
Archive for Mathematical Logic
https://doi.org/10.1007/s00153-021-00800-8 Mathematical Logic

A note on cut-elimination for classical propositional logic

Gabriele Pulcini1

Received: 30 April 2021 / Accepted: 21 September 2021
© The Author(s) 2021

Abstract
In Schwichtenberg (Studies in logic and the foundations of mathematics, vol 90, Else-
vier, pp 867–895, 1977), Schwichtenberg fine-tuned Tait’s technique (Tait in The
syntax and semantics of infinitary languages, Springer, pp 204–236, 1968) so as to
provide a simplified version of Gentzen’s original cut-elimination procedure for first-
order classical logic (Gallier in Logic for computer science: foundations of automatic
theorem proving, Courier Dover Publications, London, 2015). In this note we show
that, limited to the case of classical propositional logic, the Tait–Schwichtenberg algo-
rithm allows for a further simplification. The procedure offered here is implemented
on Kleene’s sequent system G4 (Kleene in Mathematical logic, Wiley, New York,
1967; Smullyan in First-order logic, Courier corporation, London, 1995). The specific
formulation of the logical rules for G4 allows us to provide bounds on the height of
cut-free proofs just in terms of the logical complexity of their end-sequent.

Keywords Classical propositional logic · Sequent calculus · Cut elimination

Mathematics Subject Classification 03F05 Cut-elimination and normal-form
theorems

1 Introduction

In [5], Schwichtenberg fine-tuned Tait’s technique [7] so as to provide a simplified
version of Gentzen’s original cut-elimination procedure, which notoriously requires a
complex induction on a certain lexicographic order [2]. In particular, Schwichtenberg
showed that termination of the cut-elimination procedure can be achieved by resorting
to two independent inductions on ω. The Reduction Lemma is proved by induction
on the sum of the heights of the two derivations delivering the premises of the cut-

The author would like to thank Enrico Moriconi for his careful reading of the final version of the paper.

B Gabriele Pulcini
gabriele.pulcini@uniroma2.it

1 Dipartimento di Studi Letterari, Filosofici e di Storia dell’Arte, Università di Roma “Tor Vergata”,
Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-021-00800-8&domain=pdf

G. Pulcini

application under consideration [5, Lemma 2.6, p. 874] and the final Hauptsatz is
proved by induction on the cut-rank of the whole proof [5, Theorem 2.7, p. 875].

In this note we show that, limited to the case of classical propositional logic, cut-
elimination allows for a further simplification. As a matter of fact, the proof of Lemma
4 (our Reduction Lemma) is simply led by cases, whereas Theorem 5 (the Hauptsatz)
is proved by a double induction on the cut-size of proofs and on the number of max-
imal cut-applications. The size of a cut-application is just defined as the number of
connectives occurring in one of its premises. Accordingly, the cut-size of a proof π is
defined as the supremum of all the cut-sizes relating to π .

The algorithm proposed in this note is tailored on the sequent system GS4, the
one-sided formulation à la Tait of Kleene’s G4 [3,6]. The procedure heavily relies
on the fact that, for any non-atomic formula A, if the sequent � �, A is provable in
GS4, then it is also provable by means of a particular proof in which A occurs as the
principal formula in the last inference step (Lemma 3). The main advantage of dealing
with Kleene’s system GS4 lies in the fact that the height of cut-free proofs turns out to
be bounded by the number of occurrences of logical connectives in their end-sequent
(Theorem 6). Moreover, we prove that any two cut-free proofs ending in the same
sequent have always the same height (Theorem 7).

2 Preliminary notions and results

Following [7], we limit ourselves to considering only two connectives: conjunction
(∧) and disjunction (∨). In formal languages à la Tait, negation comes as primitive
on atomic sentences AT = {p, p, q, q, . . .} and it extends to compound formulas by
means of the following equivalences:

A ⇔ A A ∧ B ⇔ A ∨ B A ∨ B ⇔ A ∧ B

The set F of well-formed formulas is defined accordingly:

F ::= AT |F ∧ F |F ∨ F .

Logical contexts �,�, . . . are taken to be multisets of formulas from F . As usual, we
write �, A and �,� to mean the two multisets � � [A] and � � �, respectively. We
write {�} to indicate the set collecting the elements of �.

We call GS4 the one-sided version of Kleene’s sequent system G4 whose rules are
displayed in Fig. 1 [1,3,4,6]. The height h(π) of a proof π is given by the number of
sequents occurring in one of its longest branches. A subproof δ of a proof π is said
to be direct in case δ ends in one of the premises of π ’s last inference. Moreover,
we recall that any application of the logical rules displays a principal formula in the
conclusion: the formula whose principal connective has been introduced by the very
inference step under consideration.

Definition 1 The complexity C(A) of a formula A is given by the number of occur-
rences of logical connectives in A. More formally: C(A) = 0, for any A ∈ AT, and

123

A note on cut-elimination for classical propositional logic

Fig. 1 The rules of the sequent calculus GS4

C(A∧ B) = C(A∨ B) = C(A) + C(B) + 1. For any multiset � = [A1, A2, . . . , An],
we set C(�) = C(A1) + C(A2) + · · · + C(An).

Remark 1 For any multiset of formulas �,C , we have C(�,C) = C(�,C).

Observe that, in the specific formulation adopted here, instances of the ax-rule must
be clauses, i.e., sequents in which only atomic formulas from AT are displayed. The
next proposition shows that such a linguistic restriction does not affect provability.

Proposition 1 GS4 proves the sequent � �, p, p, for any multiset of formulas �, and
any p ∈ AT.

Proof We proceed by induction on C(�). If C(�) = 0, then � �, p, p is already an
instance of the ax-rule. As for C(�) > 0, we distinguish two cases:

• � = �′, A∧ B. By inductive hypothesis, there are two GS4-proofs δ and ρ ending
in � �′, A, p, p and � �′, B, p, p, respectively. The two proofs δ and ρ can be
then composed by means of an application of the ∧-rule so as to finally get the
conclusion � �′, A ∧ B, p, p.

• � = �′, A ∨ B. Similar to the previous case. 	

Below, we recall the well-known fact that the structural rule ofWeakening is admis-

sible in GS4 (cfr, for instance, [5, Lemma 2.3.1, p. 873]):

Lemma 2 (Weakening admissibility) IfGS4 proves� �, then it also proves the sequent
� �, A, for any formula A.

Proof Let π be a GS4-proof ending in � �. Once the formula A is uniformly added
to all the sequents occurring in π , each of π ’s top sequents � �, p, p is turned into
the sequent � �, A, p, p which is, by Proposition 1, provable. 	

Notation Given a GS4-proof π of � � and a formula A, we denote with W(π, A)

the GS4-proof of � �, A obtained from π according to the procedure employed in the
proof of Lemma 2. If A ∈ �, then W(π, A) = π .

The following lemma states a peculiar property of the GS4 system which will
prove crucial to attain the results proposed in the next section. Such a property comes
as a byproduct of the fact that GS4 logical rules are all reversible in the sense that
provability of the conclusion always implies provability of the premise(s) (cfr. [5,
Lemma 2.5, p. 873]).

123

G. Pulcini

Lemma 3 (Height-preserving permutability) Assume there is aGS4-proofπ of � �, A
with C(A) > 0. The sequent � �, A is also provable by means of a proof ρ such that:
(i) the formula A occurs as principal in ρ’s last inference, and (i i) h(π) = h(ρ).

Proof If C(�) = 0, then π ’s last rule must be already the one introducing A’s principal
connective and so ρ = π . Otherwise, we proceed by showing that any proof π of
� �, A can be turned into a proof ρ of � �, A having the desired form, simply by
permuting downwards along π the specific instance of the logical rule introducing A’s
principal connective. The proof is led by induction on C(�, A).We shall be considering
the following four possible situations.

• A ≡ B ∧ C and π ’s last rule is a ∧-rule. Let D ∧ E be the formula occurring as
principal inπ ’s last inference, andπ1 andπ2 the twodirect subproofs ofπ ending in
� �, B∧C, D and� �, B∧C, E , respectively. By inductive hypothesis, there is a
proofπ ′ shaped as displayed below, such that h(π1) = max(h(π〈1,1〉), h(π〈1,2〉))+
1 and h(π2) = max(h(π〈2,1〉), h(π〈2,2〉)) + 1.

π〈1,1〉
.
.
.

� �, B, D

π〈1,2〉
.
.
.

� �,C, D ∧� �, B ∧ C, D

π〈2,1〉
.
.
.

� �, B, E

π〈2,2〉
.
.
.

� �,C, E ∧� �, B ∧ C, E ∧� �, B ∧ C, D ∧ E

The proof π ′ can be then rearranged into the proof ρ reported below, simply by
interchanging the two final applications of the logical rules.

π〈1,1〉
.
.
.

� �, B, D

π〈2,1〉
.
.
.

� �, B, E ∧� �, B, D ∧ E

π〈1,2〉
.
.
.

� �,C, D

π〈2,2〉
.
.
.

� �,C, E ∧� �,C, D ∧ E ∧� �, B ∧ C, D ∧ E

We finally observe that:

h(π) = max(h(π1), h(π2)) + 1 =
= max(max(h(π〈1,1〉), h(π〈1,2〉)) + 1,max(h(π〈2,1〉), h(π〈2,2〉)) + 1) + 1
= max(h(π〈1,1〉), h(π〈1,2〉), h(π〈2,1〉), h(π〈2,2〉)) + 2
= max(max(h(π〈1,1〉), h(π〈2,1〉)) + 1,max(h(π〈1,2〉), h(π〈2,2〉)) + 1) + 1
= h(ρ)

• A ≡ B ∨ C and π ’s last rule is a ∧-rule. Let D ∧ E be the formula occurring as
principal in π ’s last inference, and π1 and π2 the two direct subproofs of π ending
in � �, B ∨ C, D and � �, B ∨ C, E , respectively. By inductive hypothesis,
there is a proof π ′ shaped as indicated below, such that h(π1) = h(π ′

1) + 1 and
h(π2) = h(π ′

2) + 1.

123

A note on cut-elimination for classical propositional logic

π ′
1

.

.

.

� �, B,C, D ∨� �, B ∨ C, D

π ′
2

.

.

.

� �, B,C, E ∨� �, B ∨ C, E ∧
�, B ∨ C, D ∧ E

We interchange the two final applications of the logical rules so as to obtain the
proof ρ reported below.

π ′
1

.

.

.

� �, B,C, D

π ′
2

.

.

.

� �, B,C, E ∧
�, B,C, D ∧ E ∨
�, B ∨ C, D ∧ E

Since h(π) = max(h(π1), h(π2)) + 1, we also have h(π) = max(h(π ′
1) +

1, h(π ′
2) + 1) + 1, thence h(π) = max(h(π ′

1), h(π ′
2)) + 2 = h(ρ).

• A ≡ B ∧ C and π ’s last rule is a ∨-rule. Let D ∨ E be the formula occurring
as principal in π ’s last inference and π1 the direct subproof of π ending in �
�, B ∧ C, D, E . By inductive hypothesis, there is a proof π ′ shaped as indicated
below and such that h(π1) = max(h(π〈1,1〉), h(π ′〈1,2〉)) + 1.

π ′〈1,1〉
.
.
.

� �, B, D, E

π ′〈1,2〉
.
.
.

� �,C, D, E ∧� �, B ∧ C, D, E ∨� �, B ∧ C, D ∨ E

The proof ρ can be obtained from π ′ be interchanging the two final applications
of the logical rules as indicated below.

π ′〈1,1〉
.
.
.

� �, B, D, E ∨� �, B, D ∨ E

π ′〈1,2〉
.
.
.

� �,C, D, E ∨� �,C, D ∨ E ∧� �, B ∧ C, D ∨ E

Since, h(π) = h(π1) + 1, we also have h(π) = max(h(π ′〈1,1〉), h(π ′〈1,2〉)) + 2 =
max(h(π ′〈1,1〉) + 1, h(π ′〈1,2〉) + 1) + 1 = h(ρ).

• A ≡ B ∨ C and π ’s last rule is a ∨-rule. Let D ∨ E be the formula occurring
as principal in π ’s last inference and π1 the direct subproof of π ending in �
�, B ∨ C, D, E . By inductive hypothesis, there is a proof π ′ shaped as indicated
below and such that h(π1) = h(π ′

1) + 1.

123

G. Pulcini

π ′
1

.

.

.

� �, B,C, D, E ∨� �, B ∨ C, D, E ∨� �, B ∨ C, D ∨ E

The derivation π ′, in turn, can be easily rewritten into the derivation ρ by inter-
changing the two final applications of the ∨-rule as indicated below.

π ′
1

.

.

.

� �, B,C, D, E ∨� �, B,C, D ∨ E ∨� �, B ∨ C, D ∨ E

We finally observe that h(π) = h(π1) + 1 = h(π ′
1) + 2 = h(ρ). 	

Notation Given a GS4-proof π of � �, A with C(A) > 0, we denote withP(π, A) the
proof of � �, A whose last inference is the one introducing A’s principal connective.
The proof P(π, A) is intended to be obtained from π according to the procedure
indicated in the proof of Lemma 3. For A ≡ B ∧ C , we indicate with P(π, A)L
and P(π, A)R the two direct subproofs of P(π, A) ending in � �, B and � �,C ,
respectively.

3 The cut-elimination algorithm

We call GS4+ the system obtained by adding to the rules of GS4 the cut-rule in its
additive one-sided formulation:

� �, A � �, A
cut� �

When the situation requires it, we will point at specific applications of the cut-rule
by adding a subscript i ∈ N to the label ‘cut’.

Before going into the details of the cut-elimination algorithm, we need to introduce
some key notions to provide a suitable measure for the ‘quantity of cut’ present in a
derivation.

Definition 2 The size of a cut-application

� �,C � �,C
cuti� �

is taken to equal the complexity of the multiset of formulas displayed in one of its
premises, i.e., |cuti | = C(�,C) = C(�,C) (cfr. Remark 1). Let

{
cut1, cut2, . . . , cutn

}

be a complete enumeration of the cut-applications occurring in a GS4+-proof π . The
cut-size of π is defined as |π | = max

{|cuti | + 1 : 1 ≤ i ≤ n
}
. If π is cut-free, then

|π | = 0. A cut-application cuti is said to be maximal in π whenever |cuti | = |π | − 1.

123

A note on cut-elimination for classical propositional logic

Lemma 4 (Reduction Lemma) Any GS4+-proof π of � � displaying exactly one cut-
application can be turned into a GS4+-proof π ′ of the same sequent and such that
|π ′| < |π |.
Proof We can limit ourselves to considering a proof π whose unique cut-application
occurs as π ’s last rule without any loss of generality. Let δ and ρ be the two direct
subproofs of π ending in the two premises of the cut-application under consideration:

δ

.

.

.

� �,C

ρ

.

.

.

� �,C
cut� �

Since π contains exactly one cut-application, we immediately have that: (i) both δ

and ρ are cut-free, and (i i) |π | = C(�,C) + 1 = C(�,C) + 1.
If |π | = 1, then the premises of the cut-application are both introduced as instances

of the ax-rule; say C ≡ p, for some atomic sentence p ∈ AT. It is easy to see that
either � = �′, p, p or � = �′, q, q for some q ∈ AT. Thence, the proof π can be
simply rewritten as follows:

ax� �, p
ax� �, p
cut� �

−→ ax� �

If |π | > 1, we need to proceed by cases and subcases as follows.

[Case 1] For C(C) > 0, we consider the two following subcases according to
whether C’s principal connective is a conjunction or a disjunction. Both of them
are treated by means of a two-step reduction. The first step (indicated by �⇒)
is an application of Lemma 3 aiming at permuting downwards the logical rules
introducing the principal connective of the cut-formulasC andC . The second step
(indicated by −→) comes as a standard parallel reduction.

[Case 1.1] If C ≡ A ∧ B, then we proceed as follows:

δ

.

.

.

� �, A ∧ B

ρ

.

.

.

� �, A ∨ B
cut� �

�⇒

�⇒

P(δ, A ∧ B)L

.

.

.

� �, A

P(δ, A ∧ B)R

.

.

.

� �, B ∧� �, A ∧ B

P(ρ, A ∨ B)

.

.

.

� �, A, B ∨� �, A ∨ B
cut� �

−→

−→

W(P(δ, A ∧ B)L, B)

.

.

.

� �, A, B

P(ρ, A ∨ B)

.

.

.

� �, A, B
cut1� �, B

P(δ, A ∧ B)R

.

.

.

� �, B
cut2� �

123

G. Pulcini

By definition, |cut | = C(�, A ∧ B), |cut1| = C(�, A, B), and |cut2| =
C(�, B). Since C(B) = C(B), we can conclude that |cut2| ≤ |cut1| < |cut |.
[Case 1.2] C ≡ A ∨ B. Symmetric with respect to the previous one.

[Case 2] If C(C) = 0, since C(�) > 0, there will be a formula D ∈ � such
that C(D) > 0. We need now to distinguish two subcases according to whether
D’s principal connective is a conjunction or a disjunction. As for the previous
case, we provide a list of two-step reductions. The first reduction (�⇒) is still an
application of Lemma 3 which allows us to permute downward the logical rule
introducing the principal connective of D. By performing the second step (−→)
we permute upwards the cut-application under consideration.

[Case 2.1] D ≡ A ∨ B

δ

.

.

.

� �, A ∨ B, p

ρ

.

.

.

� �, A ∨ B, p
cut� �, A ∨ B

�⇒

�⇒

P(δ, A ∨ B)

.

.

.

� �, A, B, p ∨� �, A ∨ B, p

P(ρ, A ∨ B)

.

.

.

� �, A, B, p ∨� �, A ∨ B, p
cut� �, A ∨ B

−→

−→

P(δ, A ∨ B)

.

.

.

� �, A, B, p

P(ρ, A ∨ B)

.

.

.

� �, A, B, p
cut1� �, A, B ∨� �, A ∨ B

Since |cut | = C(�, A ∧ B, p) and |cut1| = C(�, A, B, p), we have that
|cut1| < |cut |.
[Case 2.2] D ≡ A ∧ B

δ

.

.

.

� �, A ∧ B, p

ρ

.

.

.

� �, A ∧ B, p
cut� �, A ∧ B

�⇒

�⇒

P(δ, A ∧ B)L

.

.

.

� �, A, p

P(δ, A ∧ B)R

.

.

.

� �, B, p ∧� �, A ∧ B, p

P(ρ, A ∧ B)L

.

.

.

� �, A, p

P(ρ, A ∧ B)R

.

.

.

� �, B, p ∧� �, A ∧ B, p
cut� �, A ∧ B

−→

123

A note on cut-elimination for classical propositional logic

−→

P(δ, A ∧ B)L

.

.

.

� �, A, p

P(ρ, A ∧ B)L

.

.

.

� �, A, p
cut1� �, A

P(δ, A ∧ B)R

.

.

.

� �, B, p

P(ρ, A ∧ B)R

.

.

.

� �, B, p
cut2� �, B ∧� �, A ∧ B

In this casewe have |cut | = C(�, A∧B, p), |cut1| = C(�, A, p), and |cut2| =
C(�, B, p). Therefore, |cut1| < |cut | and |cut2| < |cut |. 	

We are now ready to apply the Reduction Lemma to finally prove the following
theorem:

Theorem 5 (Hauptsatz) Any GS4+-proof π of � � can be turned into a GS4-proof π ′
ending in the same sequent.

Proof The proof is led by a double induction: the principal one is on |π |, whereas the
side induction is on the number of maximal cut-applications. If |π | = 1, then we just
keep reducing the topmost cut-applications as indicated in the proof of Lemma 4 till
a completely cut-free derivation is achieved.

If |π | > 1, we consider an arbitrarily selected topmost maximal cut-application
cuti . Let δ be the subproof of π whose last inference is the cut-application under
consideration. In particular, let δ1 and δ2 denote the two direct subproofs of δ ending
in the two premises of cuti :

δ1

.

.

.

� �,C

δ2

.

.

.

� �,C
cuti� �

Since cuti occurs as a topmost maximal cut-application, we have |δ1|, |δ2| < |π |.
By inductive hypothesis, there are two GS4-proofs δ′

1 and δ′
2 ending in � �,C and

� �,C , respectively. Consider now the proof δ′ obtained from δ by replacing δ1 with
δ′
1 and δ2 with δ′

2:

δ′
1

.

.

.

� �,C

δ′
2

.

.

.

� �,C
cuti� �

By Lemma 4, there is a GS4+-proof δ′′ ending in � � and such that |δ′′| < |δ|.
Let π1 be the proof obtained from π by replacing the subproof δ with δ′′. The proofs

π1 and π end in the same sequent, but π1 contains one maximal cut-application less
than π . So, it suffices to keep focussing on topmost maximal cut-applications and
reiterate the procedure till a proof πk of � � such that |πk | < |π | is finally achieved.
At this point, our inductive hypothesis guarantees the existence of a cut-free proof π ′
ending in � �. 	

123

G. Pulcini

Remark 2 (First-order logic) The following rules for quantifiers prove reversible in
the sense already specified [8].

� �, ∃x A, A[x/t] ∃� �, ∃x A
� �, A[x/y] ∀� �,∀x A

Unfortunately, this fact doesn’t mean that the technical machinery deployed in this
section can be straightforwardly extended so as to prove cut-elimination for the whole
first-order system. The reason is simple: for any instance of the ∃-rule in which A(t)
is non-atomic, C(�, ∃x A, A[x/t]) > C(�, ∃x A).

4 Bounds

One of the main advantages of dealing with Kleene’s system GS4 lies in the fact
that the height of cut-free proofs turns out to be bounded by the complexity of their
end-sequent. In particular:

Theorem 6 For any GS4-proof π ending in � �, h(π) ≤ C(�) + 1.

Proof We proceed by induction on C(�). If C(�) = 0, then π is just an instance of
the ax-rule and so h(π) = 1. In case C(�) > 0, we need to distinguish the following
two cases.

• The last inference in π is an application of the ∧-rule. With π1 and π2 we refer
to the two direct subproofs of π ending in � �, A and � �, B, respectively. By
inductive hypothesis, h(π1) ≤ C(�, A)+1 and h(π2) ≤ C(�, B)+1. Since h(π) =
max(h(π1), h(π2)) + 1, we can finally conclude that h(π) ≤ C(�, A ∧ B) + 1.

• The last inference in π is an application of the∨-rule. Let π1 be the direct subproof
of π ending in � �, A, B. By inductive hypothesis, h(π1) ≤ C(�, A, B) + 1. It
is also the case that C(�, A ∨ B) = C(�, A, B) + 1. We then conclude that
h(π) = h(π1) + 1 ≤ C(�, A, B) + 2 = C(�, A ∨ B) + 1. 	

A further fact can be also established:

Theorem 7 If π and ρ are two GS4-proofs ending in the same sequent � �, then
h(π) = h(ρ).

Proof We proceed by induction on C(�). If C(�) = 0, then � � is just an instance of
the ax-rule and so π = ρ. If C(�) > 0, then there is a multiset �′ and a formula A
such that � = �′, A with C(A) > 0. We distinguish the following two cases:

• A ≡ B ∧ C . Consider the two proofs π ′ (the one on the right) and ρ′ (the one on
the left) displayed below.

P(π, B ∧ C)L

.

.

.

� �′, B

P(π, B ∧ C)R

.

.

.

� �′,C ∧� �′, B ∧ C

P(ρ, B ∧ C)L

.

.

.

� �′, B

P(ρ, B ∧ C)R

.

.

.

� �′,C ∧� �′, B ∧ C

123

A note on cut-elimination for classical propositional logic

By inductive hypothesis, h(P(π, B ∧C)L) = h(P(ρ, B ∧C)L) and h(P(π, B ∧
C)R) = h(P(ρ, B∧C)R), thence h(π ′) = h(ρ′). Moreover, by Lemma 3, h(π) =
h(π ′) and h(ρ) = h(ρ′). The combination of these facts allows us to conclude
that h(π) = h(ρ).

• A ≡ B ∨ C . Similar to the previous case. 	

Funding Open access funding provided by Università degli Studi di Roma Tor Vergata within the CRUI-
CARE Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Avron, A.: Gentzen-type systems, resolution and tableaux. J. Autom. Reason. 10(2), 265–281 (1993)
2. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Courier Dover

Publications, London (2015)
3. Kleene, S.C.: Mathematical Logic. Wiley, New York (1967)
4. Pulcini, G., Varzi, A.: Classical logic through rejection and refutation. In M. Fitting (ed) Landscapes in

Logic, vol. 2. College Publications (2021)
5. Schwichtenberg, H.: Proof theory: some applications of cut-elimination. In: Studies in Logic and the

Foundations of Mathematics, vol. 90, pp. 867–895. Elsevier (1977)
6. Smullyan, R.M.: First-Order Logic. Courier Corporation, London (1995)
7. W. Tait. Normal derivability in classical logic. In: The Syntax and Semantics of Infinitary Languages,

pp. 204–236. Springer (1968)
8. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, vol. 43. Cambridge University Press, Cam-

bridge (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	A note on cut-elimination for classical propositional logic
	Abstract
	1 Introduction
	2 Preliminary notions and results
	3 The cut-elimination algorithm
	4 Bounds
	References

