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Abstract: The development of electrocatalysts for energy conversion and storage devices is of
paramount importance to promote sustainable development. Among the different families of mate-
rials, catalysts based on transition metals supported on a nitrogen-containing carbon matrix have
been found to be effective catalysts toward oxygen reduction reaction (ORR) and hydrogen evolution
reaction (HER) with high potential to replace conventional precious metal-based catalysts. In this
work, we developed a facile synthesis strategy to obtain a Fe-N-C bifunctional ORR/HER catalysts,
involving wet impregnation and pyrolysis steps. Iron (II) acetate and imidazole were used as iron
and nitrogen sources, respectively, and functionalized carbon black pearls were used as conductive
support. The bifunctional performance of the Fe-N-C catalyst toward ORR and HER was investigated
by cyclic voltammetry, rotating ring disk electrode experiments, and electrochemical impedance
spectroscopy in alkaline environment. ORR onset potential and half-wave potential were 0.95 V
and 0.86 V, respectively, indicating a competitive performance in comparison with the commercial
platinum-based catalyst. In addition, Fe-N-C had also a good HER activity, with an overpotential
of 478 mV @10 mAcm−2 and Tafel slope of 133 mVdec−1, demonstrating its activity as bifunctional
catalyst in energy conversion and storage devices, such as alkaline microbial fuel cell and microbial
electrolysis cells.

Keywords: PGM-free electrocatalysts; oxygen reduction; hydrogen evolution; energy conversion;
bioelectrochemical systems

1. Introduction

The environment pollution generated by use of fossil fuels combined with their de-
pletion demands urgent development of renewable and clean energy technology. In this
scenario, fuel cells and electrolyzers offer a good strategy for electrochemical energy storage
and conversion; in particular microbial fuel cells are able to generate electricity by the oxi-
dation of organic matter at the anode side promoted by the action of microorganisms [1–3].
Oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) are the most
crucial cathodic reactions of fuel cell and electrolyzers, respectively. The development of
bifunctional electrocatalyst materials plays a key role in the rapid advancement of these
hydrogen-based renewable energy strategies [4].

The most used catalysts for ORR and HER are based Platinum Group Metals (PGM) [5,6],
due to the sluggish kinetics of both reactions. However, low availability and high cost of
PGM catalysts limits a commercial application for the MFC and electrolyzes devices, requiring
low cost and earth abundant materials [5]. The development of catalysts based on PGM-free
materials was indeed pursued by the electrocatalyst community, demonstrating that PGM-free
catalysts can be an alternative to Pt due to their high activity in acid and alkaline environment
and good durability towards both ORR and HER [1,7–13].

ORR proceeds through a 4-electron or a 2-electron mechanism [14]. Direct four-
electron mechanism is the most efficient, since it allows obtaining a maximum energy from
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the reaction and there is no hydrogen peroxide generation which contributes to the active
sites deactivation [14–16]. Metal-Nitrogen-Carbon (M-N-C) materials have shown good
catalytic performance for ORR [3,17–23].

Similar to ORR, HER activity has a pH dependence, and in alkaline environments
the reaction rate is lower than in acidic environments [4,24,25]. This kinetic limitation in
alkaline pH is due to the water dissociation step that delivers H+ for the following reactions,
which does not take place at acidic pH [26]. Regarding the reaction mechanism, the HER
takes place via the Volmer−Heyrowsky or the Volmer−Tafel mechanisms, and for both
mechanisms, the HER proceeds through the adsorption of H atoms at the electrode surface
(Hads) [27]. Although the higher activity of PGM and PGM-Free catalysts toward HER in
acidic medium as compared to alkaline one, the low durability of those materials in acid-
based fuel cells and electrolyzers under operating conditions is still a strong issue [6,28,29].
Thus, alkaline pH has been found to be a proper environment to achieve a good compromise
between activity and durability of PGM-Free materials, under operating conditions of
cathodes of fuel cells and electrolyzers.

Metal alloys and metal oxides/sulfides have shown catalytic activity for HER in alka-
line environment; bimetallic alloys have been also considered as a good candidate due to
the synergistic effect between adjacent atoms and a variation of the electronic density of
state and M-H strength [30,31]. Metal oxides have the advantage of being easily synthe-
sized, leading to chemical stability [32]. Metal sulfides are also considered as promising
electrocatalysts due to its unique properties, high conductivity, high catalytic activity, high
affinity for hydrogen adsorption, low cost, and availability [33–35]. In addition, M-N-C
materials have received recent attention as catalysts for HER [36–38]. Tailoring texture of
M-N-C materials can boost ORR and HER activity and mass transfer [39–42].

In this work, we developed a synthesis strategy to obtain a Fe-N-C bifunctional
catalyst by wet impregnation and pyrolysis steps. Iron (II) acetate and imidazole were
used as iron and nitrogen sources, respectively, and functionalized carbon black pearls
were used as conductive support. The bifunctional performance of the Fe-N-C catalyst
toward ORR and HER was investigated by cyclic voltammetry, rotating ring disk electrode
experiments, and electrochemical impedance spectroscopy in alkaline environments.

2. Results and Discussion

Thermal properties of the carbon support, pristine metal- and nitrogen-containing
precursors, and the Fe-N-C material before pyrolysis, were investigated by thermogravi-
metric analysis (TGA) (Figure 1a). A complete one-step decomposition (~1 wt.% at 800
◦C) can be seen for imidazole, with onset and end-set temperatures of 147 ◦C and 205 ◦C,
respectively, in agreement with the existing literature [43]. The TG curve of the carbon
support indicates that BP exhibits a main first mass loss in the 30–115 ◦C temperature range
due to the vaporization of adsorbed water molecules; mass losses above 120 ◦C were due
to the decomposition of oxygenated functionalities in carbon black pearls [21]. Iron acetate
also shows a first weight loss up to 120 ◦C due to the vaporization of adsorbed water
molecules, while weight losses in the 120–300 ◦C can be ascribed to salt decomposition
leading to formation of iron oxide [44]. TG curves of the Fe-N-C precursor show three main
mass losses: the first is due to vaporization of adsorbed water molecules; the second is due
to the decomposition of imidazole and iron salt, and the third one above 400 is due to the
desorption of oxygen-groups in the carbon support matrix. As expected, the TG curve of
the Fe-N-C precursor is different as compared to the pristine compounds, imidazole, iron
acetate, and BP, in which the main mass loss from 138 to 316 ◦C (Table 1) indicates a higher
contribution of imidazole carbonization, as can be evidenced by comparison of TG curves
profiles for imidazole and iron acetate at this temperature range.
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Figure 1. Thermogravimetric analysis of carbon black pearls, iron acetate, imidazole, and Fe-N-C precursor before 
pyrolysis treatment (a); Raman spectra and curve fitting of the Fe-N-C catalyst (b); XRD patterns for the Fe-N-C catalyst 
(Blue) and Fe-N-C precursor (Gray), imidazole (Red) carbon black pearls (Black), and iron acetate (Orange) (c) and, SEM 
image for the Fe-N-C materials before (d) and after (e) pyrolysis under ammonia atmosphere. 

Figure 1c shows XRD patterns of Fe-N-C material before and after pyrolysis in 
ammonia atmosphere and XRD pattern of the pristine carbon support, metal-, and 
nitrogen-containing precursors. The diffractogram for imidazole shows well-defined and 
intense peaks in the 2θ range 10–30°, in good agreement with the reference diffraction 
pattern (22–1759 in the ICDD database). For BP, two peaks at 2θ = 23.8° and 43° are 
observed, corresponding to (002) and (101) diffractions of graphitic carbon, respectively 
[53]. The peak at 2θ = 25° corresponding to (002) diffraction of graphitic carbon can be 
seen also for iron acetate as a contribution of the acetate anion. The diffraction pattern for 
the Fe-N-C precursor before pyrolysis shows the typical peaks of graphitic carbon from 
the BP matrix. This profile is also evident in the pattern of the pyrolyzed material, after 
complete iron and nitrogen-based precursors graphitization. No peaks related to the 

Figure 1. Thermogravimetric analysis of carbon black pearls, iron acetate, imidazole, and Fe-N-C precursor before pyrolysis
treatment (a); Raman spectra and curve fitting of the Fe-N-C catalyst (b); XRD patterns for the Fe-N-C catalyst (Blue) and
Fe-N-C precursor (Gray), imidazole (Red) carbon black pearls (Black), and iron acetate (Orange) (c) and, SEM image for the
Fe-N-C materials before (d) and after (e) pyrolysis under ammonia atmosphere.

The Raman spectrum (Figure 1b) of Fe-N-C catalyst shows the G and D band: the
first one is related to the E2g mode of ordered graphitic carbon, while the second one
is related to A1g vibrational mode from defects in the carbon matrix. The D3 band is
also observed, arising from interstitial defects of amorphous sp2 carbon [45,46]. The
ratio between the intensity of D and G bands (ID/IG) was 1.04, in good agreement with
others metal/nitrogen-doped carbon catalysts reported in literature [47–50]. Such value
is related to the density of functional groups in the carbon framework [51,52], confirming
the role of nitrogen-containing precursor and ammonia atmosphere in the carbon matrix
functionalization with iron and nitrogen functionalities.
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Table 1. Temperature range (TRange) and the corresponding mass loss (wt.%) from TG curves.

Parameter Imidazole FeAc BP Fe-N-C

Mass loss I
Trange (◦C) 147–224 68–135 44–117 33–75

Mass (wt.%) 98.6 8.2 15 6.5
Mass loss II -
TRange (◦C) - 204–258 136–223 138–316

Mass (wt.%) - 7.2 8 29.6
Mass loss III -
TRange (◦C) - 261–369 324–744 324–755

Mass (wt.%) - 38 17 9.30
Residual mass

(wt.%) 1.4 39.2 59 55

Figure 1c shows XRD patterns of Fe-N-C material before and after pyrolysis in am-
monia atmosphere and XRD pattern of the pristine carbon support, metal-, and nitrogen-
containing precursors. The diffractogram for imidazole shows well-defined and intense
peaks in the 2θ range 10–30◦, in good agreement with the reference diffraction pattern
(22–1759 in the ICDD database). For BP, two peaks at 2θ = 23.8◦ and 43◦ are observed,
corresponding to (002) and (101) diffractions of graphitic carbon, respectively [53]. The
peak at 2θ = 25◦ corresponding to (002) diffraction of graphitic carbon can be seen also for
iron acetate as a contribution of the acetate anion. The diffraction pattern for the Fe-N-C
precursor before pyrolysis shows the typical peaks of graphitic carbon from the BP matrix.
This profile is also evident in the pattern of the pyrolyzed material, after complete iron
and nitrogen-based precursors graphitization. No peaks related to the presence of iron
oxides or carbides, suggesting a good interaction of the metal- and nitrogen-containing
precursors in the formation of M-N-C active sites. SEM images (Figure 1d,e) indicated a
porous structure for both samples before and after pyrolysis. Additionally, SEM images
indicates that the heat treatment in ammonia atmosphere preserves the morphology of
the Fe-N-C precursor. As previously found for similar materials [54], the surface area
slightly increased after pyrolysis in ammonia, as confirmed by electrochemical surface area
(ECSA) values which increased from 806 m2g−1 (non-pyrolyzed material) to 875 m2g−1

(pyrolyzed material) The XPS analysis showed that the atomic composition of the catalysts
(Table S1) is mainly based on carbon and oxygen, while nitrogen and iron are present in
a small percentage (1.90% and 0.12%, respectively). Concerning nitrogen speciation, the
relative percentage of pyridinic is the highest of all types of nitrogen atoms and nitrogen
coordinated to iron is also present (Figure S1). It was shown before that pyridinic nitrogen
and Fe-Nx species have a crucial importance for ORR, behaving as active sites [55].

2.1. Electrochemical Characterization
2.1.1. Catalytic Activity towards ORR

Figure 2 shows the disk current (Figure 2a) and the hydrogen peroxide intermediate
percentage (Figure 2b) obtained from the LSV-RRDE experiments, for the Fe-N-C catalyst
and bare carbon support. As observed in Figure 2a, Fe-N-C sample is more active toward
ORR than the carbon support, in terms of onset potential (Eonset), half-wave potential (E1/2),
and limiting current density (Jlim). Those value are similar and even higher as compared to
previous reports on other M-N-C materials [5,8,56]. The number of electrons exchanged for
the Fe-N-C catalyst approaches to 4 (3.99 ± 0.01 at E1/2 V), mainly indicating a direct 4e−

transfer mechanism, with a low peroxide percentage (Table S2). This value became slightly
lower at higher overpotentials (3.8 ± 0.01 at 0.5 V), for the active role of black pearls in
promoting oxygen reduction via a 2e− steps [57].
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plot; (d) Nyquist plots at 0.95 V(E1), 0.85 V (E2), 0.7 V (E3); (e,f) EIS equivalent circuits.

Figure 2c shows Tafel plot for the Fe-N-C sample, and Table S3 shows the results of
Tafel analysis: Tafel slope (2.303RT/αcF), exchange current density (J0), the cathodic trans-
fer coefficient (αc), according to Equation (1) [58–60]. Fe-N-C shows a low current density
(lcd) and a high current density (hcd) Tafel slope of 55.6 and 103 mVdec−1, respectively,
similar to previous reports dealing with Pt-based electrodes in alkaline medium [60,61].
J0 of 1.2 × 10−3 mAcm−2 was also comparable to Pt-based electrodes [61,62] and even
higher than other M-N-C catalysts reported in literature [63]. As far as ORR mechanism
is concerned, the rate determining step (rds) of ORR is the second electron transfer and
cleavage of the molecular oxygen bond, in agreement with previous reports on ORR on
Fe-Nx-C active sites [62,64].

Electrochemical impedance spectroscopy was carried out to obtain further insights on
the ORR catalytic activity of Fe-N-C electrode surface. The Nyquist plots (Figure 2d) taken
at E1 (onset potential) consist of a tail in the low frequency range; polarizing the electrode
at a lower potential value (E2 and E3), the Nyquist plot shows a well-defined semicircle
which can be modeled to a Randles-type circuit (Figure 2e). In the equivalent circuit (EC),
R1 represents ohmic resistance, R2 represents charge transfer resistance, and Q2 represents
a constant phase element related to double layer capacitance (Q2). According to this EC,
charge transfer limits the reaction kinetics [65–67], while mass diffusion is limited to a
finite and narrow layer. A short Warburg diffusion element (W) was added to model the
low-frequency process related to diffusion phenomena.

The fitting provided the following results: R1 was around 40 Ω and represents the
resistance of the electrolyte solution (0.1 M KOH). Such a value agrees with resistance
values obtained by different authors in previously published works dealing with ORR
in 0.1 M KOH [68,69]. Moreover, a value of 31.7 Ω−1/2 was obtained for the Warburg
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element. The Q2 value was 2.10 mFs(a−1) (a = 0.875 ± 0.035) at E1 and increased up to
35% as the potential decreased (E2 and E3). Charge transfer resistance (R2) was high at
onset potential (2677 ± 79 Ω), while it decreased as the potential decreased and ORR
took places (280 ± 3 Ω and 181 ± 2 Ω at E2 and E3, respectively). Since charge transfer
resistance across the reaction is strongly correlated with the electrochemical performance,
EIS analysis confirmed the ORR activity of the Fe-N-C sample previously discussed by LSV
measurements for the Fe-N-C sample.

Durability of the Fe-N-C catalyst was investigated in terms of a start-stop test, by
acquiring 7000 CV cycles in N2-saturated 0.1 M KOH electrolyte (Figure S2). Figure 3a
shows ECSA retention over the CV cycles, indicating a good stability in term of ECSA.
Hence, Fe-N-C had a higher durability as compared to the state-of-the-art Pt/C electrode,
since previous works indicate that it shows a 60 to 80 % ECSA loss over cycling [62,70].
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ORR activity over 1000 CV cycles in O2-saturated electrolyte was also investigated,
in terms of variation of Eonset, E1/2, Jlim, n, and HO−

2 percentage (Table S2 and Figure 3).
As shown in Figure 3b, n and E1/2 were stable over cycling, with a slightly decrease in
Jlim (Figure 3a). Methanol and SCN− tolerance were investigated by LSV in O2-saturated
electrolyte (Figure S3). The obtained data showed that ORR activity was not affected by
methanol poisoning: in fact, onset potential, half-wave potentials, and limiting current
density remained almost constant up to 2 M concentration of methanol in the electrolyte
solution (Figure S3a). This finding is in good agreement with previous works reporting
MeOH tolerance studies of Fe-N-C catalysts as compared to Pt/C, which shows a consid-
erable decrease in ORR performance above 0.01 M MeOH concentration [71]. Moreover,
SCN− tolerance tests (Figure S3b) indicate a slight decrease in Eonset, (2.1%) E1/2, (3.4%)
and Jlim (10.2%) parameters. This finding indicates that, although SCN− is able to bind to
the iron center of active sites [40], this effect is moderate in alkaline environments, since
OH− acts as an active site blocker [72,73].

2.1.2. Catalytic Activity towards HER

The activity towards HER for the synthesized Fe-N-C material was also evaluated
and compared with Pt/C as state-of-the art catalyst. Figure 4 shows the electrochemical
measurements performed in N2-saturated 0.1 M KOH electrolyte. The HER parameters
extrapolated from the LSV curves (Figure 4a) showed a good catalytic activity for the Fe-N-
C sample in terms of Eonset (350 mV) values and the potential for achieving J = −10 mAcm−2

(ï10), which is of 478 mV. These values were comparable to those observed for others PGM-
Free catalysts (Table 2) [74–76]. As expected, the Pt/C electrode showed lower values of
Eonset (11 mV) and ï10 (76 mV). The higher kinetic limitation of the Fe-N-C material is a
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consequence of the difference in active sites density between Fe-N-C and Pt/C: M-N-C
materials suffer indeed from disadvantages in comparison to metal bulk catalysts due to
distance between active sites [77].

Catalysts 2021, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 4. Electrochemical characterization for the Fe-N-C and Pt/C catalysts in N2-saturated 0.1 M 
KOH electrolyte: (a) LSV curves at 5 mVs−1; (b) Tafel plot, and (c) Nyquist plot at different potential 
values and equivalent circuit (inset of Figure 4c) for data fitting (experimental data-pointed line, 
data fit-dashed line). 

Table 2. HER parameters at a current density of −10 mAcm−2 for the synthesized Fe-N-C material 
and other PGM and PGM-Free catalysts reported in literature. 

Catalysts Eonset (mV) η10 (mV) Tafel Slope (mVdec−1) Ref. 
Fe-N-C 350 478 100 this work 

Fe2+Ni@NCF - 484 148 [80] 
Fe2+Ni-PBA - 526 213 [80] 

Fe/Fe3C@N-C-2 - 560 113 [76] 
0.3 Ni-Fe-Pt NCs 476 490 89 [75] 
Fe2O3/NS-C-800 110 270 165 [84] 

Fe2O3(1)-Co(1) NPs-N-GR 178 410 77 [74] 
Ni3S2/MWCNT-NC - 480 102 [85] 

MoS2–ZnO - 490 171 [86] 
Pt/C 11 76 106 this work 
Pt/C 30 101 64 [80] 

Electrochemical behavior for the HER was also investigated by EIS analysis acquiring 
Nyquist plots (Figure 4c) at three different potentials: at 0.40 V (E1), 0.45 V (E2-between 
Eonset and η10) and 0.50 V (E3-η10). To model the HER process at the electrode surface, a 
Randles-type equivalent circuit was adopted, replacing capacitance in the circuit model 
illustrated in Figure 2e by a constant phase element (inset of Figure 4c). The EIS data fitting 

Figure 4. Electrochemical characterization for the Fe-N-C and Pt/C catalysts in N2-saturated 0.1 M
KOH electrolyte: (a) LSV curves at 5 mVs−1; (b) Tafel plot, and (c) Nyquist plot at different potential
values and equivalent circuit (inset of Figure 4c) for data fitting (experimental data-pointed line, data
fit-dashed line).

Furthermore, the reaction mechanism was investigated from the Tafel plot analysis
(Figure 4b). As previously discussed, HER mechanism in alkaline media proceeds through
H2O dissociation: OH− is released in solution with adsorbed atomic hydrogen bound at the
metal surface (Volmer step), then an electrochemical desorption (Heyrovsky step) or Metal-
Had recombination (Tafel step) takes place. However, the Volmer–Heyrovsky reaction
preferentially occurs on both metal bulk and single sites M-N-C catalysts at pH > 7 [78–80].
A Tafel slope of 133 and 106 mVdec−1 was obtained for Fe-N-C and Pt/C, respectively.
These values were in between the predicted Tafel slopes for the combination of the rate-
determining Volmer (118 mVdec−1) and Heyrovsky (40 mVdec−1) steps, suggesting that
HER on both electrode surfaces occurs through the Volmer–Heyrovsky reactions described
by Equations (1) and (2) in Table S4. An exchange current density (J0) of 1.30 × 10−3 and
0.44 mAcm−2 was achieved in the case of Fe-N-C and Pt/C electrodes, respectively, in
good agreement with LSV analysis and reported values in literature [68,76,81–83].

Electrochemical behavior for the HER was also investigated by EIS analysis acquiring
Nyquist plots (Figure 4c) at three different potentials: at 0.40 V (E1), 0.45 V (E2-between
Eonset and η10) and 0.50 V (E3-η10). To model the HER process at the electrode surface, a
Randles-type equivalent circuit was adopted, replacing capacitance in the circuit model
illustrated in Figure 2e by a constant phase element (inset of Figure 4c). The EIS data fitting
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are also reported in Table S5. Nyquist plot analysis showed that solution resistance (R1) was
kept around 63 Ohm independent on electrode polarization. Additionally, Q2 changes were
negligible, ranging between 3.8 × 10−3 and 3.4 × 10−3 S.sn in the investigated potentials,
while the observed semicircle related to charge transfer resistance (R2) decreases as the
overpotential increases from Eonset to η10.

Table 2. HER parameters at a current density of −10 mAcm−2 for the synthesized Fe-N-C material
and other PGM and PGM-Free catalysts reported in literature.

Catalysts Eonset (mV) η10 (mV) Tafel Slope
(mVdec−1) Ref.

Fe-N-C 350 478 100 this work
Fe2+Ni@NCF - 484 148 [80]
Fe2+Ni-PBA - 526 213 [80]

Fe/Fe3C@N-C-2 - 560 113 [76]
0.3 Ni-Fe-Pt NCs 476 490 89 [75]

Fe2O3/NS-C-
800 110 270 165 [84]

Fe2O3(1)-Co(1)
NPs-N-GR 178 410 77 [74]

Ni3S2/MWCNT-
NC - 480 102 [85]

MoS2–ZnO - 490 171 [86]
Pt/C 11 76 106 this work
Pt/C 30 101 64 [80]

Concerning the performance as a bifunctional Fe-N-C catalyst, the electrochemical
analysis showed a higher ORR activity as compared to HER as expected. This behavior can
be related to the distance between the Fe-N-C active sites, more critical for H2 evolution
than for oxygen reduction. Although the iron content used to synthesize the Fe-based
catalyst have been adopted to avoid formation of inactive metal-based species, the used
percentage of iron is still under a saturation range, since iron oxide or metallic particles
phases were not evidenced as suggested from XRD analysis, also in agreement with
previous studies reported in literature [87,88]. HER activity of our Fe-N-C electrocatalyst
is lower as compared to activity of different M-N-C catalysts synthesized with a higher
metal concentration [37,74]; therefore, an enhancement in HER activity could be achieved
by tailoring iron content to obtain higher density of Fe-based active sites [89].

3. Materials and Methods
3.1. Materials

Carbon Black pearls 2000 (BP) and Imidazole (>98.0%) were supplied by Cabot cor-
poration (Billerica, MA, US) and TCI Europe N.V (Zwijndrecht Belgium), respectively.
Fe(C2H3O2)2 , HNO3, N,N-Dimethylformamide, and Nafion solution were supplied from
Sigma-Aldrich (St. Louis, MO, US). Methanol and potassium thiocyanate–KSCN were
supplied by Merk. Pt/C (40% platinum on carbon black was purchased by Alfa Aesar
(Karlsruhe; Germany). Millipore water (Merk, 18.2 MΩcm) was used in all the experiments.

Carbon Support and Catalyst Preparation

The Fe-N-C electrocatalyst was prepared as previously described [69]. Briefly, 400 mg
of BP (previously activated in refluxing concentrated HNO3 solution) were added in an
water/acetone solution (V = 160 mL, 10 wt. % of acetone), followed by the addition of
imidazole (400 mg) under stirring at room temperature. Iron acetate was then added
to an iron content of 0.2 wt.%. The suspension was stirred at room temperature for 2 h,
followed by solvent removal by evaporation at 70 ◦C overnight. The Fe-N-C precursor was
grounded and pyrolyzed in anhydrous NH3 flow in two steps: a first heat treatment at
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400 ◦C (20 ◦Cmin−1 for 1 h) and a second one at 800 ◦C (25 ◦Cmin−1 for 1 h) to obtain the
Fe-N-C catalyst.

3.2. Methods

Thermogravimetric analysis (TGA) of the catalyst precursors was performed by using
a TGA/DSC1 Star System (Mettler Toledo, Columbus, Ohio, US): heating rate of 5 ◦C
min−1 under a N2 flow. Powder X-ray diffraction (XRD) patterns were acquired by a
Philips PW1730 diffractometer with Cu K αradiation (λ = 1.5406 Å), and a Leo Supra
35 field-emission scanning electron microscope (Carl Zeiss, Oberkochen, Germany) was
used for the investigation of samples’ morphology. Raman spectroscopy was carried out by
using a DXR Raman Microscope (Thermo Scientific, Waltham, MA, USA): laser excitation
wavelength 532 nm with a 10× objective, laser power 0.1 mW.

3.2.1. Electrochemical Characterization

A three-electrode electrochemical cell was used for the electrochemical experiments:
the working electrode (WE) was either a rotating ring disk electrode (RRDE-AFE6R2GCPT,
Disk OD = 5.5 mm; Ring OD = 8.50 mm; Ring ID = 6.50 mm) or a glassy carbon disk
(AFE1XFP030GCR, 3 mm disk diameter, 0.071 cm2, for ORR and HER experiments, respec-
tively, both purchased by Pine Research Instrumentation (Durham, NC, US). A graphite rod
was used as counter electrode and a saturated calomel electrode (SCE, Amel 303/SCG/12)
was used as reference electrode. A VMP3 Potentiostat (Bio Logic Science Instruments,
Seyssinet-Pariset, France) equipped with an EC-Lab V10.18 software was used for the
electrochemical measurements. The potential values for all electrochemical tests were
converted to the reversible hydrogen electrode (RHE).

The WE for the ORR experiments was modified with the catalyst ink as previously
reported [62] to a catalyst loading of 0.23 mgcm−2 and 0.5 mgcm−2 for ORR and HER
experiments, respectively. A WE based on Pt/C was also prepared as control, by dispersing
1 mg of Pt/C 40 wt.% in 1 mL of DI, 0.3 mL isopropanol, and 5 µL Nafion solution 5 wt.%.
The dispersion was treated in an ultrasonic bath for 30 min at 10 ◦C, and the ink dropped
(4.2 µL) onto GC (0.0455 mgcm−2 catalyst loading corresponding to 0.0182 mgcm−2 Pt
loading, as generally reported in literature [90]).

3.2.2. Cyclic Voltammetry (CV)

CV was carried out in either N2 or O2—saturated aqueous KOH 0.1 M; prior measure-
ments, the electrode was activated by performing 100 to 300 CV cycles at 500 and 5 mVs−1.
ECSA was obtained from CV in N2-saturated KOH by integrating capacitive current over a
potential window of 0.90 V vs. RHE, assuming a specific capacitance of 0.2 Fm−2 [62].

LSV-RRDE experiments for assessing ORR activity were carried out at a scan rate of
5 mVs−1 and electrode rotation speed of 1600 rpm, with the Pt ring polarized at 1.2 V vs.
RHE [91]. Current density reported in the Figures within the manuscript was background
corrected and the potentials were iR-compensated. The number of electrons transferred
(n) and HO2

− produced were calculated as previously reported [62]. Methanol tolerance
was investigated by LSV in O2-saturated electrolyte, before and after addition of increasing
aliquots of methanol to the electrolyte solution to achieve the following concentrations:
0.01, 0.05, 0.1, 1, and 2 M. LSV curves were acquired at a scan rate of 5 mVs−1 and a
rotation speed of 1600 rpm with a poisoning time of 5 min after the alcohol addiction [71].
The SCN− poisoning test was also performed by acquiring LSV curves before and after
addition of KSCN (0.01 M) with a poisoning time of 40 min [79].

LSV-RRDE experiments for assessing HER activity were carried out in N2-saturated
electrolyte at a scan rate of 5 mVs−1 from 0.11 to −0.59 V vs. RHE. The reported potential
values were iR-compensated at 100% by using the impedance spectroscopy. Eonset and the
overpotential necessary to achieve a 10 mA cm−2 current density (η10) were extrapolated
from the LSV curves.
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Tafel plots was obtained by plotting E (electrode potential) vs the logarithm of Jk
(kinetic current density) according to the Equation (1):

E = E0 +
2.303RT
αc F

log J0 −
2.303RT
αc F

log Jk (1)

where E0 is standard potential, R is the universal gas constant, T is temperature, F is the
Faraday constant, αc is the transfer coefficient, J0 is the exchange current density, and Jk
was calculated with the Equation (2), where JD is the limiting current density:

Jk(E) =
∣∣∣∣ JD J(E)
JD−J(E)

∣∣∣∣ (2)

Electrochemical Impedance Spectroscopy (EIS) spectra was carried out under hydro-
dynamic conditions at 1600 rpm and at different potential values E1 (Eonset = 0.95 V), E2
(E1/2 = 0.85 V), E3 (E@Jlim = 0.7 V) in a 50 mHz–100 kHz frequency range with an applied
alternating voltage with an amplitude of 10 mV, for ORR experiments. As far as HER
experiments are concerned, EIS analysis was performed under static conditions at the
potential values of 0.39, 0.44 and 0.49 V vs. RHE. EIS spectra were modeled by means of
the EC-Lab ZFit impedance fitting tools.

The durability of Fe-N-C was evaluated by 7000 CV cycles (500 mVs−1 in N2-saturated
electrolyte) to evaluate the ECSA changes, according to a well-established protocol [92].
tests were carried out according to well established protocols [92]. In addition, CV was
carried out to study possible changes in catalytic activity over CV cycles (scan rate of
500 mVs−1 in oxygen-saturated electrolyte).

4. Conclusions

An iron–nitrogen–carbon catalyst was developed by impregnating carbon black pearls
with iron acetate and imidazole as a nitrogen source, followed by pyrolysis steps in am-
monia atmosphere. XRD analysis does not indicates presence of metallic or metal oxide
phases, suggesting that the nitrogen-containing precursor and pyrolysis in ammonia at-
mosphere were an effective combination to functionalize the carbon matrix, avoiding iron
precipitation as impurities or less catalytic active sites, in agreement with the Raman and
XPS analysis that showed a high IG/ID ratio and a high content of active catalytic sites such
as pyridinic and Fe-Nx-C moieties. In addition, pyrolysis in ammonia also preserves the
carbon support morphology leading to a high ECSA. The Fe-N-C catalyst showed a high
ORR activity characterized by a direct four electron transfer mechanism, high onset poten-
tial (0.95 V), half-wave potential (0.85 V), and limiting current density (−4.63 mAcm−2), as
pointed out by the electrochemical characterization. A good durability was also indicated
by stable values of ECSA and ORR parameters over 7000 and 1000 CV cycles, respectively.
The catalysts also displayed a good tolerance to methanol and SCN−, as indicated by only
slight variations of ORR parameters after the addition of the contaminants.

Catalytic performance towards HER showed an onset potential of 0.35 V, and a current
density of −10 mA cm−2 was reached when overpotential achieved a value of 0.48 V. Tafel
analysis showed that HER proceeds through Volmer–Heyrovsky reaction and a higher
kinetic limitation is observed for the HER, despite ORR as compared to the state-of-the
art Pt-based catalyst. Difference in activity towards both reactions can be related to the
effect of density and proximity of the active sites, which is more critical for the HER
since combination of hydrogen atoms demands short distances between the metal-based
sites. Despite the promising results obtained, a higher HER activity could be achieved by
tailoring the iron content in order to increase the density of the active sites. The body of the
electrochemical analysis indicated that Fe-N-C can be a potential candidate as bifunctional
ORR/HER cathodes to replace PGM materials in alkaline fuel cells, microbial fuel cells and
microbial electrolysis cells.
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cycles in O2-saturated 0.1 M KOH.; Table S3: Electrochemical parameters extrapolated from the Tafel
analysis, Figure S2: Cyclic voltammograms in N2-saturated electrolyte at a scan rate of 5 mVs−1 over
7000 cycles for the Fe-N-C sample; Figure S3: LSV curves for the Fe-N-C catalyst in O2-saturated
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