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Abstract
We study the optimal asset allocation problem for a fund manager whose compensa-
tion depends on the performance of her portfolio with respect to a benchmark. The
objective of the manager is to maximise the expected utility of her final wealth. The
manager observes the prices but not the values of the market price of risk that drives
the expected returns. Estimates of the market price of risk get more precise as more
observations are available. We formulate the problem as an optimization under partial
information. The particular structure of the incentives makes the objective function
not concave. Therefore, we solve the problem by combining the martingale method
and a concavification procedure and we obtain the optimal wealth and the investment
strategy. A numerical example shows the effect of learning on the optimal strategy.
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1 Introduction

The reward of a fund manager usually increases when the Asset Under Management
(AUM) grows, while it decreases when the AUM shrinks. The AUMmay grow either
because of a higher value of the assets or because of new money flowing into the
fund. Good performances of the fund with respect to its relative benchmark are likely
to attract new investors. Therefore, contracts based on the AUM create an implicit
incentive for the manager to beat the benchmark. We study the problem of a portfolio
manager whose compensation depends on the AUM modelled through the relative
performances with respect to a benchmark. This framework generalizes the setting
of Basak et al. (2007), by considering a market model with one risk-free and one
risky asset whose expected returns depend on an unobservable stochastic process, the
“market price of risk”. We introduce the realistic assumption that the manager has
a limited knowledge on the market, she can only observe stock prices and estimates
the market price of risk from them. Therefore, the manager is facing an optimization
problem under partial information.

Optimization problems under partial information are usually solved in two steps:
the first step, called reduction, consists of deriving the conditional distribution of the
market price of risk with respect to the observed information flow; the second step
solves the equivalent problem under the observed information. An important feature of
our setting is that, while themarket of claims contingent to the knowledge of themarket
price of risk is incomplete, themarket restricted to those claims contingent only to stock
prices is instead complete. We will exploit this fact to solve the optimization problem
applying a martingale approach with the unique equivalent martingale measure (under
the restricted setting) and then using a concavification argument to determine the
unique optimal solution.

Although both problems of relative incentives and of optimization under partial
information have been separately addressed in many papers (see the literature review
provided in Sect. 1.1), this one is, to the best of our knowledge, the first contribution
that analyses the combined effect of such issues on the optimal strategy of a portfolio
manager. We contribute to the literature by providing the solution to the optimization
problem in semi-closed form and we present one example where we show that the
optimal strategy depends on the risk aversion of the manager and on the economic
situation of themarket.When the risk aversion of themanager is larger (lower) than that
of a manager equipped with a logarithmic utility, she will tend to decrease (increase)
her investment in the risky asset to hedge against the future adjustment in the estimates
of the unknown parameter. We will also see that the larger the uncertainty on the value
of the market price of risk, the greater the impact on the strategy and the consequent
benefits in terms of expected utility when following the optimal strategy. Finally, as
expected, the effect of learning becomes more tangible for longer time spans.

The paper is organized as follows. After a literature review (Sect. 1.1), Sect. 2
presents the market model and the portfolio optimization problem faced by the man-
ager. In Sect. 3 we solve the optimization problem in two steps. First, we derive the
dynamics of the filtered estimate of market price of risk, in order to reduce the prob-
lem to a common information flow. This procedure allows to obtain market dynamics
driven by a unique source of randomness and hence the market model under partial
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information turns out to be complete. Second, we apply the martingale method along
with concavification to characterize the optimal final wealth and the optimal invest-
ments strategy. Section 4 contains a numerical illustration of our results. Conclusions
and comments are provided in Sect. 5. Proofs and computations are collected in the
Appendix.

1.1 Literature review

The structure of portfolio managers’ compensation is studied for instance in Ma et al.
(2019), who show that performance based incentives represent the main form of com-
pensation for portfolio managers in the US mutual fund industry. Of course, this is
not the only type of incentive for fund managers. Option-like incentives of different
nature (as for example management fees, investor’s redemption options or funding
options by prime brokers) apply in fund managers compensation contract, and influ-
ence manager’s leverage decisions (see, e.g. Lan et al. 2013; Buraschi et al. 2014)

Basak et al. (2007) compute the optimal strategy followed by the manager under
the assumption that she knows exactly the parameters driving the asset price process.
They show that, when at an intermediate date the return of the fund is either very
low or very large compared to the benchmark, the manager forgets about the implicit
incentives determined by the fund-flows and reverts to the normal strategy, that is the
one determined by Merton (1971). However, when the current return is closer to the
benchmark, the manager tilts her strategy from the Merton level to try to beat the
benchmark. Nicolosi et al. (2018) extend their framework to consider mean-reversion
either in the market price of risk or in the volatility. Basak et al. (2008) introduce
additional restrictions on the set of admissible strategies to contrast the tendency of
managers to increase riskiness when their portfolio under-performs the benchmark, in
order to align managers’ scope to that of investors. The optimal allocation problem for
institutional investors concerned about their performance with respect to a benchmark
index is studied in Basak and Pavlova (2013). Their objective is to show how incentives
influence the prices of the assets hold by institutional investors. In particular the authors
found that, differently from standard investors, institutions tend to form portfolios
of stocks that compose the benchmark index, they push up prices of stocks in the
benchmark index by generating excess demand for index stocks and induce excess
correlation among these stocks. Carpenter (2000) analyses the optimal investment
problem of a risk adverse manager who is compensated with a call option on the asset
under management. In this paper the market model is assumed to be complete and the
non-concavity of the objective function is addressed by introducing a concavification
argument and showing that the optimal solution takes values on a set where the original
non-concave objective function is equal to the minimal concave function dominating
it. An explicit solution to this problem in the Black-Scholes setting is provided in
Nicolosi (2018) while Herzel and Nicolosi (2019) extend the solution to the case of
mean-reverting processes. The impact of commonly observed incentive contracts on
managers’ decisions is also studied in Chen and Pennacchi (2009), where the authors
found that for particular compensation structure, when a fund is performing poorly,
the deviation from the benchmark portfolio is larger than in case of good performance.
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Other important contributions on the literature of delegated portfolio management
problem include Cuoco and Kaniel (2011), who investigate the case where managers
receive a direct compensation, related to the performance, from investors and discuss
asset price implications in equilibrium. Different compensation schemes have been
considered, for instance, in Barucci and Marazzina (2016) in a portfolio optimization
problem for a manager who is remunerated through a High Water Mark incentive fee
and amanagement fee and in Barucci et al. (2019) where a penalty on the remuneration
is applied if the fund value falls below a fixed threshold, namely aminimum guarantee.

Optimal asset allocation under partial information has been widely studied in the
literature. Brendle (2006) considered the optimal investment problem for a partially
informed investor endowedwith bounded CRRApreferences in amarket model driven
by an unobservable market price of risk via the HJB approach. Hata and Sheu (2018)
also included consumption. A more general setting, not necessarily Markovian, has
been analysed for instance in Björk et al. (2010) and Lindensjo (2016), under the
assumption of market completeness. The optimization problem in these papers is
solved using the Martingale approach.

The partial information case in a delegated portfolio management has been consid-
ered in the recent literature by Barucci and Marazzina (2015) in a slightly different
setting compared to ours, where market is subject to two regimes, modelled via a
continuous time two-state Markov chain and in Huang et al. (2012) where investment
learning is studied under a Bayesian approach.

Other contributions in the case where prices are modelled as diffusions are Lakner
(1995, 1998). Brennan (1998) and Xia (2001) study the effect of learning on the
portfolio choices, and Colaneri et al. (2020) address the problem of computing the
price that a partially informed investor would pay to access to a better information
flow on the market price of risk. Investment problems in a market with cointegrated
assets under partial information are studied in some recent works as for instance Lee
and Papanicolaou (2016) and Altay et al. (2018, 2020).

2 Market model and the portfolio optimization problem

We fix a probability space (Ω,F ,P). Let F = {Ft , t ≥ 0} be a complete and right
continuous filtration representing the global information. We consider a market model
with one risky asset with price St , the stock, and one risk-free asset with price Bt . We
assume that the price of the risk-free asset follows

dBt

Bt
= rdt (1)

with the constant r > 0 representing the constant interest rate. The risky asset price
is modelled by a geometric diffusion

dSt
St

= μt dt + σdZ S
t (2)
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where Z S
t is a one dimensional standard Brownian motion, σ > 0 is the constant

volatility and the drift is the process

μt = r + σ Xt , (3)

which depends linearly on the market price of risk Xt . The process Xt satisfies

dXt = −λ(Xt − X̄)dt + σXdZ
X
t , (4)

with starting value X0 drawn from a normal distribution with mean π0 and variance
R0. The parameter λ > 0 is a constant representing the strength of attraction toward the
long term expected mean X̄ , σX > 0 is the volatility of the market price of risk and Z X

t
is a one-dimensional standard Brownian motion correlated with Z S

t with correlation
ρ ∈ [−1, 1]. We assume that the market price of risk is a latent variable that is not
directly observed, and its value can only be derived through the observation of St . That
means that the available information is given by the filtration FS := {F S

t , t ∈ [0, T ]},
generated by the process S.1 Let us note that, since there are two risk factors Z S

t and
Z X
t , but only one traded asset besides the money market account, this market model

is incomplete.
We study the problem of a fund manager who trades the two assets, St and Bt ,

continuously in time on [0, T ], starting from an initial capital w. We assume that the
stock does not pay dividends before time T . We describe the trading strategy of the
manager by a process θt representing the fraction of wealth invested in the risky asset
at any time t ∈ [0, T ]. We only consider trading strategies that are self-financing and
based on the available information, hence defining an admissible strategy as a self-
financing trading strategy, adapted to the filtration F

S and, to prevent arbitrage from
doubling strategies,2 such that

E
[∫ T

0

(
|θt Xt | + θ2t

)
dt

]
< ∞. (5)

The set of all admissible strategies is denoted by AS . The wealth process generated
by an admissible strategy θt is

dWt

Wt
= (r + θtσ Xt )dt + θtσdZ

S
t , W0 = w > 0. (6)

The manager’s compensation is determined by the value of the AUM at time T ,
expressed by f (WT ,YT )WT , where f is a function, to be defined below, that captures
the effects of the relative performance with respect to the benchmark. The value of the

1 At any time t , F S
t is the right continuous and complete σ -algebra generated by the process S up to time

t . Specifically, F S
t := σ {Su , 0 ≤ u ≤ t} ∨ O where O is the collection of all P-null sets. Notice that

F S
t ⊂ Ft , which models the fact the manager has a restricted information on the market.

2 Condition (5) is standard and prevents the wealth process to get unbounded. Weaker conditions on the
set of admissible strategies can be considered, which may require a more technical approach.
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benchmark Yt is obtained by following the constant investment strategy β and hence
it follows

dYt
Yt

= (r + βσ Xt )dt + βσdZ S
t .

The continuously compounded returns on the manager’s portfolio and on the bench-
mark over the period [0, t] are given by RW

t = ln Wt
W0

and RY
t = ln Yt

Y0
, respectively. To

compare relative performances, we set Y0 = W0. The difference RW
T − RY

T provides
the tracking error of the final wealth relative to the benchmark. The funds flow to
relative performance relationship is described by the function

f (WT ,YT ) =

⎧⎪⎪⎨
⎪⎪⎩

fL if RW
T − RY

T < ηL

fL + ψ · (RW
T − RY

T − ηL) if ηL ≤ RW
T − RY

T < ηH

fH := fL + ψ · (ηH − ηL) if RW
T − RY

T ≥ ηH

(7)

with fL > 0, ψ > 0, and ηL ≤ ηH and it is illustrated in Fig. 1. This simplified
structure of the funds flow to relative performance relationship, called in the literature
collar type, shows that if the manager return is below the benchmark return of at least
ηL or above the benchmark return of at least ηH , the flow rate received by the fund is
flat (with different rates fL < fH ). When the relative performance, measured in terms
of tracking error, is between ηL and ηH , the flow function is a linear segment with a
positive slope. The function f also has two kinkswhen the difference RW

T −RY
T reaches

the levels ηL and ηH . The funds flow to relative performance relationship in Eq. (7)
was proposed by Basak et al. (2007) to describe an implicit incentive scheme and it
is based on the empirical analysis of Chevalier and Ellison (1997). The idea is that,
if the fund under-performs with respect to the benchmark, investors tend to withdraw
their money, the AUM decreases, and the manager receives a lower compensation.
The opposite happens in the case of over-performance. Citing Basak et al. (2007):
“(...) this simple way of modeling fund flows is able to capture most of the insights
pertaining risk-taking incentives of a risk averse manager”.

The manager maximizes the expected utility of her implicit incentives over the set
of admissible strategies AS ,

max
θ∈AS

E [u(WT f (WT ,YT ))] (8)

with initial budget W0 = w. We assume that the manager is endowed with a power
utility function

u(x) = 1

1 − γ
x1−γ , (9)

with nonnegative risk aversion parameter γ �= 1. The case γ = 1 corresponds to
the logarithmic utility. Since the market price of risk is not observable, this is an
optimization problem under restricted information. To solve it, we first reduce it to
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Fig. 1 The funds flow f (WT , YT ) as a function of relative performance RW
T − RY

T , with parameters
fL = 0.8, fH = 1.5, ηL = −0.08 and ηH = 0.08

a setting with a common information flow by replacing the unobservable process Xt

with its conditional expectation. This standard procedure allows us to consider an
equivalent optimization problem under the available information, see, e.g. Fleming
and Pardoux (1982). We characterize the conditional expectation of Xt in the next
section via Kalman filtering.

3 Optimal wealth and strategies

In this section we solve the problem (8). The first step is to estimate the unobservable
market price from stock prices. Applying the Kalman filtering theory3 we get that
the conditional distribution of market price of risk is Gaussian with conditional mean

πt := E
[
Xt |F S

t

]
, and conditional variance Rt := E

[(
Xt − E[Xt |F S

t ])2 |F S
t

]
. To

derive πt and Rt we introduce the innovation process

It := Z S
t +

∫ t

0
(Xu − πu)du. (10)

It is well known (see, e.g. Lipster and Shiryaev 2001 or Ceci and Colaneri 2012,
2014) that It is a Brownian motion with respect to the observable filtration F

S . The
proposition below, proved for instance in Lipster and Shiryaev (2001), provides the
dynamics of πt and Rt .

3 Notice that the stock price process S and its log-return generate the same type of information. This is a
key feature since the drift of the log-return is a linear function of X , and hence the Kalman filter applies.
The same setting has been considered for instance in Colaneri et al. (2020).
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Proposition 1 The conditional mean and variance of the market price of risk satisfy
the equations

dπt = −λ(πt − X̄)dt + (Rt + ρσX )d It , π0 ∈ R, (11)

dRt =
[
σ 2
X − 2λRt − (Rt + ρσX )2

]
dt, R0 ∈ R

+. (12)

From (12) we see that the conditional variance of the market price of risk is deter-
ministic and satisfies a Riccati ordinary differential equation. Using Eq. (10), we get
the dynamics of the stock, of the wealth process and of the benchmark with respect to
the innovation process

dSt
St

= (r + σπt )dt + σd It , (13)

dWt

Wt
= (r + θtσπt )dt + θtσd It , (14)

dYt
Yt

= (r + βσπt )dt + βσd It . (15)

Since all processes are only driven by the innovation, the sub-market restricted to
claims that can be replicated by strategies inAS is complete.We solve the optimization
problem (8) using the martingale method (see, for instance Cox and Huang 1989),
transforming the dynamic optimization problem (8) where the control variable is a
strategy, into an equivalent static problem where the control variable is the terminal
wealth.

To identify terminal wealths that are reachable from the initial budget w with
feasible strategies, we introduce the unique state price density process

dξt

ξt
= −rdt − πt d It , ξ0 = 1. (16)

The static optimization problem, equivalent to (8) is

max
WT

E[u(WT f (WT ,YT ))], (17)

with budget constraint

w = E[ξT WT ]. (18)

The objective function in problem (17)–(18) is not concave in WT . To overcome
this issue we apply the concavification procedure proposed by Carpenter (2000) (see
Appendix D for more details on the procedure). Following the approach in Propo-
sition 2 of Basak et al. (2007), we define the optimal final wealth relative to the

benchmark, which is given by VT = W 

T

YT
, where W 


T is the optimal final wealth in
problem (17)–(18). This quantity has an explicit representation (e.g. equation (A7) in
Basak et al. 2007 or equation (6) in Nicolosi et al. 2018) given, for completeness, by
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Eq. (26) in Appendix A. One key characteristic is that VT is a function of ζT := ξT Y
γ

T
only. Computing VT , enables us to characterize the optimal terminal wealth. However
this is not sufficient to obtain the trading optimal portfolio strategy, for which, we
need to know the value of optimal wealth at any time t ∈ [0, T ], and consequently,

we must determine the relative wealth Vt = W 

t

Yt
. To compute Vt we consider the

benchmarked market, where we discount all processes with the numéraire Yt .4 Due
to market completeness there exists an equivalent risk neutral probability measure Q
for the benchmarked market. Put in other words there exists a probability measure Q
which is equivalent to P and such that the price process of any benchmarked traded
asset (i.e. any traded asset discounted with Yt ) is a martingale under Q.5

We define the process ζt = ξt Y
γ
t and derive its distribution under Q. Let z be a

complex number and define the conditional moment generating function of ln(ζT )

under the measure Q as

H(t, ζ, p; z) = EQ
[
ζ z
T |F S

t

]
= EQ [

ζ z
T |ζt = ζ, πt = p

]
.

The function H(t, ζ, p; z) plays a key role in solving the optimization problem (see
Proposition 2 below). It is characterized in the following technical lemma.

Lemma 1 Let z be a complex number and let A(t; z), B(t; z) and C(t; z) be the
solutions of the system of Riccati equations (40)–(41)–(42) in Appendix B on the
interval [0,T]. Under suitable regularity conditions (see Eq. (35) in Appendix B), the
conditional moment generating function of ln(ζT ) under the measure Q is given by

H(t, ζ, p; z) = ζ zeA(t;z)+B(t;z)p+ 1
2C(t;z)p2 . (19)

The proof of Lemma 1 goes along the same lines as in Nicolosi et al. (2018). We
remark that in this particular case, since both the drift and volatility in the dynamics of
the filter πt are not constant (11), the coefficients of the Riccati equations that charac-
terize the functions A, B andC are time-dependent. The solution of non-homogeneous
Riccati equations are discussed in Appendix C.

In the next step we use Fourier Transform to compute the optimal relative wealth
and the optimal strategy at any time t ≤ T .

Proposition 2 Let K j , for j = 1, 2, 3, 4 be real numbers such that K1 < −1/γ ,
K4 > −1/γ and

H(t, ζ, p; K j ) = EQ
[
eK j ln(ζT )|ζt = ζ, πt = p

]
< ∞. (20)

Then,

4 Notice that the benchmark is a positive self-financing portfolio, and hence it can be taken as numéraire.
5 Introducing the measure Q allows us to circumvent technical difficulties: for instance, to get the optimal
wealth W 


t under the physical measure P, one should know the joint distribution of Y γ and ξ . This is
unnecessary if we perform the change of measure, where one can use the martingale property and get the
distribution of W 


t more directly. See, e.g. Proposition 2 in Basak et al. (2007).
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(i) the relative wealth Vt is finite and given by

Vt = 1

2π

4∑
j=1

∫ +∞

−∞
ϕ̂ j (u + i K j )H(t, ζ, p; K j − iu)du (21)

where the functions ϕ̂ j (z) of the complex variable z are given in Appendix A;
(ii) the optimal strategy is

θt = β + 1

σVt

(
∂V

∂ζ
ζt (γβσ − πt ) + ∂V

∂ p
(Rt + ρσX )

)
. (22)

The proof of Proposition 2 is given in “Appendix B”. Notice that there are no
conditions on constants K2 and K3, and for instance, if they are both equal to zero
condition (20) is trivially satisfied. See the proof in Appendix B for further details.
Examples of applications of the formulas for the optimal relative wealth (Eq. 21) and
the optimal strategy (Eq. 22) provided by Proposition 2 are given in the next section.

4 A numerical illustration

Nowwe study the impact of uncertainty on themarket price of risk onoptimal strategies
of a portfolio manager subject to implicit incentives. First we examine the combined
effect of risk aversion and of market conditions, then we show that its relevance
increases with the level of uncertainty and with the time span of the investment. In a
relatively stable market (i.e. low volatility) with lower expected returns, the portfolio
manager increases her exposure to the risky assetwhen underperforming and decreases
it when overperforming. The opposite happens when the market is more volatile and
expected returns are higher. Moreover, we see that risk-aversion has a direct influence
on the views of the manager about the uncertain estimates. Managers with a risk-
aversion parameter larger than 1 fear that the value of the market price of risk will
turn out to be below their current estimate and consequently reduce their exposure to
hedge for the future changes. Managers with risk aversion lower than 1 expect that
the value may be higher than the estimate and tilt their strategy in the opposite way.

To illustrate such behavior with an example, we consider a simplified version of
our model, where the market price of risk is constant but unknown, and given by a
random variable X0, drawn from a Gaussian distribution with mean π0 and variance
R0. This setting is analogous to that of Brennan (1998), where the manager does not
know the value of the drift of the price process and can only estimate its expected
value m0, which is related to the market price of risk π0 by

π0 = m0 − r

σ
.
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Setting λ = 0 and σX = 0, we get that the conditional expected value and variance
follow

dπt = Rtd It , π0 ∈ R, (23)

and

Rt = R0

R0t + 1
. (24)

To highlight the effects of uncertainty on the market price of risk we also consider
a manager who erroneously assumes that X0 = π0. We call this manager myopic
because, unlike the far-sightingmanager, she does not adjust her strategy to hedge for
future changes on the estimates. We denote by θ0t the fraction of wealth invested by
the myopic manager in the risky asset and by θt the optimal strategy of the partially
informed manager given by Eq. (22). The value of θ0t is obtained from Eq. (22), by
setting Rt = 0 and πt = π0 (of course, this also affects the relative wealth Vt ). As
a comparison we also consider the Merton level θN = 1

γ
μ0−r
σ 2 corresponding to the

optimal investment of the myopic manager who optimizes only the utility of terminal
wealth, without other incentives.

Figure 2 represents the myopic strategy θ0t (dotted line) and the optimal strategy
under partial information θt (continuous line) as functions of the relative return of the
portfolio with respect to the benchmark, that is RW

t − RY
t , at time t = 0.25, either

for γ = 0.8 (left panels) or for γ = 2 (right panels). The parameters of the implicit
incentives structure at time T = 1 in Eq. (7) are the same as in Fig. 1.

The top panels show the case when the Merton level is above the investment in
the risky asset of the benchmark portfolio, that is when θN > β. In the illustration
we set β = 1. This setting corresponds to a market situation with relatively small
volatility and returns, that is called economy (a) by Basak et al. (2007), obtained by
taking σ = 0.15, r = 0 and m0 = 0.1 in our model.

The bottom panels show the situationwhen theMerton level is below the investment
in the risky asset of the benchmark, that is when θN < β. This is the economy (b)
in Basak et al. (2007), a more volatile and remunerative market, obtained by setting
σ = 1, r = 0 and m0 = 0.3. The level of uncertainty on the initial estimate is given
by R0 = 0.09 for all the panels.

The panels on the left represent a less risk averse manager γ = 0.8, those on the
right amore risk-averse one γ = 2. By comparing the left to the right panelswe see that
the investment in risky asset decreases with risk aversion for both economies (a) and
(b). The strategies for a myopic and a far-sighting manager are qualitatively similar to
each other with the far-sightingmanager taking either more or less risky positions than
the myopic one, depending on the risk-aversion. When the risk aversion parameter γ

is equal to 1 (that is the case of logarithmic utility), the two strategies coincide. A
far-sighting manager with a risk aversion smaller than 1 (left panels) tends to be more
exposed to the risky asset than a myopic manager with the same risk aversion. In this
case, the far-sighting manager acts optimistically, as she believes that, increasing the
precision of the estimates of the market price, the correct value will be higher than the
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Fig. 2 Optimal strategies for different economies and different managers. The optimal strategy θt (continu-
ous line) and the myopic one θ0t (dotted line) at time t = 0.25 are reported as functions of the relative return
of the portfolio with respect to the benchmark, as well as the Merton level θN (dashed line). Left panels
represent the strategies of managers with risk aversion γ = 0.8, right panels those of more risk-averse
managers (γ = 2). Top panels represent economy a (θN > β = 1), that is a less volatile market with
higher returns (σ = 0.15, πt = 0.667), the bottom panels are referred to economy b (θN < β = 1), a
more volatile market with lower returns (σ = 1, πt = 0.3). The parameters of the payoff function are the
same as in Fig. 1. The others parameters are T = 1, r = 0, and R0 = 0.09 so that the variance Rt is 0.088
according to (24)

current one. Instead, the more risk-averse manager (right panels) is pessimistic and
reduces the exposition to the risky asset fearing that the future estimates will be lower
than the current one. By comparing top to bottom panels in Fig. 2 we see the effects
of the overall economic condition on the optimal strategy, depending on the current
results of the portfolio management strategy. When the relative performance is either
too low or too high for the incentives to have an effect on the final reward, the optimal
strategy approaches a constant level that corresponds to the optimal risky exposure
without incentives and hence the myopic investment converges to the Merton level. If
the manager is underperforming but still hopes to recover, or if she is slightly ahead,
but still fearing to end behind, she adjusts the portfolio strategy in a way that depends
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Fig. 3 Deviations θ0t − θt , at time t = 0.25, as functions of the relative return of the portfolio with respect
to the benchmark, for different levels of initial conditional variance R0 = [0.09, 0.16, 0.23]. Left panels
represent the strategies of managers with risk aversion γ = 0.8, right panels those of more risk-averse
managers (γ = 2). Top panels represent economy a (θN > β = 1), that is a less volatile market with
higher returns (σ = 0.15, πt = 0.667), the bottom panels are referred to economy b (θN < β = 1), a more
volatile market with lower returns (σ = 1, πt = 0.3). The parameters of the payoff function are the same
as in Fig. 1. The others parameters are T = 1, r = 0

on the economic conditions. In the case of economy (a) (top panels), she increases the
exposure when trailing and decreases it when leading. The economy (b), representing
a more volatile market and higher expected returns (bottom panels), induces the same
manager to take opposite choices.

Figure 3 represents, for the same scenarios in Fig. 2, the difference θ0t − θt , at
time t = 0.25, as a function of the relative return of the portfolios with respect to the
benchmark, for some values of R0. We can clearly see that the larger the values of R0
the larger the differences, in absolute values, between the strategies.

To assess the impact of learning on the expected utility, we compute the Certainty
Equivalent of the terminal wealth WT , that is

CE(WT ) := u−1 (E(u(WT )))
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Fig. 4 The impact of learning on the relative increment of the Certainty Equivalent as a function of the initial
variance R0, for maturities 0.75 and 1.5years. The other parameters are γ = 1.5, σ = 0.15, π0 = 0.667

and the Relative Increment

RI := CE(W ∗
T )

CE(W 0
T )

− 1 (25)

where W ∗
T and W 0

T are the terminal wealths reached by the optimal strategy and by
the myopic one. Therefore, RI measures the relative improvement of the Certainty
Equivalentwhen adopting the optimal, far-sighting, strategy instead of themyopic one.
To compute the terminal wealths we proceed by simulation, drawing first X0 from a
normal random variable with mean π0 and variance R0, and simulating the risky asset
S. Then, we get W ∗

T and W 0
T from Eq. (26). The expected utilities are obtained from

the sample mean of the terminal utilities.
Figure 4 shows the values of RI as a function of the variance of the market price

of risk R0, for two values of T . We see that the relative performance improves as R0
increases and it is more pronounced for longer maturities. This is due to the fact that,
while the far-sighting manager reacts to changes in market conditions by observing
the asset prices and improves her estimates of the market price of risk, the myopic
manager believes that the characteristics of the market are stable and never updates her
estimates. Therefore, the two strategies are equal only in the case of zero uncertainty
on the value of the market price of risk (when R0 = 0), and their difference grows as
R0 and T increase.

5 Conclusions

We studied a portfolio optimization problem for a manager who is compensated
according to the performance of her portfolio relative to a benchmark. The man-
ager invests in a risk-free asset and in a risky asset whose return depends on a latent
variable representing the market price of risk. Hence she solves an optimization prob-
lem under partial information. Due to the implicit incentives given by the funds flow
to relative performance, the utility function of the manager is not concave and hence
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existence of the optimum does not trivially hold. We solve the optimization problem
using the martingale approach and a concavification procedure. This approach can
be successfully applied due to completeness of the market under partial information.
Optimal wealth and consequently the optimal strategy are characterized in a semi-
explicit form via Fourier transform. We illustrated our results with an example, where
we assume that the market price of risk is constant but unknown. We observed that
the level of risk aversion has an influence on the manager’s estimate of the market
conditions, and consequently on her investment choices. Managers with a small risk
aversion parameter are optimistic: they tend to increase their investment in the risky
assets compared to myopic managers, believing that the true value of the market price
of risk (and hence of the asset return) is more favourable than her estimate. It is also
seen that if the market is not subject to large fluctuations, managers invest more in
risky assets when they are underperforming the benchmark, in anticipation to retrieve
benchmark revenues, and invest less in the risky asset when overperforming, to avoid
possible downward movements of the market.

We have also analyzed the effect of uncertainty (i.e. R0) on the optimal portfo-
lio strategies and the optimal wealth by comparing the case of the myopic manager
with the optimal partially informed investor. We have seen that the deviation between
strategies amplifies as R0 increases. The comparison between Certainty Equivalents
corresponding to the optimal wealth (under partial information) and the wealth of the
myopic manager, goes in the same direction, that is, it grows with R0, and increases
with time as well, as a consequence of the learning effect.

We conclude with a few clarifications on the setting under partial information and
possible extensions. In this paper we assumed that the volatility is constant to end up
in the setting of Kalman filtering. This is convenient for the optimization problems
since in this case filter is finite dimensional.We also stress that if the volatility depends
on the market price of risk (i.e. is a bijective function σ(Xt )) then we end up with a
model under full information (see, e.g. Ceci and Colaneri 2017, Remark 3). Indeed,
the volatility is always adapted to the filtration F and hence observable, therefore X
can be derived by function inversion. In this paper we have analyzed the optimal asset
allocation under implicit incentives for themanager in the univariate case under partial
information. The multivariate case is discussed under full information in Basak et al.
(2007) with a constant market price of risk and Nicolosi et al. (2018) with a stochas-
tic market price of risk. The generalization of our partial information problem to the
multivariate case can be carried following the same steps of this paper; our choice of
considering the one dimensional case, however, allows us to avoid technicalities and
keep the notation simpler. For instance themultivariate case requires to filter the multi-
dimensional market price of risk using the information coming from multiple risky
assets. It is well known that, in such case, the conditional variance is characterized via
a system of Riccati equations that does not have an explicit solution. We considered
collar-type incentives, but our approach can be applied to study other incentive func-
tions. Of course, a different incentive function will change the concavified objective
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function and, as a consequence, the functional form of the optimal wealth and the
optimal strategies.
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A Optimal final wealth

In this section we characterize the final wealth relative to the benchmark Vt , for every
t ∈ [0, T ]. We first consider the optimal final wealth relative to the benchmark, given

by the random variable VT = W ∗
T

YT
. Its expression has been computed in Basak et al.

(2007) and also reported in Nicolosi et al. (2018), and in our framework, is given by

VT = ϕ1(ζT ; c1) + ϕ2(ζT ; c1, c2) + ϕ3(ζT ; c2, c3) + ϕ4(ζT ; c3) (26)

where ζT = ξT Y
γ

T and functions ϕ j , for j = 1, . . . , 4 are

ϕ1(ζ ; c1) = f 1/γ−1
H y−1/γ ζ−1/γ 1ζ<c1 (27)

ϕ2(ζ ; c1, c2) = eηH 1c1≤ζ<c2 (28)

ϕ3(ζ ; c2, c3) = h(ζ )1c2≤ζ<c3 (29)

ϕ4(ζ ; c3) = f 1/γ−1
L y−1/γ ζ−1/γ 1ζ≥c3 . (30)

The value y ∈ R is the Lagrange multiplier that ensures that the budget constraint of
the optimization problem w= E[ξT W ∗

T ] is satisfied; the function h(ζ ) is the solution
of the equation

d

dv
u(v fL + vψ(ln v − ηL)) = yζ. (31)

Parameters c1, c2 and c3, and hence the value of VT , depend on the following
relation, called Condition A:

γ

1 − γ

(
fH + ψ

fL

)1−1/γ

+
(

fH + ψ

fH

)
− 1

1 − γ
≥ 0. (32)

This condition is related to concavification as explained in Appendix D.
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Proposition 2 of Basak et al. (2007) shows that, if Condition A holds, then c1, c2
and c3 in (26) satisfy c1 = f 1−γ

H e−γ ηH /y, and c3 = c2 > c1 satisfying g(c3) = 0,
with

g(ζ ) =
(

γ

(
y

fL
ζ

)1−1/γ

− ( fH e
ηH )1−γ

)
/(1 − γ ) + eηH yζ.

Hence, in this case,ϕ3(ζ ; c2, c3) is the indicator function of the empty set and therefore
it is zero.

When Condition A is not met, Basak et al. (2007) show in Appendix C that c1 =
f 1−γ

H e−γ ηH /y, c2 = (eηH fH )−γ ( fH + ψ)/y and c3 = ( fLV )−γ fL/y with V being
the left boundary of the region where the objective function is not concave. Denoting
with V the right boundary of the non concave region, V and V can be computed as
the points where the straight line between these two points is tangent to the objective
function.

Next, we provide a representation for the function ϕ̂ j (z), j = 1, . . . , 4, which are
used to compute the optimal relative wealth Vt given in Proposition 2. The functions
ϕ̂ j (z), j = 1, . . . , 4, are the Fourier transforms of the functions in (27)–(28)–(29)–(30)
and they are given by

ϕ̂1(z) = f 1/γ−1
H y−1/γ (c1)−1/γ+i z

−1/γ + i z
(33)

ϕ̂2(z) = eηH
(c2)i z − (c1)i z

i z

ϕ̂4(z) = f 1/γ−1
L y−1/γ (c3)−1/γ+i z

−1/γ + i z
. (34)

Numerical computations of the Fourier transform ϕ̂3(z), which are needed only when
Condition A is not satisfied, are given in Section 4.1 of Nicolosi et al. (2018).

B Proofs

This section contains the proofs of Lemma 1 and Proposition 2.

Proof of Lemma 1 In the proof of this lemma we assume the following integrability
condition:

E
[∫ T

0

(
ζ z
t e

A(t;z)+B(t;z)πt+C(t;z)π2
t (1 + πt )

2
)
dt

]
< ∞. (35)

We define the process

IQt = It −
∫ t

0
(σβ − πs)ds.
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By Girsanov’s Theorem this is a Q-brownian motion (see, e.g. Chap. 26 of Björk
2009). Then the Q-dynamics of the filter πt is given by

dπt = (
λ(X̄ − πt ) + (Rt + ρσX )(βσ − πt )

)
dt + (Rt + ρσX )d IQt .

Using Ito’s Lemma, we get that ζt = ξt Y γ under Q has the following dynamics

dζt

ζt
=

(
r(γ − 1) + 1

2
γ (γ + 1)β2σ 2 − (γ + 1)βσπt + π2

t

)
dt

+(γβσ − πt )d I
Q
t .

Under condition (35), the process H(t, ζt , πt ; z) is a (FS,Q)-martingale (see, e.g. the
discussion in Theorem 4 of Colaneri et al. 2020); then, equating the dt-term to zero
leads to the partial differential equation (for simplicity we drop the arguments of the
functions)

0 = ∂H

∂t
+ ∂H

∂ζ
ζ

(
r(γ − 1) + 1

2
γ (γ + 1)β2σ 2 − (γ + 1)βσ p + p2

)

+∂H

∂ p

(
λ(X̄ − p) + (Rt + ρσX )(βσ − p)

) + 1

2

∂2H

∂ p2
(Rt + ρσX )2

+ ∂2H

∂ζ∂ p
ζ(Rt + ρσX )(γβσ − p) + 1

2

∂2H

∂ζ 2 ζ 2(γβσ − p)2 (36)

with the boundary condition at time T

H(T , ζ, p; z) = ζ z, ζ ∈ R
+, p ∈ R, z ∈ C. (37)

We use a similar approach as in the optimization problem under full information (see
Nicolosi et al. 2018), and consider an exponential-polynomial ansatz of the type

H(t, ζ, p; z) = ζ zeA(t;z)+B(t;z)p+ 1
2C(t;z)p2 (38)

where A(t; z), B(t; z) and C(t; z) are deterministic functions. From the boundary
condition (37) we get that

A(T ; z) = 0, B(T ; z) = 0, C(T ; z) = 0. (39)

Moreover, substituting the partial derivatives of the function H into (36) and imposing
that coefficients of p2, p and the constant terms are equal to zero, we obtain the system
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of ordinary differential equations for A(t; z), B(t; z) and C(t; z)
∂C

∂t
= − (Rt + ρσX )2C2 + 2(λ + (1 + z)(Rt + ρσX ))C − z(z + 1) (40)

∂B

∂t
=

(
λ + (z + 1)(Rt + ρσX ) − (Rt + ρσX )2C

)
B

− (
λX̄ + (1 + zγ )βσ(Rt + ρσX )

)
C + z(1 + zγ )βσ (41)

∂A

∂t
=zr(1 − γ ) − 1

2
zγ (1 + zγ )β2σ 2 − 1

2
(Rt + ρσX )2B2

− (λX̄ + (1 + zγ )βσ(Rt + ρσX ))B − 1

2
(Rt + ρσX )2C . (42)

Notice that this is a system of equations of Riccati type, with non-homogeneous
coefficients. 
�
Proof of Proposition 2 The proof of part (i) follows the same lines of Nicolosi et al.
(2018) (Nicolosi et al. 2018, Proposition 2.1). Here we summarize the idea. Since the
market model under partial information is complete, after applying concavification
we get that the relative final wealth VT is given by the formula (26) in Appendix A.
Plugging the expression ofVT intoVt = EQ

[
VT |F S

t

]
and then usingFourier transform

we can calculate the value at time t of the optimal relative value. Note that here one
needs to apply Fubini Theorem and change the order of integration. This operation is
well defined, for instance, under conditions D1 and D2 of Proposition 2.7 in Eberlein
et al. (2010), that, in our modelling framework are satisfied if K1 < −1/γ , K4 >

−1/γ , for any K2 and K3, and (20). The fact that K2 and K3 can be arbitrary is a
consequence of the boundedness of function ϕ2 and ϕ3 in (28)–(29).

For part (i i), we first determine the dynamics of W 

t = YtVt = YtV (t, ζt , πt ) via

Ito’s product rule. Then comparing this equation with Eq. (14) provides the expression
for θt in (22). Notice that the integrals in (21) are principal value integrals and the
partial derivatives of the function V in (22) can be computed from (21) by taking the
derivative under the integral sign. 
�

We remark that, if γ > 1, since the function f (w, y) is bounded, we have that

E
[
(WT f (WT ,YT ))1−γ

1 − γ

]
≤ cE

[
(WT )1−γ

1 − γ

]
< ∞.

If γ ∈ (0, 1) the value function is unbounded, hence the optimization problem may
not be well posed. To exclude explosion, additional conditions must be imposed. In
Proposition 2, condition (20) allows to apply Fourier transform, and then to char-
acterize the relative wealth in terms of the conditional moment generating function
H(t, ζ, p; z) of ln(ζT ) and ensures that Vt is finite as well. This condition is implied
by existence of the solution of the system of Riccati ODEs for the functions A, B,C
up to time T (equivalently, the explosion time of the ODEs is larger than the time
horizon) for specific values of z and some additional integrability, which permits to
write equation (19).
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C Solutions to non-Homogeneous Riccati ODEs

Wediscuss the solution of the systemof non-homogeneous systemofRiccati equations
arising in the expression of the conditional moment generating function of ln(ζT ).
Precisely, we show how to solve the system of Eqs. (40)–(41). Equation (42) can be
computed by direct integration, and we do this numerically. Following, for instance,
Brendle (2006) and Colaneri et al. (2020), it can be proved that the functions B and
C satisfy

C(t; z) = Co(t; z)
1 + 1

z C
o(t; z)Rt

B(t; z) = Bo(t; z)
1 + 1

z C
o(t; z)Rt

for some functions Co(t; z) and Bo(t; z) which solve the homogeneous system of
Riccati equations below

∂Co

∂t
=

(
1

z
(1 − ρ2) − ρ2

)
σ 2
XC

o2 + 2(λ + (1 + z)ρσX )Co − z(z + 1) (43)

∂Bo

∂t
=

(
λ + (z + 1)ρσX +

(
1

z
(1 − ρ2) − ρ2

)
σ 2
XC

o
)
Bo

− (
λX̄ + (1 + zγ )βσρσX

)
Co + z(1 + zγ )βσ (44)

with boundary conditions

Bo(T , z) = 0, Co(T , z) = 0. (45)

Equations (43)–(44) have a solution in closed form6 see for instance Filipović (2009,
Lemma 10.12).

6 Equations (43)–(44) are related to the conditional moment generating function of the process ln(ζT ),
under full information. In fact, by Markovianity it holds that

H̃ [t, ξt , Xt ; z] = EQ [
ζ zT |Ft

]
.

Here using the ansatz H̃(t, ζ, x; z) = ζ zeA
o(t;z)+Bo(t;z)x+ 1

2C
o(t;z)x2 we get that Bo(t; z) and Co(t; z)

solve (43)–(44) with the boundary condition (45) and Ao(t; z) satisfies

∂Ao

∂t
= zr(1 − γ ) − 1

2
zγ (1 + zγ )β2σ 2 − (λX̄ + Bo(1 + zγ )βσσX ) − 1

2
σ 2
X (Co + Bo2),

with the boundary condition Ao(T ; z) = 0.
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Fig. 5 This figure displays the concavified objective function for different levels of the relative terminal
value VT = WT /YT . The solid line represents the original objective function and the superimposed dashed
line is the concavification. The left panel corresponds to the case where Condition A is satisfied, and the
right panel the case where Condition A is not satisfied

D The concavification

In this section we provide a brief explanation on the concavification procedure pro-
posed by Carpenter (2000). Let u : D ⊆ R → R be a function; the concavification
of u(x), if it exists, is the smallest concave function ũ(x), such that ũ(x) ≥ u(x)
for every x ∈ D. Consider now the objective function in our optimization problem

u(WT f (WT ,YT )) = (WT f (WT ,YT ))1−γ

1−γ
, where the function f is given in Eq. (7). We

observe that the objective function can be represented in terms of the relative wealth
VT = WT

YT
as7

u(VT ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(VT fL )1−γ

1−γ
if VT < eηL

(VT fL+ψVT (log(VT )−ηL ))1−γ

1−γ
if eηL ≤ VT < eηH

(VT fH )1−γ

1−γ
if VT ≥ eηH

(46)

Due to the fact that incentives are nonlinear, the objective function is not globally
concave in VT , and hence we need to replace part of the original function with a chord
between points V and V , called the concavification points. If the original function is
smooth in V and V , then the slope of the chord equals the slope of the function. For
the objective function u considered in this paper, the concavification is represented in
Fig. 5. The solid line represents the original objective function and the dashed line its
concavification. The left and right panels show the case where Condition A is met and
the case when it is not satisfied, respectively. In particular, we see from the left panel
that the objective function is not smooth at point V and hence this concavification
point coincides with an angle point.

The importance of Condition A is also related to the representation of the solution
of the optimization problem: if it is satisfied, an analytical expression for the optimal

7 This representation comes from a combination of a change of variable and the change of measure dQ
dP .
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value and the optimal strategies can be derived; otherwise, optimal value, and hence
optimal strategy, can only be computed numerically (cf. Appendix A).
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