

u(t, x, s, ei) = u(x) = −e−γx, x ∈ R, (19)

is the unique solution of the problem (17) and (18). Indeed, the function u(x) = −e−γx,
with x ∈ R, solves (17) and (18). To get uniqueness, we apply the Verification Theorem
(see Theorem A1 in Appendix A). We notice that conditions (ii) and (iii) of Theorem A1 are
trivially satisfied, and hence we just need to show that for every t, T such that t0 ≤ t ≤ T,
we have

E
[ ∫ T∧τn

t

(
e
∫ r

t g(l,Sl ,Yl)dlσ(Yr)S
β
r Πr

∂u
∂x

(r, XH
r , Sr, Yr)

)2
dr
]
< ∞,

E
[ ∫
Z

∫ T∧τn

t
e
∫ r

t g(l,Sl ,Yl)dl
∣∣∣u(r, XH

r− − (1− θr−)z, Sr, Yr)
)
− u(r, XH

r−, Sr, Yr)
∣∣∣

× λ(r, Yr−)F(dz)dr
]
< ∞,

for a suitable, non-decreasing sequence of random times {τn}n∈N such that
limn→+∞ τn = +∞. We define the sequence {τn}n∈N by setting

τn := inf
{

t ≥ t0 : e
∫ t

t0
|g(r,Sr ,Yr)|dr

> n ∨ XH
t < −n

}
, n ∈ N.

Observe that, over the stochastic interval Jt0, T ∧ τnK there is a finite value n̄ ≤ n

such that e
∫ t

t0
|g(r,Sr ,Yr)|dr ≤ n̄ and XH

t ≥ −n̄, for all t ∈ Jt0, T ∧ τnK (the existence of n̄ is

guaranteed from the fact that the process
{

e
∫ t

t0
|g(r,Sr ,Yr)|dr, t ≥ t0

}
is continuous and the

process XH is the unique solution of Equation (5) and hence it does not explode in [t0, T]).



Mathematics 2021, 9, 1610 11 of 27

Since limn→+∞ τn = +∞, it holds that for large n, T ∧ τn = T and therefore n̄ does not
depend on n. Then, we get that

E
[∫ T∧τn

t

(
e
∫ r

t g(l,Sl ,Yl)dlΠrσ(Yr)S
β
r

∂u
∂x

(r, XH
r , Sr, Yr)

)2
dr
]

= E
[∫ T∧τn

t
e2
∫ r

t g(l,Sl ,Yl)dlΠ2
r σ2(Yr)S

2β
r

(
γe−γXH

r
)2

dr
]

≤
(
n̄γen̄γ

)2 max
j=1,...,K

σ2(ej)E
[∫ T

t
Π2

r S2β
r dr

]
< ∞,

since Π is an admissible strategy. Moreover, we have that

E
[ ∫ T∧τn

t

∫
Z

e
∫ r

t g(l,Sl ,Yl)dl
∣∣∣u(r, XH

r− − (1− θr−)z, Sr, Yr)− u(r, XH
r−, Sr, Yr)

∣∣∣
× λ(r, Yr−)F(dz)dr

]
= E

[∫ T∧τn

t

∫
Z

e
∫ r

t g(l,Sl ,Yl)dle−γXH
r−
∣∣∣eγ(1−θr−)z − 1

∣∣∣λ(r, Yr−)F(dz)dr
]

≤ n̄en̄γE
[∫ T

t

∫
Z

eγzλ(r, Yr−)F(dz)dr
]

≤ n̄en̄γE
[∫ T

t
λ(r, Yr−)dr

] ∫
Z

eγzF(dz) < ∞,

since Z ⊂ [0,+∞) is compact and the integrability condition (1) holds. Therefore, thanks
to Theorem A1, the function u(x) = −e−γx is the unique solution of the final value prob-
lem (17) and (18).

Step 3. The steps above prove that the value function u(t, x, s, ei) is given by
u(x) = −e−γx. Hence, using the equality (16), we get that Equations (13) and (15) hold.
Consequently, according to Definition 2, U = {Ut(x, t0) = −e−γx+h(t0,t), t ≥ t0} is a
forward dynamic exponential utility.

4. Investment and Reinsurance under Forward Dynamic Exponential Utilities

In this section, we characterize the optimal investment strategy and the optimal
reinsurance level for the forward exponential utility in (13).

Proposition 1. Let t0 ≥ 0 be the forward normalization point. The optimal investment portfolio
Π∗t = Π∗(t, St, Yt) is given by

Π∗(t, s, ei) =
µ(ei)

γσ2(ei)s2β
, (20)

for every (t, s, ei) ∈ [t0,+∞)× (0,+∞)×E . Assume that condition (6) holds for every (t, ei, θ) ∈
[t0,+∞)× E × [0, 1]. Then, the process θ∗ = {θ∗t , t ≥ t0}, where θ∗t = θ(t, Yt) and θ(t, ej) is
given in Equation (9), is the optimal reinsurance level.

From the mathematical point of view, the condition (6) guarantees global concavity
of the value function with respect to θ, and hence that a unique maximizer exists. This
condition is satisfied by the main actuarial calculation principles and it is implied for
instance, by concavity of the reinsurance premium b(t, ej, θ) with respect to the retention
level θ. The latter is satisfied under classical premium calculation principle and has the
consequence that full reinsurance is never optimal. Considering a very general reinsurance
premium described by the function b(t, ej, θ), condition (6) implies that the set D0 may be
non-empty, and consequently that full reinsurance may be optimal for certain time periods
and certain market conditions.
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Proof. We observe that, because of the relation between the value process U and the
function u(t, x, s, ei) in (16), we can define the functions ΨΠ and Ψθ as

ΨΠ(t, x, s, ei, Π) = Πµ(ei)
∂u
∂x

(t, x, s, ei) +
1
2

Π2σ2(ei)s2β ∂2u
∂x2 (t, x, s, ei)

+ Πσ2(ei)s2β+1 ∂2u
∂x∂s

(t, x, s, ei)

Ψθ(t, x, s, ei, θ) = −b(t, ei, θ)
∂u
∂x

(t, x, s, ei)

+ λ(t, ei)
∫
Z

(
u
(
t, x− (1− θ)z, s, ei

)
− u(t, x, s, ei)

)
F(dz).

Then, for every T ≥ t0, the problem (17) and (18) can be written as

∂u
∂t

(t, x, s, ei) + a(t, ei)
∂u
∂x

(t, x, s, ei) + µ(ei)s
∂u
∂s

(t, x, s, ei) +
1
2

σ2(ei)s2β+2 ∂2u
∂s2 (t, x, s, ei)

+
K

∑
j=1

u(t, x, s, ei)qij + g(t, s, ei)u(t, x, s, ei)

+ sup
Π∈R

ΨΠ(t, x, s, ei, Π) + sup
θ∈[0,1]

Ψθ(t, x, s, ei, θ) = 0,

for all (t, x, s, ei) ∈ [t0, T)×R× (0,+∞)× E with the final condition u(T, x, s, ei) = −e−γx,
for all (x, s, ei) ∈ R× (0,+∞)× E .

We start with the computation of the optimal investment strategy. Since
ΨΠ(t, x, s, ei, Π) is a polynomial function in Π, from the first and the second order condi-
tions and the form of the function u(t, x, s, ei) in Equation (19), we get (20).

For the optimal reinsurance strategy, we apply a classical argument (see, e.g., [6]
[Proposition 4.1]). Because of the assumptions on the function b(t, ei, θ) and the smoothness
of function u(t, x, s, ei) in (19) with respect to x, Ψθ is continuous in θ ∈ [0, 1] and twice
continuously differentiable in θ ∈ (0, 1), for every (t, x, s, ei) ∈ [t0, T]×R× (0,+∞)× E ,
for all T ≥ t0, and its first and second partial derivatives are given by

∂Ψθ

∂θ
(t, x, s, ei, θ) = −γe−γx

{
∂b
∂θ

(t, ei, θ)− λ(t, ei)
∫
Z

eγ(1−θ)zzF(dz)

}
,

∂2Ψθ

∂θ2 (t, x, s, ei, θ) = −γe−γx

{
∂2b
∂θ2 (t, ei, θ) + γλ(t, ei)

∫
Z

eγ(1−θ)zz2F(dz)

}
.

By condition (6), Ψθ(t, x, s, ei, θ) is also strictly concave in θ ∈ [0, 1], and hence it admits
a unique maximizer θ∗ ∈ [0, 1]. Next we observe that, by concavity of Ψθ with respect to θ,

the function
∂Ψθ

∂θ
(t, x, s, ei, θ) is decreasing in θ and it holds that

∂Ψθ

∂θ
(t, x, s, ei, 1) ≤ ∂Ψθ

∂θ
(t, x, s, ei, θ) ≤ ∂Ψθ

∂θ
(t, x, s, ei, 0), (21)

for all θ ∈ (0, 1). Then, the following cases arise:

a. If Ψθ is increasing in θ ∈ [0, 1], then the maximizer is realized for θ∗ = 1.
b. If Ψθ is decreasing in θ ∈ [0, 1], then the maximizer is realized for θ∗ = 0.

c. If
∂Ψθ

∂θ
(t, x, s, ei, θ̂) = 0 for some θ̂ ∈ [0, 1], then θ∗ = θ̂.

We observe that Ψθ is increasing if and only if (t, ei) ∈ D1. Indeed, because of

concavity of Ψθ with respect to θ (see (21)), we get that
∂Ψθ

∂θ
(t, x, s, ei, θ) > 0 is equiv-
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alent to say that
∂Ψθ

∂θ
(t, x, s, ei, 1) > 0. This implies that Ψθ is increasing if and only if

∂b
∂θ

(t, ei, 1) ≤ λ(t, ei)E[Z1]. Equivalently Ψθ is increasing if and only if (t, ei) ∈ D0, and

finally
∂Ψθ

∂θ
(t, x, s, ei, θ̂) = 0 corresponds to solve Equation (10).

It only remains to show that the process H∗ = (Π∗, θ∗) is an admissible strategy. It
is clear that θ∗t ∈ [0, 1] for every t ≥ t0 and that θ∗ is F-adapted and càdlàg, hence F-
progressively measurable; the investment strategy Π∗ is also F-adapted and càdlàg (hence
F-progressively measurable), and for every T ≥ t0 it satisfies:

E
[∫ T

t0

(
|Π∗r |+ (Π∗r )

2S2β
r

)
dr
]

= E
[∫ T

t0

(∣∣∣∣∣ µ(Yr)

γσ2(Yr)S
2β
r

∣∣∣∣∣+ µ2(Yr)

γ2σ4(Yr)S
2β
r

)
dr

]
≤ cE

[∫ T

t0

S−2β
r dr

]
< ∞,

for some constant c > 0. The first inequality here is implied by the boundedness of µ(Yt)

and σ(Yt). To show that E
[
e−γXH∗

T +h(t0,T)
]
< ∞, we observe that in view of (5), and

recalling that θ∗t = θt, for every t, we have

− γXH∗
T + h(t0, T) = −γxt0 −

1
2

∫ T

t0

µ2(Yt)

σ2(Yt)S
2β
t

dt−
∫ T

t0

µ(Yt)

σ(Yt)S
β
t

dWt

+ γ
∫ T

t0

∫
Z
(1− θt−)zm(dt, dz)−

∫ T

t0

λ(t, Yt)
∫
Z

(
eγ(1−θt−)z − 1

)
F(dz)dt,

where XH
t0
= xt0 ∈ R. Then,

E
[
e−γXH∗

T −h(t0,T)
]
= e−γxt0E

e
− 1

2
∫ T

t0
µ2(Yt)

σ2(Yt)S
2β
t

dt−
∫ T

t0
µ(Yt)

σ(Yt)S
β
t

dWt

×eγ
∫ T

t0

∫
Z (1−θt−)zm(dt,dz)e−

∫ T
t0

λ(t,Yt)
∫
Z

(
eγ(1−θt−)z−1

)
F(dz)dt

]
. (22)

For T > t0, we define the process L = {Lt, t ∈ [t0, T]} as

Lt = e
− 1

2
∫ t

t0
µ2(Yt)

σ2(Yt)S
2β
t

dt−
∫ t

t0
µ(Yt)

σ(Yt)S
β
t

dWt
;

then, L is an (integrable) (F, P)-martingale. Precisely, L is an exponential martingale with
expected value equal to 1 (see Lemma A1 in Appendix A) and defines an equivalent change

of probability measure, i.e., LT =
dP̃
dP

∣∣∣
FT

. Moreover, the change of measure from P to P̃

does not modify the law of the Markov chain Y and the compensator of the claim process
C, since it only affects the Brownian motion W. This means that Y and C have the same
law under P and under P̃. Equation (22) becomes:

e−γxt0E
[

LTeγ
∫ T

t0

∫
Z (1−θt−)zm(dt,dz)e−

∫ T
t0

λ(t,Yt)
∫
Z

(
eγ(1−θt−)z−1

)
F(dz)dt

]
= e−γxt0 Ẽ

[
eγ
∫ T

t0

∫
Z (1−θt−)zm(dt,dz)e−

∫ T
t0

λ(t,Yt)
∫
Z

(
eγ(1−θt−)z−1

)
F(dz)dt

]
= e−γxt0E

[
eγ
∫ T

t0

∫
Z (1−θt−)zm(dt,dz)e−

∫ T
t0

λ(t,Yt)
∫
Z

(
eγ(1−θt−)z−1

)
F(dz)dt

]
,
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where Ẽ[·] denotes the expected value computed under the probability measure P̃, and in
the last equality we have used the fact that Y and C have the same law under P and under
P̃. In particular,

e−
∫ T

t0
λ(t,Yt)

∫
Z

(
eγ(1−θt−)z−1

)
F(dz)dt≤ e

∫ T
t0

λ(t,Yt)dt≤ emaxj=1,...,K
∫ T

t0
λ(t,ej)dt := cT < ∞, P− a.s..

Finally,

E
[

eγ
∫ T

t0

∫
Z (1−θt−)zm(dt,dz)e−

∫ T
t0

λ(t,Yt)
∫
Z

(
eγ(1−θt−)z−1

)
F(dz)dt

]
≤ cTE

[
eγ
∫ T

t0

∫
Z zm(dt,dz)

]
= cTE

[
eγ ∑

NT
i=1 Zi

]
= cT ∑

n≥0
E
[

eγ ∑
NT
i=1 Zi

∣∣∣NT = n
]

P(NT = n) = cT ∑
n≥0

E
[
eγZ1

]n
P(NT = n) < ∞,

which implies the assertion.

4.1. Independent Markets and Comparison with the Classical Backward Utility Approach

Now, we examine the case of independent markets. This example, although simpler
than the general case considered above, already contains several key characteristics that
allow us to discuss some important differences between the forward and the standard
backward performance criteria.

We consider an insurance framework as in Section 2. The financial market, instead
consists of a riskless asset with price process Bt = 1 for all t ≥ 0 and a risky asset with
price process S whose drift and volatility are not affected by the factor Y, and hence its
dynamics follows

dSt = St(µdt + σSβ
t dWt), S0 = s > 0,

with µ ∈ R and σ > 0. The results can be easily extended to the case where drift and
volatility are functions of time only.

The wealth associated to a strategy H = (Π, θ) ∈ A is given by XH = {XH
t , t ≥ t0}

such that

dXH
t =

{
a(t, Yt)− b(t, Yt, θt) + Πtµ)

}
dt + ΠtσSβ

t dWt − (1− θt−)dCt,

with XH
t0
= xt0 ≥ 0 being the wealth at time t0.

We can derive the optimal investment and reinsurance strategy H∗ = (Π∗, θ∗) under
the forward dynamic exponential utility, which is given by Π∗t = Π∗(St) where

Π∗(s) =
µ

γσ2s2β
,

and θ∗ is given by Equation (9). The optimal value satisfies Ut(x, t0) = −e−γx+h(t0,t), for
all t ≥ t0 and x ∈ R, where now the process h(t0, t) is given by

h(t0, t) =
∫ t

t0

(
1
2

µ2

σ2S2β
r

+ γa(r, Yr)− ϕ(r, Yr)

)
dr,

and we recall that the function ϕ(t, ei) is given in (8).
Next, we would like to compare the optimal strategies and the value processes arising

from the forward and the standard backward utility preferences. To this aim, we derive
the optimal investment and reinsurance strategy for the classical backward exponential
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utility optimization setting. We fix a time horizon T > t0 which coincides with the end of
the investment period, and consider the optimization problem (Problem 2)

sup
H∈A

E
[
−e−γXH

T

]
.

Proposition 2. The optimal investment and reinsurance strategy HB,∗ = (ΠB,∗, θB,∗) is given by

ΠB,∗(t, s) =
µ

γσ2s2β
− 2βJ1(t)

γσs2β
(23)

and θB,∗ = θ, with θ provided in Equation (9). The optimal value function satisfies

V(t, x, s, ei) = −e−γx+hB(t,s,ei),

where hB(t, s, ei) = J1(t)s−2β + J2(t, ei), for every (t, x, s, ei) ∈ [t0, T]×R× (0,+∞)× E .

The function J1(t) is given by J1(t) = −
µ2

2σ2 (T− t), for every t ∈ [t0, T] and the function J2(t, ei)

solves the following system of ODEs

dJ2

dt
(t, ei) =γ[a(t, ei)− b(t, ei, θ)]−

K

∑
j=1

eJ2(t,ej)−J2(t,ei)qij +
µ2

2
β(2β + 1)(T − t)

− λ(t, ei)
∫
Z

(
eγ(1−θ)z − 1

)
F(dz), t ∈ [t0, T) (24)

with the final condition J2(T, ei) = 0, for all i = 1, . . . , K.

The proof of this result is given in Appendix A.4. Notice that applying the transforma-
tion J̃(t, ei) = eJ2(t,ei), Equation (24) can be reduced to a linear ODE.

A few considerations can be made. First of all, the standard backward approach
requires that, a utility function that must hold at some future time T, is specified today.
Instead, in the forward approach the utility is set to hold at the initial time and changes as
market conditions evolve. Equivalently, the forward approach moves in the same direction
of time, and therefore it may capture information about the market in a dynamic and
consistent way.

Next, we see that the forward and the backward problems share the same optimal
reinsurance strategy which depends on the Markov chain Y, and hence it is affected by
different regimes. The optimal investment strategies in the two approaches, instead, are
different: in the forward case the optimal strategy consists of the myopic component only,
whereas in the backward case there is an additional component which reflects the fact that
the instantaneous variance of the percentage asset price change is not constant.

As argued for instance in Musiela and Zariphopoulou [34], the value processes under
backward and forward utility preferences do not coincide in general (one may always
consider the special case of a utility function that does not change over time). This is due
to the fact that they are generated in completely different ways. Indeed, in the backward
case the value function process accounts for market incompleteness by estimating the
future changes (this is encompassed in the function hB), whereas in the forward case
the value function is adjusted dynamically as time goes by, according to the arrival of
new information.

5. Numerical Experiments

In this section, we employ a numerical approach to further investigate our results and
to discuss the qualitative characteristics of optimal investment and reinsurance strategies
implied by our model.
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We consider a two-state Markov chain Y, that is, E = {e1, e2}; without loss of generality
we may assume that e1 represents a more favorable state of the combined insurance-
financial market and e2 is a less favorable state. In the following, we refer to e1 (respectively,
e2) as the good (respectively, bad) state. The infinitesimal generator matrix Q has entries
{qij}i,j∈{1,2} such that q12 > q21: this choice suggests that it is more likely for the market to
switch from the good state to the bad state than the opposite.

For the sake of simplicity, we assume that claims arrival intensity is of exponential
type, i.e.,

λ(t, ej) = λ0ek1t+k2(ej), (25)

where λ0 = eY0 , k1 > 0, for every t ∈ [0,+∞), and the function k2(ej) = j · k2 for all j = 1, 2
and some k2 > 0. Moreover, claim size distribution is assumed to be truncated exponential.
We assume that insurance and financial operations take place in one year, starting from
today (i.e., t0 = 0); this means that we analyze our theoretical results in a time interval
[0, T], with T = 1. Insurance and reinsurance premiums are computed according to the
intensity-adjusted variance principle (see [6]), and hence, they are specifically given by

b(t, ej, θ) = λ(t, ej)E[Z1]θ + 2δRλ(t, ej)E
[

Z2
1

](
1 + Tλ(t, ej)

)
θ2, (26)

a(t, ej) = λ(t, ej)E[Z1] + 2δIλ(t, ej)E
[

Z2
1

](
1 + Tλ(t, ej)

)
, (27)

for j = 1, 2, and δR > 0 and δI > 0 denote the reinsurance and insurance safety loading,
respectively. In Equations (26) and (27) we reported T to underline the dependence on
contracts maturity, which will be omitted later, plugging T = 1. Finally, we set the following
parameter values to q12 = 2, q21 = 1, k1 = 0.5, k2 = 1 and we fix the insurance and the
reinsurance safety loading to δI = 0.05 and δR = 0.1, respectively.

5.1. Dependent Markets

We consider the general financial market which consists of a locally risk-free asset
B with zero interest rate and a risky asset S which follows a CEV model with drift and
volatility that depend on the Markov chain Y as described by the SDE (3). According
to our interpretation of states e1 and e2, we assume that µ1 > µ2 and σ1 < σ2, where µj
and σj represent the expected rate of return and the volatility of the stock, respectively,
in the j-th regime, for j = 1, 2. In fact, it is reasonable to associate to a good state for the
combined market a higher rate of return and eventually smaller fluctuations, and viceversa
lower rate of return and larger volatility to the bad state. This mechanism is well known
in economics (see, e.g., French et al. [35] and Hamilton and Lin [36]). Our framework,
however, also involves the actuarial market and the interpretation of the Markov chain
is not of a purely economic nature, but may also incorporate reactions to events, such as
natural disasters, pandemics or even climate and environmental states, which have an
impact on both insurance losses and the general trend of financial assets. Equation (25), for
instance, shows that the common factor Y affects the claim arrival intensity in a way that
the average number of claims is smaller in the good state and larger in the bad state. We
report the parameters choice for the coefficients µj and σj, for j = 1, 2 in Table 1.

Table 1. Parameter set for the rate of return and the volatility of the stock price in the two regimes.

Regime µ σ

e1 (good) 0.1 0.1
e2 (bad) 0.05 0.2

To illustrate the typical sample path of an optimal strategy, we provide in Figure 1 the
plot of one trajectory of the optimal dynamic investment and reinsurance strategy given
by Proposition 1. We observe that both the investment strategy and the reinsurance level
exhibit jumps at switching times of the Markov chain. Moreover, if the state of the market is
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good, then the insurance company opts to invest more in the stock and to reinsure a greater
percentage of losses. The model specification considered in this example (i.e., the form of
the intensity function, the claim size distribution and the reinsurance premium) implies
that the optimal reinsurance level is given by θ∗t = θ̂t for all t ∈ [0, 1], where θ̂t = θ̂(t, ej) is
the solution of the equation

E[Z1] + 4δRθE
[

Z2
1

]
(1 + λ(t, ej)) =

∫
Z

zeγ(1−θ)zF(dz).

It is easily seen, using the Implicit function theorem that the derivative of θ∗ with respect
to time is negative for every t, and this explains the piecewise linearly decreasing behaviour
of the optimal reinsurance level. Let G(t, ej, θ) = E[Z1] + 4δRθE

[
Z2

1

](
1 + Tλ(t, ej)

)
−∫

Z
zeγ(1−θ)zF(dz), then, for every fixed j = 1, . . . , K we have that

dθ(t, ej)

dt
= −

dG(t,ej ,θ(t,ej))

dt
dG(t,ej ,θ(t,ej))

dθ

= −
4θ(t, ej)δRE

[
Z2

1
]
λ0k1ek1t+k2(ej)

4δRE
[
Z2

1
](

1 + ek1t+k2(ej)
)
+ γ

∫
Z z2eγ(1−θ(t,ej))zF(dz)

< 0.

Figure 1. The optimal investment strategy (left panel) and the optimal reinsurance strategy (right
panel), as functions of time, with parameters S0 = 1, β = −0.5 and γ = 0.5.

In the sequel, we perform a sensitivity analysis of the optimal investment portfolio in
order to study the effect of model parameters on the insurance company decision, in both
economic regimes.

In Figure 2, we investigate the effect of the elasticity coefficient β on the optimal
investment strategy at a certain date t∗ ∈ [0, 1]. We observe that if the stock price is smaller
than 1 (left panel), the optimal investment strategy is positively correlated to the parameter
of elasticity. Otherwise (right panel), the amount invested in the risky asset decreases
as long as β increases. Moreover, we observe that the investment policy is always less
aggressive when the combined insurance-financial market is in the bad state (dashed lines).



Mathematics 2021, 9, 1610 18 of 27

Figure 2. Optimal investment strategy at a fixed time t∗ as a function of elasticity coefficient β, for
different values of stock price St∗ , when the economic regime is e1 (solid line) or e2 (dashed line).
Parameter values: γ = 0.5, St∗ = 0.5 (left panel) and St∗ = 1.5 (right panel).

Figure 3 refers to the sensitivity analysis with respect to the risk aversion parameter γ.
As expected, there is an inverse relationship on the values of the stochastic volatility, under
both regimes; in other terms, if the risk aversion increases, then the insurance company
finds it more convenient to invest in the risk-free asset. Moreover, if the market is in the
good state, the strategy is more sensitive to variations of the risk aversion parameter.

Figure 3. Optimal investment strategy at a fixed time t∗ as a function of risk aversion coefficient γ,
for different values of stock price St∗ and constant elasticity coefficient β, when the market state is
e1 (solid line) or e2 (dashed line). Parameter values: β = −0.5, St∗ = 0.5 (left panel) and St∗ = 1.5
(right panel).

5.2. Independent Markets

We now provide a few numerical illustrations on the case of independent markets
discussed in Section 4.1.

For the numerical analysis below, we take Y to be a two-state Markov chain, and
let ( p̄, 1− p̄) denote the stationary distribution of Y, i.e., p̄ = q21

q12+q21
. For consistency,

we calculate the appreciation rate and the volatility of the stock price, µ and σ, as the
average of the values µ1, µ2 and σ1, σ2, according to the stationary distribution of Y, that is
µ = p̄µ1 + (1− p̄)µ2 and σ = p̄σ1 + (1− p̄)σ2.

We recall that reinsurance and insurance premiums are evaluated according to the
intensity-adjusted variance principle and that the claim size distribution is exponential
with expectation equal to 1.

Figures 4 and 5 plot the difference between the strategies under forward and backward
utilities, as a function of time (Figure 4), as a function of the elasticity parameter β (Figure 5,
left panel) and as a function of the risk aversion coefficient γ (Figure 5, right panel). As
before, we set t0 = 0 and we consider the horizon time T = 1. By (23), it is clear that the
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optimal forward investment strategy Π∗ is more aggressive than the backward one ΠB,∗

but the difference between them decreases over the time interval and it disappears at the
end of trading horizon, as it is seen in Figure 4. Moreover, we notice that the higher the
initial price of the risky asset is, the higher the initial gap. A similar behavior is observed
in the left and in the right panel of Figure 5, where we illustrate the difference in optimal
initial portfolios with respect to the elasticity coefficient and the risk aversion parameter,
respectively, for different initial values of the stock price.

Figure 4. One trajectory of the optimal investment as a function of time for β = −0.5 and γ = 0.5.

Figure 5. Left panel: Optimal investment as a function of elasticity coefficient at time 0 for γ = 0.5.
Right panel: Optimal investment as a function of risk aversion parameter at time 0 for β = −0.5.

The optimal strategies under the forward and the backward criterion lead to different
value functions. In particular, at the initial time, the optimal value corresponding to the
backward utility is given by V(0, x, s, ei) = −e−γx+J1(0)sβ+J2(0,ei), whereas the optimal
value in the forward utility simply satisfies U(x, 0) = −e−γx. Figure 6 plots the difference
between value functions at the initial time (in percentage), i.e., ∆(s, ei) := V(0,x,s,ei)−U(x,0)

U(x,0)
(notice that this quantity is independent of the initial wealth), as functions of the initial
stock price, in states e1 and e2, assuming that the Markov chain Y has only two states.
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Figure 6. The effect of stock price on the difference between the backward optimal value functions
and the forward one (in percentage) at time 0, when the market state is e1 (solid line) or e2 (dashed
line). Parameter values: β = −0.5, γ = 0.5.

We point out that the gap between the backward and the forward values at initial time
is decreasing with respect to the stock price at t = 0, in both economic regimes.

6. Conclusions

In this paper, we have analyzed an optimal investment and reinsurance problem in
a regime-switching market model for an insurance company with forward exponential
utility preferences. We have proposed an interdependent insurance-financial market model
where a common stochastic factor, which is modeled as a continuous time finite state
Markov chain, affects the stock price and the claim arrival intensity. In this framework,
we have constructed analytically a forward dynamic exponential utility and characterized
the optimal investment/reinsurance strategy. We have also highlighted the differences
between forward performance criteria and standard backward performance criteria in
the case of independent markets, both analytically and numerically. Specifically, we have
observed that the optimal reinsurance strategy is the same in the two approaches, whereas
the optimal investment strategies differ, with the backward one being always smaller that
the forward investment strategy. We have conducted numerical experiments, in the case
of a two-state Markov chain, that confirm that the optimal forward investment strategy is
more aggressive, especially for larger values of the stock price. Moreover, by comparing
optimal forward and backward value functions, we have observed that the difference
between them (in percentage) at initial time is decreasing with respect to the initial stock
price, in both economic regimes. A sensitivity analysis on the general setting in case of a
two-state Markov chain has highlighted some interesting features of the optimal forward
strategies. We have investigated the effect of the elasticity parameter and the risk aversion
coefficient on the optimal investment strategy, in both regimes. We pointed out that the
relation between the amount invested in the risky asset and the parameter of elasticity
also depends on the stock price according to the CEV dynamics, whereas the optimal
investment strategy is always negatively correlated to the risk aversion coefficient. Another
interesting result is that the insurance company always opts to invest more in the risky
asset when the combined insurance-financial market is in the good state (i.e., when the
average number of claims is small and the stock price presents a high rate of return and
small fluctuations).

It would be interesting to see if these features of the value function and the optimal
strategies are preserved under different types of forward utilities (i.e., non zero volatility
case). This will be done in a future work.
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Appendix A. Technical Results

Appendix A.1. Proof of Lemma 1

To prove the result, we first characterize the martingale MY in the semimartingale
decomposition of the Markov chain Y. Let {τn}n∈N be the sequence of jump times of Y and
denote by mY the jump measure of Y, which is given by

mY([0, t], {ej}) := ∑
n≥1

1{Yτn=ej}1{τn≥t},

with compensator

νY([0, t], {ej}) =
∫ t

0

K

∑
i,j=1,
i 6=j

qij1{Yr−=ei}dr,

for every t ≥ 0. Hence, we get that

Yt = Y0 +
∫ t

0

K

∑
j=1

(ej −Yr−)qYr− jdr +
∫ t

0

K

∑
j=1

(ej −Yr−)(mY − νY)(dr, {ej}),

for every t ≥ 0 (with a slight abuse of notation we identify qYr− j|Yr−=i = qij.). Now, let
f : [0,+∞)× R× (0,+∞)× E → R be a function in C1,2,2

b and H = (Π, θ) ∈ R× [0, 1]
constant. Then, the result follows by applying Itô’s formula to f (XH , S, Y). Indeed, we get
that { f (t, XH

t , St, Yt), t ≥ 0} has the semimartingale decomposition

f (t, XH
t , St, Yt) = f (0, XH

0 , S0, Y0) +
∫ t

0
LH f (r, XH

r , Sr, Yr)dr + M f
t , t ≥ 0,
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where M f = {M f
t , t ≥ 0} is the (F, P)-martingale null at t = 0 given by

dM f
t =

(
σ(Yt)S

β+1
t

∂ f
∂s

(t, XH
t , St, Yt) + Πtσ(Yt)S

β
t

∂ f
∂x

(t, XH
t , St, Yt)

)
dWt

+
∫
Z

(
f
(
t, XH

t− − (1− θ)z, St, Yt
)
− f (t, XH

t−, St, Yt)
)
(m(dt, dz)− λ(t, Yt−)F(dz)dt)

+
K

∑
j=1

(
f
(
t, XH

t , St, ej
)
− f (t, XH

t , St, Yt−)
)
(mY − νY)(dt, {ej}).

Appendix A.2. The Verification Theorem

Theorem A1 (Verification Theorem). Let t0 ≥ 0 be the normalization point and T ≥ t0. Let u :
[t0, T]×R× (0,+∞)× E −→ (−∞, 0) be a smooth solution of the HJB Equations (17) and (18)
(i.e., the function u(t, x, s, ej) is C1 in t and C2 in (x, s), for all j = 1, ..., K), which satisfies

(i) E
[∫ T

t0

e
∫ r

t0
g(l,Sl ,Yl)dl

(
Πrσ(Yr)S

β
v

∂u
∂x

(r, XH
r , Sr, Yr)

)2
dr
]
< ∞,

(ii) E
[∫ T

t0

e
∫ r

t0
g(l,Sl ,Yl)dl

(
σ(Yr)S

β+1
r

∂u
∂s

(r, XH
r , Sr, Yr)

)2
dr
]
< ∞,

(iii) E
[∫ T

t0

e
∫ r

t0
g(l,Sl ,Yl)dl

K

∑
j=1

{
u
(
r, XH

r , Sr, ej
)
− u(r, XH

r , Sr, Yr−)
}

νY(dr, {ej})
]
< ∞,

(iv) E
[ ∫ T

t0

e
∫ r

t0
g(l,Sl ,Yl)dl

λ(r, Yr)

× sup
z∈Z

∣∣∣u(r, XH
r− − (1− θr−)z, Sr, Yr)− u(r, XH

r−, Sr, Yr)
∣∣∣dr
]
<∞.

Then, u(t, x, s, ei) ≤ u(t, x, s, ei), for every admissible control H ∈ A and for every
(t, x, s, ei) ∈ [t0, T]×R× (0,+∞)× E .

Moreover, if u(T, x, s, ei) = u(T, x, s, ei), for every (x, s, ei) ∈ R× (0,+∞)× E and there
exists H∗ ∈ A such that LH∗u(t, x, s, ei) + g(t, x, s, ei)u(t, x, s, ei) = 0, for every (t, x, s, ei) ∈
[t0, T[×R× (0,+∞)× E , then u = u in [t0, T]×R× (0,+∞)× E .

Proof. Let H ∈ A be an admissible control. Using Equations (3) and (4) and applying Itô’s

formula to e
∫ t

t0
g(r,XH

r ,Yr)dru(t, XH
t , St, Yt), we have that

e
∫ T

t0
g(r,Sr ,Yr)dru(T, XH

T , ST , YT) = e
∫ t

t0
g(r,Sr ,Yr)dru(t, x, s, ei)

+
∫ T

t
e
∫ r

t g(l,Sl ,Yl)dl
[
LHu(v, XH

v , Sv, Yv) + g(r, Sr, Yr)u(r, XH
r , Sr, Yr)

]
dr

+
∫ T

t
e
∫ r

t g(l,Sl ,Yl)dlΠrσ(Yr)S
β
r

∂u
∂x

(r, XH
r , Sr, Yr)dWr

+
∫ T

t
e
∫ r

t g(l,Sl ,Yl)dlσ(Yr)S
β+1
r

∂u
∂s

(r, XH
r , Sr, Yr)dWr

+
∫ T

t

∫
Z

e
∫ r

t g(l,Sl ,Yl)dl
K

∑
j=1

{
u
(
r, XH

r , Sr, ej
)
− u(r, XH

r , Sr, Yr−)
}
(mY − νY)(dr, {ej})

+
∫ T

t

∫
Z

e
∫ r

t g(l,Sl ,Yl)dl
(

u
(
r, XH

r− − (1− θr−)z, Sr, Yr
)
− u(r, XH

r−, Sr, Yr)
)

× (m(dr, dz)− λ(r, Yr−)F(dz)dr),
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where LH is introduced in (12). Let M = {Mt, t ∈ [t0, T]} be the process given by

Mt =
∫ t

t0

e
∫ r

t g(l,Sl ,Yl)dlΠrσ(Yr)S
β
r

∂u
∂x

(r, XH
r , Sr, Yr)dWr

+
∫ t

t0

e
∫ r

t g(l,Sl ,Yl)dlσ(Yr)S
β+1
r

∂u
∂s

(r, XH
r , Sr, Yr)dWr

+
∫ t

t0

∫
Z

e
∫ r

t g(l,Sl ,Yl)dl
K

∑
j=1

{
u
(
r, XH

r , Sr, ej
)
− u(r, XH

r , Sr, Yr−)
}
(mY − νY)(dr, {ej})

+
∫ t

t0

∫
Z

e
∫ r

t g(l,Sl ,Yl)dl
(

u
(
r, XH

r− − (1− θr−)z, Sr, Yr
)
− u(r, XH

r−, Sr, Yr)
)

× (m(dr, dz)− λ(r, Yr−)F(dz)dr),

and observe that integrability conditions (i), (ii), (iii), (iv) ensure that M is an (F, P)-
martingale. Now, since u solves the HJB-equation in (17) and (18), we have

e
∫ T

t0
g(r,Sr ,Yr)dru(T, XH

T , ST , YT) ≤ e
∫ t

t0
g(r,Sr ,Yr)dru(t, x, s, ei)

+
∫ T

t
e
∫ r

t g(l,Sl ,Yl)dlΠrσ(Yr)S
β
r

∂u
∂x

(r, XH
r , Sr, Yr)dWr

+
∫ T

t
e
∫ r

t g(l,Sl ,Yl)dlσ(Yr)S
β+1
r

∂u
∂s

(r, XH
r , Sr, Yr)dWr (A1)

+
∫ T

t

∫
Z

e
∫ r

t g(l,Sl ,Yl)dl
K

∑
j=1

{
u
(
r, XH

r , Sr, ej
)
− u(r, XH

r , Sr, Yr−)
}
(mY − νY)(dr, {ej})

+
∫ T

t

∫
Z

e
∫ r

t g(l,Sl ,Yl)dr
(

u
(
r, XH

r− − (1− θr−)z, Sr, Yr
)
− u(r, XH

r−, Sr, Yr)
)

× (m(dr, dz)− λ(r, Yr−)F(dz)dr),

for every H ∈ A.
Then, taking the conditional expectation with respect to XH

t = x, St = s and Yt = ei
on both sides of Equation (A1) leads to

Et,x,s,ei

[
e
∫ T

t0
g(r,Sr ,Yr)dru(T, XH

T , ST , YT)
]
≤ e

∫ t
t0

g(r,Sr ,Yr)dru(t, x, s, ei).

By the final condition in Equation (18), we obtain

Et,x,s,ei

[
− e−γXH

T +
∫ T

t g(r,Sr ,Yr)dr
]
≤ u(t, x, s, ei),

for every H ∈ A. Hence, u(t, x, s, ei) ≤ u(t, x, s, ei), as we wanted. Finally, we observe that
if H ∈ A is the maximizer in the HJB-Equation (17), then the inequality above becomes an
equality, which proves the second part of the statement.

Appendix A.3. The Density LT

Lemma A1. Let T ≥ 0. Define the process L = {Lt, t ∈ [0, T]} as

Lt = e
− 1

2
∫ t

0
µ2(Yr)

σ2(Yr)S
2β
r

dr−
∫ t

0
µ(Yr)

σ(Yr)S
β
r

dWr
;

then, L is an (F, P)-martingale. Moreover, LT is the density of a probability measure P̃, equivalent
to P on FT .

Proof. For the ease of notation we now take t0 = 0. The proof extends that of Theorem 2.3
in [30] to the regime-switching version of the CEV model. We summarize the main steps.
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Consider the couple (Y, S) where Y is a finite state Markov chain with infinitesimal genera-
tor Q, and S is a process with continuous trajectories. Consider the following equations

dSt = Stµ(Yt)dt + S1+β
t σ(Yt)dWt

and
dSt = S1+β

t σ(Yt)dWt,

where W is a Wiener measure. Next we denote by P the law of the couple (Y, S), where
S satisfies the first equation, on the interval [0, T] and by P̃ the law of the couple (Y, S),
where S satisfies the first equation, on the interval [0, T]. Notice that the generator of the
Markov chain Y is the same under P and under P̃. Then, we can find a P-Brownian motion
W and a P̃-Brownian motion W̃, both independent of Y, such that

dSt = Stµ(Yt)dt + S1+β
t σ(Yt)dWt

and
dSt = S1+β

t σ(Yt)dW̃t.

We denote by FY,S the filtration generated by the pair (Y, S). Notice that, for instance,
this coincides with the filtration generated by the processes (Y, W), and moreover, because
of independence of the process (Y, S) with the jump measure m(dt, dz), describing the
jumps of the claim process, we can extend our analysis to the whole filtration F. The laws
P and P̃ are measures on the product spaceM×C, whereM is the space of piecewise
continuous functions of [0, T] and C is the space of continuous functions on [0, T]. To show
that P and P̃ are equivalent we define the sequence of stopping times

ηn = inf
{

t > 0 :
∫ t

0
S−2β

r dr ≥ n
}

.

Clearly, ηn → +∞ (since 0 ≤ −β < 1) and the density of P̃ with respect to P on Fηn∧T
is given by

Lηn∧T = e
− 1

2
∫ ηn∧T

0
µ2(Yt)

σ2(Yt)S
2β
t

dt−
∫ ηn∧T

0
µ(Yt)

σ(Yt)S
β
t

dWt
.

Because
∫ T

0 S−2β
t dt < +∞ P-a.s. and µ(Yt)

σ(Yt)
is bounded for every t ≥ 0, we have that

P̃ is absolutely continuous with respect to P on FT . Conversely, we can repeat the same
reasoning and use that

∫ T
0 S−2β

t dt < +∞ P̃-a.s., which implies equivalence. Hence L is a
strictly positive martingale with E[LT ] = 1.

We also observe that, the change of measure above does not alter the law (i.e., the
infinitesimal generator) of the Markov chain Y nor the law (i.e., the compensator) of the
jump process C. Hence, Y and C have the same law under P and P̃.

Appendix A.4. Proof of Proposition 2

We notice that the optimization is taken over the set of admissible functions A,
even though in the backward case one would require that E

[
e−γXH

T

]
< ∞ in place of

E
[
e−γXH

T +h(t0,T)
]
< ∞. However, because of the assumptions on the model coefficients

these two conditions are equivalent.
Suppose that the value function V(t, x, s, ei) is C1 in t and C2 in (x, s), for each

i = 1, . . . , K, then it solves the equation

sup
H∈A
LHV(t, x, s, ei) = 0, (t, x, s, ei) ∈ [0, T)×R× (0,+∞)× E , (A2)
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where LH is the infinitesimal generator given in (12), with the terminal condition
V(T, x, s, ei) = −e−γx. We guess that the value function has the form V(t, x, s, ei) =

−e−γx+J1(t)s−2β+J2(t,ei). Plugging this expression into (A2) and taking the first order con-
dition on Π yields (23). The second order conditions guarantee that ΠB,∗ is the optimal
investment strategy. For the optimal reinsurance strategy θB,∗(t, ei) we argue as in the
proof of Proposition 1 and hence we get that θB,∗(t, ei) = θ∗(t, ei) given in Equation (9).

Next, we establish a verification result. Let v(t, x, s, ei) be a solution of the
Equation (A2) with the final condition v(T, x, s, ei) = −e−γx (that is v(T, x, s, ei) =
V(T, x, s, ei)). Then, by Itô’s formula it holds that (for simplicity, we omit the dependence
of X on the strategy H)

v(T, XT , ST , YT) = v(t, x, s, ei) +
∫ T

t
LHv(r, Xr, Sr, Yr)dr

+
∫ T

t
Πrσ(Yr)S

β
r

∂v
∂x

(r, Xr, Sr, Yr)dWr +
∫ T

t
σ(Yr)S

β+1
r

∂v
∂s

(r, Xr, Sr, Yr)dWr

+
∫ T

t

K

∑
j=1

{
v(r, Xr, Sr, ej)− v(r, Xr, Sr, Yr−)

}(
mY − νY)(dr, {ej}

)
+
∫ T

t

∫
Z

{
v(r, Xr−−(1− θr−)z, Sr, Yr)− v(r, Xr−, Sr, Yr)

}
(m(dr, dz)− λ(r, Yr−)F(dz)dr).

Since v satisfies Equation (A2), we get that

v(T, XT , ST , YT) ≤ v(t, x, s, ei)

+
∫ T

t
Πrσ(Yr)S

β
r

∂v
∂x

(r, Xr, Sr, Yr)dWr +
∫ T

t
σ(Yr)S

β+1
r

∂v
∂s

(r, Xr, Sr, Yr)dWr

+
∫ T

t

K

∑
j=1

{
v(r, Xr, Sr, ej)− v(r, Xr, Sr, Yr−)

}(
mY − νY)(dr, {ej}

)
(A3)

+
∫ T

t

∫
Z

{
v(r, Xr− − (1− θr−)z, Sr, Yr)− v(r, Xr−, Sr, Yr)

}
× (m(dr, dz)− λ(r, Yr−)F(dz)dr).

Let

Mt =
∫ t

t0

Πrσ(Yr)S
β
r

∂V
∂x

(r, Xr, Sr, Yr)dWr +
∫ t

t0

σ(Yr)S
β+1
r

∂V
∂s

(r, Xr, Sr, Yr)dWr

+
∫ t

t0

K

∑
j=1

{
V(r, Xr, Sr, ej)−V(r, Xr, Sr, Yr−)

}(
mY − νY)(dr, {ej}

)
+
∫ t

t0

∫
Z

V(r, Xr− − (1− θr−)z, Sr, Yr)−V(r, Xr−, Sr, Yr)(m(dr, dz)− λ(r, Yr−)F(dz)dr).

If M is an (F, P)-martingale, then taking the conditional expectation given Xt = x, St = s,
Yt = ei on both sides of inequality (A3) yields

V(t, x, s, ei) ≤ v(t, x, s, ei),

and the equality holds if H is a maximizer of Equation (A2). Then, it only remains to
prove that the function V(t, x, s, ei) = −e−γx+J1(t)s−2β+J2(t,ei) is such that the process M is
an (F, P)-martingale. To this aim, observe that J1(t) and J2(t, ei) are both bounded in [t0, T]
and we consider the localizing sequence of random times {τ̃n}n∈N defined as

τ̃n := inf
{

t ≥ t0 : S−2β
t > n, Xt < −n

}
, n ∈ N.
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Then, {τ̃n}n∈N is an increasing sequence, limn→∞ τ̃n ∧ T = T and hence we get that

E
[ ∫ T∧τ̃n

t0

γ2σ2Π2
r S2β

r V2(r, Xr, Sr, Yr)dr
]

+E
[ ∫ T∧τ̃n

t0

4β2σ2 J2
1 (r)S

−2β
r V2(r, Xr, Sr, Yr)dr

]
+E

[ ∫ T∧τ̃n

t0

∣∣∣V(r, Xr, Sr, Yr−)
∣∣∣ K

∑
j=1

(
eJ2(r,ej)−J2(r,Yr−) − 1

)
νY(dr, {ej})

]

+E
[ ∫ T∧τ̃n

t0

λ(r, Yr−)
∣∣∣V(r, Xr−, Sr, Yr)

∣∣∣ sup
z∈Z

(
eγ(1−θr)z − 1

)
dr
]
< ∞,

which concludes the proof.
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